

Status of LIGO Data Analysis System

Albert Lazzarini LIGO Laboratory at Caltech

> LSC Meeting 14 August 2001 Hanford, WA

Outline

- LDAS software
 - » Systems preparation
 - » MDC plans, status
- LDAS Hardware
 - » Systems preparation
 - » Archive plans
- Issues, challenges for E6 and UL analysis
- Grid computing & LIGO Data Analysis opportunities, challenges

Software

- » LDAS code base is ~90% complete.
- » ~90% of work on 14 of 16 APIs has moved into bug-fixing, maintenance, and enhancement
 - Added functionality beyond originally specified baseline
- » Final two APIs (disk cache, data ingestion) still pending a final decision on archive (*refer to HW status section*)
 - Will develop an LDAS interface to the APIs that come with chosen solution
- » Focus is on upcoming MDCs and E6 run

Software

- » Data Conditioning API status
 - Resampling of data by rational fraction complete, with anti-aliasing either built-in or user-specified
 - PSD estimator
 - Non-parametric available since first MDC
 - Parametric using AR model is 50% complete -on hold due to other priorities
 - Whitening by AR implemented, partially tested
 - Line removal
 - Kalman filter for thermally excited lines implemented, tested on simulated data, undergoing further tests for MDC, E6.
 - Output Error time-domain estimation of cross-channel xfer functions implemented, tested on simulated data - can be used to remove power mains
 - Arbitrary linear time domain filtering complete
 - Wavelet decomposition
 - » Simple PSU model nearly complete
 - » More sophisticated UFI model being prepared

Software

- » Data Conditioning API status
 - Database insertion/retrieval model functional requirements being identified, specified by Finn, Blackburn, Shawhan, Burst Group task leads, Riles
 - State preservation (for recurrent filtering between jobs)
 - Requirements, specification under development by Blackburn, Finn, Maros
 - Miscellaneous recent functionality:
 - Random number generation(uniform, normal deviates)
 - Limited signal generation capabilities for testing
 - Data type conversion (e.g., LIGO time series from data sequences)
- » Sergei Klimenko (UFI), Michael Landry (LHO) have joined the development effort

LSC Meeting, 13-16 August 2001

- Software releases
 - » Alpha 0.0.XX (April 1999 September 2001) ONGOING
 - » Beta Release LDAS 0.1.0 (November 2001) after last MDC inchpebble in time for E6
 - » First Official LDAS Release 1.0.0 after final MDC (Integrated archive test); in preparation for the LIGO I Science Run

Software:

- Completed MDCs
 - » Dataconditioning MDC (stand-alone testing, validation)
 - August 2000
 - » MPI MDC (stand-alone testing, validation)
 - January 2001
 - » MetadataAPI MDC (stand-alone testing, validation)
 - April 2000
 - » Inspiral MPC (multiple shared objects running together, use of data from dataconditioning API, databases)
 - May 2001

Software:

- Pending MDCs
 - » Joint Stochastic, Burst MDC
 - 4-10 September @ MIT-LDAS
 - » CW MDC LDAS-based approaches originally proposed UL group scope
 - Long-stretch coherent GW search directed at known CW sources
 - Date, site TBD (led by LIGO-LHO)
 - » CW MDC non-LDAS-based approaches added UL scope
 - Heterodyne pulsar search 1st week of October, Glascow (led by GEO)
 - Hierarchical Hough transform 1st week of October, AEI/Golm (led by GEO)
 - Incoherent stack end of October, site TBD *(led by U. Michigan)
 - » Archive MDC
 - Pending archive decision (ref. hardware status section)

LIGO

LDAS Update for LSC 2001/08

Hardware - Phase I

» Phase I: COMPLETE

- 28 TB of RAID disk systems for Observatories, Caltech, MIT
 - Sites will have 1 month look-back capacity on spinning media @3 MB/s per interferometer
 - Caltech HPSS disk cache
 - MIT disk cache
- 6000 slot (500+TB capacity) robotic silo for HPSS at Caltech
- PCs, servers for E6 run

Hardware (Phase I, UL run):

- » Prototype clusters will be up and running at all LIGO Lab. Sites by end of August
 - LHO 16 P IV nodes, 512 MB RAM
 - LLO 16 AMD K-7 nodes, 512 MB RAM
 - MIT 16 AMD K-& nodes, 1024 MB RAM
 - CIT- dev 16 P III nodes, 512 MB RAM
 - CIT-test 8 dual CPU PIII nodes, 256 MB RAM (very old)
 - Reference linux platform: RH7.1;
 - Providing reference rsync /ldcg LDAS software environment for LSC sites to mirror after gcc-3.x.x
- » 28 TB of RAID (26 T3s@LHO, 14 T3s@LLO, 1T3@MIT, 8 T3s@CIT) exported to CDS/DMT/Dataviewer at sites
- » Database, frame servers at each site (E450 SUN servers)
- » Data conditioning servers at each site (4xCPU Xeon PIII)
- » All LDAS networks converted to gigabit ethernet (1000 Mbps)

