

LLO + Allegro: A Unique Opportunity to Experimentally Modulate the Stochastic Gravitational Wave Background

Albert Lazzarini¹ & I. Samuel Finn² ¹LIGO Laboratory Caltech, ²The Pennsylvania State University

4th Eduardo Amaldi Conference 9 - 13 July 2001 Perth, Australia

Experimental Modulation of the Stochastic Background Correlation

- Work in progress performed in collaboration with L. S. Finn (Penn State University)
- References:
 - » P.F. Michelson, *Mon. Not. Roy. Astron. Soc.* **227**, 933 (1987).
 - » N. Christensen, *Phys. Rev.* **D46**, 5250 (1992)
 - » E. Flanagan, *Phys. Rev.* **D48**, 2389 (1993), astro-ph9305029
 - » B. Allen and J. Romano, Phys. Rev. D59, 102001 (1999), gr-qc9710117
 - » M. Maggiore, Trieste, June 2000: Gravitational Waves: A Challenge to Theoretical Astrophysics, gr-qc-0008027

LLO + Allegro: A Unique Opportunity

- Idea: perform an improved measurement of the stochastic gravitational wave background (SGWB) between a cryogenic resonant bar and one of the LIGO interferometers by introducing a modulation scheme into the measurement - rotate the bar w.r.t. the interferometer...
 - + Observation in a regime with little experimental information
 - + Uses a pair of (very nearly) collocated detectors
 + good geometric overlap
 - + Ability to identify and remove a class of terrestrial backgrounds
 - Relatively high frequency (920 Hz), narrowband measurement
 - Less than optimal sensitivity

Stochastic GW Background Detection

• Cross-correlate the output of two (*independent*) detectors with a suitable filter kernel:

$$C(T) = \int_{-T/2}^{T/2} dt \int_{-\tau/2}^{\tau/2} d\tau' \quad s_1(t)s_2(t-\tau')Q(\tau')$$

- Requires:
 - (i) Two detectors must have overlapping frequency response functions i.e., $s_1(f)s_2(f) \neq 0, \{f\} \notin \emptyset$
 - (ii) Detectors sensitive to same polarization state (+, x) of radiation field, h_{GW} .
 - (iii) Baseline separation must be suitably "short":

$$L < \lambda_{GW}(f) \Longrightarrow \frac{fL}{c} < 1$$

Modulation of the Stochastic Background Correlation

Ideally, the stochastic background correlation increases with integration time as:

$$SNR \propto \frac{3H_0^2}{10\pi^2} \sqrt{T_{\text{int}}} \left[\frac{\gamma^2(f_0)\Omega_{GW}^2 \Delta f}{f^6 S_{1,n} |f| S_{2,n} |f|} \right]^{\frac{1}{2}}$$

- » Assumes no additional sources of correlated noise
 - cannot discriminate with a single measurement
- » Mutual orientation dependence of GW background signal may be exploited to discriminate among possible correlated sources

LIGO Optimal filtering in the presence of background correlation

LIGO Optimal filtering in the presence of background correlation

$$\left\langle C(T, \tilde{\Omega}_{1}, \tilde{\Omega}_{2}) \right\rangle = T \int_{0}^{\infty} df \left(\pm \frac{3H_{0}^{2}}{20\pi^{2}|f|^{3}} \Omega_{GW}(|f|) \gamma(|f|, \tilde{\Omega}_{1}, \tilde{\Omega}_{2}) + S_{12}(|f|) \right) \tilde{Q}(f) ;$$

Choose two orientations of one detector { Ω_1 , Ω_1' }, for which $\gamma(f, \Omega_1, \Omega_2) = -\gamma(f, \Omega_1', \Omega_2)$, denote C_+ , C_- values of integrated correlation in these two orientations:

$$\langle C(T) \rangle = \langle C_{+}(T/2) - C_{-}(T/2) \rangle$$

$$\langle C(T) \rangle = T \int_{0}^{\infty} df \left(\frac{3H_{0}^{2}}{20\pi^{2}|f|^{3}} \Omega_{GW}(|f|)\gamma(|f|, \tilde{\Omega}_{1}, \tilde{\Omega}_{2}) \right) \tilde{\mathcal{Q}}(f)$$

$$\sigma_{C}^{2} = \langle C^{2} \rangle - \langle C \rangle^{2} = 2\sigma_{C+,-}^{2}$$

$$\sigma_{C}^{2} = \frac{T}{2} \int_{0}^{\infty} df \left(S_{1}(|f|)S_{2}(|f|) + S_{12}^{2}(|f|) \right) \left[\tilde{\mathcal{Q}}(f) \right]^{2}$$

$$SNR = \frac{\langle C \rangle}{\sigma_{C}} \xrightarrow{\text{max}} \frac{\delta[SNR]}{\delta[\tilde{\mathcal{Q}}]} = 0 \implies \tilde{\mathcal{Q}}(f) = \left(\frac{\gamma(|f|, \tilde{\Omega}_{1}, \tilde{\Omega}_{2})\Omega_{GW, \text{mod}\,el}(|f|)}{|f|^{3}(S_{1}(|f|)S_{2}(|f|) + S_{12}^{2}(|f|))} \right)$$

LIGO-G010246-00-E

Modulation of the Stochastic Background Correlation

Allegro bisector Figure 1: Schematic showing Allegro and LLO orientations with respect to geodetic north and the LLO-LSU baseline.

