

#### R&D for Advanced LIGO 2002-2006

#### David Shoemaker & Dennis Coyne 14 June 2001

G010237-00-M



#### Overview

- Evolution intrinsic to LIGO mission
- Next step in detector design:
  - » Should be of astrophysical significance if it observes GW signals or if it does not
  - » Should be at the limits of reasonable extrapolations of detector physics and technologies
  - » Should lead to a realizable, practical instrument
- Much effort is inextricably entwined with LSC research
  - » LIGO Lab and other LSC members in close-knit teams
  - » Lab coordinates, provides infrastructure/engineering



#### Overview

- Organization of presentations:
  - » Astrophysics within reach of Advanced LIGO
  - » Limits to sensitivity
  - » Overall development plan, organizational principles
  - » System designs and trades, Interferometer Sensing and Control
  - » Mechanical aspects of design: Isolation, Suspension, Thermal noise, and system tests
  - » Optics: Laser, Test Masses, Input Optics, Auxiliary Optics
  - » Major Research Equipment (MRE) Proposal plan and status



#### Choosing an upgrade path

- Wish to maximize astrophysics to be gained
  - » Must fully exploit initial LIGO
  - » Any change in instrument leads to lost observing time at an Observatory
  - » Studies based on LIGO I installation and commissioning indicate 1-1.5 years between decommissioning one instrument and starting observation with the next
  - $\rightarrow$  Want to make one significant change, not many small changes
- Technical opportunities and challenges
  - » Can profit from evolution of detector technologies since initial LIGO design 'frozen'
  - » 'Fundamental' limits: quantum noise, thermal noise provide point of diminishing returns (for now!)



#### Present and future technical limits to sensitivity

- Advanced LIGO
  - » Seismic noise 40→10 Hz
  - » Thermal noise 1/15
  - » Shot noise 1/10, tunable
- Facility limits
  - » Gravity gradients
  - » Residual gas
  - » (scattered light)
- Beyond Adv LIGO
  - » Thermal noise, e.g., cooling of test masses
  - » Quantum noise, e.g., quantum non-demolition
  - » Not the central focus of this plan, but exploration must be started now



# From Initial Interferometers to Advanced





#### Neutron Star / Neutron Star Inspiral (our most reliably understood source)



#### Neutron Star / Black Hole Inspiral and NS Tidal Disruption

LIGO





#### Black Hole / Black Hole Inspiral and Merger





## BH/BH Mergers: Exploring the Dynamics of Spacetime Warpage





### Spinning NS's: Pulsars





### Spinning Neutron Stars: Low-Mass X-Rav Binaries

- Rotation rates ~250 to 700 revolutions / sec
  - » Why not faster?
  - » Bildsten: Spin-up torque 10-22 balanced by GW emission torque
- If so, and steady state: X-ray luminosity → GW strength
  10<sup>-23</sup>
- Combined GW & EM obs's → information about:
  - » crust strength & structure, temperature dependende of viscosity, ...





#### Stochastic Background from Very Early Universe

• GW's are the ideal tool for probing the very early universe





#### Stochastic Background from Very Early Universe





#### **Overview of Sources**

- LIGO's Initial Interferometers bring us into the realm where it is plausible to begin detecting cosmic gravitational waves.
- With LIGO's Advanced Interferometers we can be confident of:
  - » detecting waves from a variety of sources
  - » gaining major new insights into the universe, and into the nature and dynamics of spacetime curvature, that cannot be obtained in any other way





#### Introduction to the detector

- Michelson as strain sensor
- Sensitive to differential strains
- Insensitive to common-mode motion
- Signal proportional to
  - » length (in short-wavelength limit, true for 4km and kHz)
  - » laser power (shot noise grows as square root, so overall gain as square root of laser power)
- Mechanical isolation needed from external forces
- Stochastic forces due to Thermal noise present (equilibrium with heat bath)
- Fluctuations in light path due to gas also a limit (index fluctuations)