Hardware - Phase II

- » After final beowulf, archive software benchmark tests
 - Data movers for archive (support 5 continuous streams of data at full bandwidth)
 - Plan: SUN Daktari line of ultra III processor 4x or 8X SMP server(s) to connect to tape drives from Silo
 - HPSS is baseline
 - Recent Sun/LSC SamQFS alternative being evaluated
 - SamQFS, has many desirable features, not as scalable as HPSS
 - Native unix file system; tar format for data archive
 - Uses unix inode disk structure to store metadata FAST
 - Less robust against HW failure than HPSS* -> reason why it is FAST
 - Can be used AT ALL LIGO SITES TO FEDERATE/INDEX DATA
 - PCs for main clusters at Caltech, MIT, LLO, LHO (total of ~400 units)

Hardware - Phase III

- » Complete archive for Science run
 - STK model 9940A (60 GB), 9940B (200GB) tape drives for silo
 - Data tapes for Science Run
 - Start build-up of large disk farm in front of tape archive for data analysis
 - Continue to grow farm throughout Science run
 - Keep up with data growth
 - Target keeping all commonly used, needed data on disk
 - Use tape archive for backup, large data dumps to disk caches
- » Phases II, III will occur after UL run and in time for the LIGO I Science Run

Issues

- People are task-saturated
- Hardware resources are needed for simultaneous code development & validation by various groups:
 - » LIGO has 2 systems at Caltech that are busy ALL the TIME
 - » MIT will soon be available as 2nd Lab. resource (for MDC)
 - » Observatories are dedicated for data taking and not accessible for code development
 - » PSU, UTB, UWM developing LSC-based LDAS installations
- In order to be useful, all configurations must be mirrored in order to make installations, code development tractable

LIGO/LSC Longer Term Computing Opportunites

- LIGO laboratory:
 - » \$53M Distributed Terascale Facility (DTF) award announced tat NSF his past week
 - Consortium composed of NCSA, ANL, SDSC, Caltech/CACR
 - » Caltech /CACR component \$3M
 - 0.4 teraflops McKinley linux clustrer at Caltech, HPSS silo upgrade at Caltech
 - Resources available to LSC through LIGO-CACR MOU
 - » Similar compute resources at ANL
 - » Several-fold greater resources at SDSC and NCSA
 - » DTF use model includes redundant LIGO main archive (re-striped) data mirroring at other DTF sites 100 gbps access across the DTF fabric

LIGO LIGO/LSC Longer Term Computing Opportunites

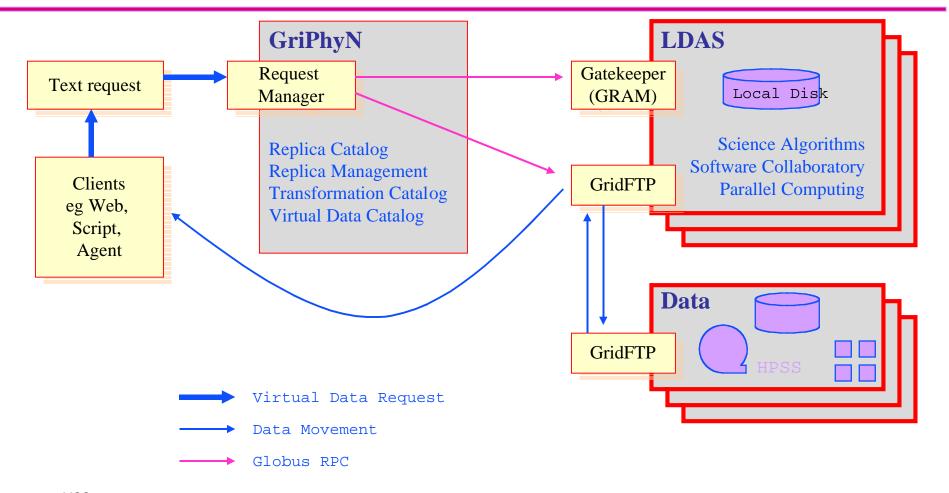
LSC Resources

- » GriPhyN -- ITR2000 -- SW/CS component
 - Caltech/UWM/UTB(dedicated to GriphyN-wide outreach) participation (0.5FTE/1FTE)
 - Use of grid software tools, infrastructure to support data replication, access in a robust, secure environment
- » international Virtual Data Grid Laboratory (iVDGL) -- ITR2001
 - Unofficial notification of pending award \$2.110M for LSC
 - New PSU Tier 2 center for LIGO data analysis
 - Upgrade/maintenance for UWM Tier 2 center (existing MRI resource)
 - Personnel for Tier 2 ctrs.
 - EU involvement in distributed computing (Italy/UK)
 - iVDGL can serve as a model for Virgo-LIGO data exchange, joint data analysis

LIGO-GriPhyN Priorities

Distribution/Replication of Computing/Data with Security

wrap LDAS with GriPhyN pilot at CACR-CIT, LIGO-CIT, ISI-USC, UWM


LIGO Laboratory at Caltech

2. International Cooperation

Coincidence Studies LIGO (US) & Virgo (FR/IT) pilot at CACR-CIT, LIGO-LHO, LIGO-LLO, Virgo-Pisa

Grid LDAS Architecture