Modulation of the Stochastic Background Correlation

Figure 2: Dependence of the Allegro-LLO correlation function on the angle between the Allegro bar bisector and the LLO-to-LSU baseline (refer to Figure 1). Dashed line is for DC and the solid line is for the Allegro resonant frequency.

LIGO-G010246-00-E

Modulation of the Stochastic Background Correlation

LIGO-G010246-00-E

Modulation of the Stochastic Background Correlation

igure 3: Schematic showing Allegro orientations with espect to geodetic north and the LLO-LSU baseline

$$\begin{split} \boldsymbol{C}_{+}(\sigma_{2} = 39.6^{\circ}) &\approx T_{\text{int}} \Delta f \left(\frac{3H_{0}^{2}}{20\pi^{2}} \frac{\gamma^{2}\Omega_{GW}(f_{0})\Omega_{GW,\text{model}}(f_{0})}{f_{0}^{6} \left(S_{A}(f_{0})S_{L}(f_{0}) + S_{LA}(f_{0})^{2}\right)} + S_{LA}(f_{0}) \frac{\gamma \ \Omega_{GW,\text{model}}(f_{0})}{f_{0}^{3} \left(S_{A}(f_{0})S_{L}(f_{0}) + S_{LA}(f_{0})^{2}\right)} \right) \\ \boldsymbol{C}_{-}(\sigma_{2} = 129.6^{\circ}) &\approx T_{\text{int}} \Delta f \left(-\frac{3H_{0}^{2}}{20\pi^{2}} \frac{\gamma^{2}\Omega_{GW}(f_{0})\Omega_{GW,\text{model}}(f_{0})}{f_{0}^{6} \left(S_{A}(f_{0})S_{L}(f_{0}) + S_{LA}(f_{0})^{2}\right)} + S_{LA}(f_{0}) \frac{\gamma \ \Omega_{GW,\text{model}}(f_{0})}{f_{0}^{3} \left(S_{A}(f_{0})S_{L}(f_{0}) + S_{LA}(f_{0})^{2}\right)} \right) \\ LIGO-GO10246-00-E \end{split}$$

Modulation of the Stochastic Background Correlation

• After total a observation time T_{int}

$$\mathbf{C} = \mathbf{C}_{+}(\sigma_{2} = 39.6^{\circ}) - \mathbf{C}_{-}(\sigma_{2} = 129.6^{\circ}) = T_{\text{int}}\Delta f \left(\frac{3H_{0}^{2}}{20\pi^{2}} \frac{\gamma^{2}\Omega_{GW}(f_{0})\Omega_{GW,\text{model}}(f_{0})}{f_{0}^{6} \left(S_{A}(f_{0})S_{L}(f_{0}) + S_{LA}^{2}(f_{0})\right)} \right) \right)$$
$$\sigma_{C}^{2} = T_{\text{int}}\Delta f \left(\frac{\gamma^{2}\Omega_{GW,\text{model}}^{2}(f_{0})}{f_{0}^{6} \left(S_{A}(f_{0})S_{L}(f_{0}) + S_{LA}^{2}(f_{0})\right)} \right) \right)$$
$$\mathbf{C} = \left(\frac{3H_{0}^{2}}{20\pi^{2}} \frac{\Omega_{GW}(f_{0})}{\Omega_{GW,\text{model}}(f_{0})} \right) \sigma_{C}^{2}$$

$$SNR = \frac{\boldsymbol{c}}{\boldsymbol{\sigma}_C} = \sqrt{T_{\text{int}}\Delta f} \left(\frac{3H_0^2}{10\pi^2} \frac{\gamma \,\Omega_{GW}(f_0)}{f_0^3 \sqrt{\left(S_A(f_0)S_L(f_0) + S_{LA}^2(f_0)\right)}} \right)$$

LIGO-G010246-00-E

LIGO Effect of correlated background on observable upper limits for $\Omega_{\rm GW}$

Measurements of the Stochastic Background

Conclusions

Modulation of the Stochastic Background Correlation

- It is possible to account for correlated detector noise background in deriving the Optimal Wiener filter
- In the presence of correlated detector noise background, the upper limit will be a biased estimate:
 - Level of $\rho \sim 10^{-4}$ begins to limit measurement after less than 1 year
 - Current best published upper limit of Ω_{GW} <60 can be improved by LIGO+ALLEGRO
- Move of ALLEGRO to new quarters was used to modify bar to allow this measurement. Considerations:
 - Modulation period >> detector settling time => *dead-time* **》**
 - Modulation period < total integration time => *multiple orientations* **》**
- Choose period of ~ 3 5 months (not commensurate with seasonal/annual cycles)