#### Increasing the interaction time

- Alternative to longer arms
- Increase in the interaction time of strain with light
- Multi-bounce delay lines, or Fabry-Perot cavities





#### Increasing the circulating power

Introduction of Power Recycling Michelson interferometer held at 'dark fringe' » Most input light reflected back to laser • 'Impedance match' with a partially transmitting mirror Initial LIGO configuration



#### Tailoring the frequency response





#### Interferometer subsystems

| Subsystem                                      | Function                                                        | Implementation                                                            | Principal challenges                                                 |
|------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|
| Interferometer<br>Sensing and<br>Control (ISC) | Gravitational Readout;<br>length and angle<br>control of optics | RF modulation/demod<br>techniques, digital real-<br>time control          | Lock acquisition,<br>S/N and bandwidth trades                        |
| Seismic<br>Isolation<br>(SEI)                  | Attenuation of<br>environmental forces<br>on test masses        | Low-noise sensors, high-<br>gain servo systems                            | Reduction of test mass<br>velocity due to 0.01-1 Hz<br>input motion  |
| Suspension<br>(SUS)                            | Establishing 'Free<br>Mass', actuators,<br>seismic isolation    | Silica fibers to hold test mass, multiple pendulums                       | Preserving material<br>thermal noise<br>performance                  |
| Pre-stabilized<br>Laser (PSL)                  | Light for quantum sensing system                                | Nd:YAG laser, 100-200<br>W; servo controls                                | Intensity stabilization: 3e-<br>9 at 10 Hz                           |
| Input Optics<br>(IOS)                          | Spatial stabilization, frequency stabilization                  | Triangular Fabry-Perot cavity, suspended mirrors                          | EO modulators, isolators to handle power                             |
| Core Optics<br>Components<br>(COC)             | Mechanical test mass;<br>Fabry-Perot mirror                     | 40 kg monolithic sapphire<br>(or silica) cylinder,<br>polished and coated | Delivering optical and<br>mechanical promise;<br>Developing sapphire |
| Auxiliary Optics (AOS)                         | Couple light out of the interferometer; baffles                 | Low-aberration telescopes                                                 | Thermal lensing compensation                                         |





G010237-00-M



#### System trades

- Laser power
  - » Trade between improved readout resolution, and momentum transfer from photons to test masses
  - » Distribution of power in interferometer: optimize for material and coating absorption, ability to compensate
- Test mass material
  - » Sapphire: better performance, but development program, crystalline nature
  - » Fused silica: familiar, but large, expensive, poorer performance
- Lower frequency cutoff
  - » 'Firm', likely, and possible astrophysics
  - » Technology thresholds in isolation and suspension design



## Anatomy of the projected detector performance





#### Nominal top level parameters

|                                            | Sapphire | Fused Silica |
|--------------------------------------------|----------|--------------|
| Fabry-Perot arm length                     | 4000 m   |              |
| Laser wavelength                           | 1064 nm  |              |
| Optical power at interferometer input      | 125 W    | 80 W         |
| Power recycling factor                     | 17       | 17           |
| FP Input mirror transmission               | 0.5%     | 0.50%        |
| Arm cavity power                           | 830 kW   | 530 kW       |
| Power on beamsplitter                      | 2.1 kW   | 1.35 kW      |
| Signal recycling mirror transmission       | 6.0%     | 6.0%         |
| Signal recycling mirror tuning phase       | 0.12 rad | 0.09 rad     |
| Test Mass mass                             | 40 kg    | 30 kg        |
| Test Mass diameter                         | 32 cm    | 35 cm        |
| Beam radius on test masses                 | 6 cm     | 6 cm         |
| Neutron star binary inspiral range (Bench) | 300 Mpc  | 250 Mpc      |
| Stochastic GW sensitivity (Bench units)    | 8 x 10-9 | 3 x 10-9     |



#### Development plan

- Inputs:
  - » Single significant upgrade
  - » Reasonable/exciting extrapolations of technical developments
  - » Test and installation practice necessary
- Outputs:
  - » Sensitivity as described above
  - » Timing: Initial LIGO observations until 2006, then change to Advanced LIGO
  - » Subsystems to be described below
  - » Testbeds for integrated subsystems on University Campuses
- Goal: Eliminate the work which formed the first year of commissioning of Initial LIGO by subsystem testing and installation practice



#### Stochastic noise system tests: LASTI

- Full-scale tests of Seismic Isolation and Test Mass Suspension.
  - » Takes place in the LIGO Advanced System Test Interferometer (LASTI) at MIT: LIGO-like vacuum system.
  - » Allows system testing, interfaces, installation practice.
  - » Characterization of non-stationary noise, thermal noise.
- Subsystem support to LASTI system tests.
  - » teams learn how their system works, installs, etc.
  - » MIT support of infrastructure, and collaborative shakedown and test.
- Schedule highlights:
  - ✓ 4Q00: Vacuum system qualified, seismic supports in place.
  - » 4Q01: 'infrastructure' Laser, test cavity, DAQ, etc. to be tested.
  - » 3Q02: HAM isolation testing completed.
  - » 2Q03: Suspension noise prototypes installed.
  - » 2Q04: integrated Isolation/suspension testing completed.
  - » 1Q05: PSL-Mode Cleaner integrated performance test completed.



#### LASTI Laboratory



G010237-00-M



#### LASTI Layout



G010237-00-M



### 40 m RSE Experiment (40m)

- Precision test of selected readout and sensing scheme
  - » Employs/tests final control hardware/software
  - » Dynamics of acquisition of operating state
  - » Frequency response, model validation
- Utilizes unique capability of Caltech 40 meter interferometer --- long arms allow reasonable storage times for light
- Schedule Highlights
  - ✓ 4Q00: LIGO 40 m Lab expansion completed
  - ✓ 1Q01: LIGO 40 m active isolation systems installed
  - ✓ 2Q01: LIGO 40 m Vacuum Envelope commissioned
  - » 2Q01: LIGO 40 m PSL to be installed
  - » 4Q02: LIGO 40 m suspensions installed
  - » 2Q04: LIGO 40 m configurations research completed; further characterization studies & ISC prototype testing continues



#### 40m Interferometer



G010237-00-M



#### 40m Interferometer Layout





# Advanced Interferometer Sensing & Control (ISC)

- Responsible for the GW sensing and overall control systems
- Addition of signal recycling mirror increases complexity
  - » Permits 'tuning' of response to optimize for noise and astrophysical source characteristics
  - » Requires additional sensing and control for length and alignment
- Shift to 'DC readout'
  - » Rather than RF mod/demod scheme, shift interferometer slightly away from dark fringe; relaxes laser requirements, needs photodiode develop
- Requires both proof-of-principle and precision testing (40m)
- LIGO Lab leads, with contributions from LSC, esp. GEO
- Schedule Highlights:
  - ✓ 4Q00: Tabletop configuration experiments concluded
  - » 2Q01: Design Requirements Review
  - » 2Q02: Tabletop DC readout test results
  - » 2Q03: GEO 10m prototype test results/review
  - » 4Q03: Final design complete



#### Interferometer layout





### Advanced Controls & System Identification (SID)

- Modern controls approach to optimization of system
- Interfaces to existing infrastructure
- Allows both noise performance and robustness to be explored
- Can be static, or apply Adaptive Control techniques if proven
- Schedule Highlights
  - » 4Q02: System identification for the initial LIGO detector
  - » 4Q03: Adaptive control for the initial LIGO detector





### Systems and Interferometer Sensing and Control Organization

- Systems flows naturally into the controls problem, similar skills and overview needed
- Peter Fritschel and Dennis Coyne at LIGO east/west leading, distributed team in Lab
- Strong coupling to Ken Strain (U Glasgow)
- Strong coupling to experiments at U. Glasgow, and small tabletop proof-of-principle experiments at the two campuses
- Effort leads to Caltech 40m tests for validation



### Active Seismic Isolation R&D (SEI): Requirements

- Goal: render seismic noise a negligible limitation to GW searches
  - » Other 'irreducible' noise sources limit sensitivity to uninteresting level for frequencies less than ~20 Hz
  - » Suspension and isolation contribute to attenuation
  - » Choose to require a 10 Hz 'brick wall'
- Goal: reduce or eliminate actuation on test masses
  - » Actuation source of direct noise, also increases thermal noise
  - » Seismic isolation system can reduce RMS/velocity through inertial sensing, and feedback
  - » Acquisition challenge greatly reduced
  - » Choose to require RMS of <10^-11 m


## SEI: Conceptual Design

- Two in-vacuum stages in series, external slow correction
- Each stage carries sensors and actuators for 6 DOF
- Stage resonances ~5 Hz
- High-gain servos bring motion to sensor limit in GW band, reach RMS requirement at low frequencies
- Similar designs for BSC, HAM vacuum chambers; provides optical table for flexibility





### **SEI:** Organization

- Initial work done by teams at Caltech, MIT, Stanford, LSU, JILA – significant input from LSC teams, suspension working group
- Strategic organization by Lab of continued development at LLO, with continued LSC scientific leadership (Giaime/LSU)
- Engineering effort and prototype fabrication managed by LLO (Stapfer)
- Next prototype to be installed and tested in Stanford ETF (Lantz)
- Installation and test at MIT LASTI to be performed by development team of engineers/scientists, plus MIT LASTI staff



### SEI: Progress and Plans

- Prototyping and test of active systems
  - ✓ 3Q00: proof of principle prototype
  - ✓ 4Q00: demonstrator bid package
  - ✓ 1Q01: demonstrator fabrication contract let (HPD, Boulder)
  - ✓ 2Q01: design requirements review (first one for Advanced LIGO!)
  - » 4Q01: demonstrator test to be complete (at Stanford)
  - » 1Q02: Hydraulic prototype test on LIGO I system (Stanford/MIT)
  - » 3Q02: HAM prototype standalone testing completed (MIT LASTI)
  - » 1Q03: BSC prototype standalone testing completed (MIT LASTI)





### Design work on Demonstrator

#### (early draft)



40

#### The Quiet Hydraulic Actuator





#### Hydraulic prototype test results

- 2-DOF system
- Feedforward and
- initial LIGO if indicated





### Suspension Research (SUS)

- Adopting a multiple-pendulum approach
  - » Allows best thermal noise performance of suspension and test mass; replacement of steel suspension wires with fused silica
  - » Offers seismic isolation, hierarchy of position and angle actuation
- Close collaboration with GEO (German/UK) GW group, potentially with Birmingham (Cruise) group
- Schedule highlights:
  - » 2Q01: Fabricate and test quad pendulum
  - » 2Q01: Install first fused silica GEO-600 suspension
  - » 2Q02: Controls prototypes complete, in testing
  - » 2Q03: Noise prototypes complete, in testing



#### GEO suspension – Quad pendulum prototype





G010237-00-M



## Parallel effort: Thermal Noise Issues

- Choice of substrates sapphire, fused silica
  - » Modeling, measurements of thermophysical properties, measurements of Q and anelastic aftereffect
- Coating and polishing mechanical losses
  - Modeling, specialized coating and before/after coating, polishing Q measurements, flame/chemical processing
- Assembly techniques
  - » Hydroxy-catalysis bonding with various solutions, welding, ribbon and cylindrical fiber development



#### Surface losses, coating losses

Left: Volume/surface ratio for fused silica;

Below: losses of sapphire before and after dielectric coating



| Mode               | Frequency ( | (Hz)     | Loss before            | Loss after             |             |
|--------------------|-------------|----------|------------------------|------------------------|-------------|
|                    | measured    | modelled | - coating              | coating                |             |
| 'Clover (4) leaf'  | 35674       | 35085    | 3.5 x10 <sup>-8</sup>  | 9.4 x 10 <sup>-8</sup> | /Surface (µ |
| Asymmetric<br>drum | 54850       | 53074    | 4.5 x 10 <sup>-8</sup> | 15 x 10 <sup>-8</sup>  |             |
| Bending            | 68633       | 66657    | 11 x 10 <sup>-8</sup>  | 14 x 10 <sup>-8</sup>  |             |
| Fundamental        | 82980       | 82296    | 1.9 x 10 <sup>-8</sup> | 6.4 x 10 <sup>-8</sup> |             |
| 'Clover (6) leaf'  | 87267       | 88292    | 3.7 x 10 <sup>-8</sup> | 9.4 x 10 <sup>-8</sup> |             |
|                    |             |          |                        |                        |             |



#### Suspension effort organization

- Thermal noise research pursued by a wide range of institutions, with some (intentional) duplication: Syracuse, Stanford, Glasgow, Iowa State, LIGO Lab, SMA/Lyon/Virgo
- Suspension initial design through the initial prototypes and the design rules: GEO (University of Glasgow, Norna Robertson), potential involvement of University of Birmingham in electronics and integration
- Suspension final design and production of final 'performance' prototypes, ultimately final articles: LIGO Lab Caltech (Phil Willems)



## Thermal Noise Interferometer (TNI)

- Direct measurement of thermal noise, at LIGO Caltech
  - » Test of models, materials parameters
  - » Search for excesses (non-stationary?) above anticipated noise floor
- In-vacuum suspended mirror prototype, specialized to task
  - » Optics on common isolated table, ~1cm arm lengths
- All system components in place, in 'commissioning'
- Schedule highlights:
  - ✓ 4Q00: TNI mode cleaner cavity locks
  - » 2Q01: TNI studies for initial LIGO to be completed
  - » 2Q02: Sapphire substrates installed
  - » 1Q03: TNI final Sapphire/fused silica results



#### **Thermal Noise Interferometer**





#### **Thermal Noise Interferometer**



G010237-00-M



#### Advanced K&D: Optics & Laser

- Core Optics Components (COC)
- Input Optics (IO)
- Core Optic Active Thermal Compensation (ATC)
- Pre-Stabilized Laser (PSL)



#### Advanced K&U: Uptics Core Optics

- Sapphire Material Development
- Sapphire Polishing
- Coating



#### Advanced K&D: Core Optics Material Development

- Why Sapphire?
  - » Increased detection range
    - 200 Mpc range for NS inspiral for sapphire vs 165 Mpc for fused silica
    - Sapphire has higher Q (2 x 10<sup>8</sup> vs 3 x 10<sup>7</sup> for fused silica), but is thermoelastic noise limited
  - » Improved high power performance
    - Thermal conductivity is 30 x higher than fused silica
    - Rayleigh scattering is ~ 30x lower than fused silica
- Material R&D Effort
  - » Effect of coating, bonding, polishing on thermal noise
    - jointly performed with the Suspensions group
  - » R&D to produce large (40 kg, 32 cm diameter), high quality sapphire:
    - Crystal Systems Inc.
    - Shanghai Institute for Optics and Fine Mechanics (SIOM)
  - » Measure thermophysical, optical and mechanical properties
  - » Reduce bulk absorption



#### Advanced K&D: Core Optics Material Development Status

- Mechanical Q (Stanford, U. Glasgow)
  - » Q of 2 x 10<sup>8</sup> confirmed for a variety of sapphire substrate shapes
- Thermoelastic damping parameters (Caltech)
  - » Measured room temperature values of thermal expansion and conductivity by 2 or 3 methods with agreement
  - » Provides better basis for advanced LIGO thermoelastic noise floor
- Optical Homogeneity (Caltech, CSIRO)
  - » Characterized by CIT & CSIRO
    - two a- or m-axis, 15 cm dia. x 8 cm thick sapphire optic
    - One m-axis, 25 cm dia. Sapphire optic
  - » 100's nm p-v, 24 to 58 nm rms
  - » Need to reduce the optical homogeneity by a factor of 5 to 10
    - Compensation by polishing or coating
    - Investigating homogeneity of other crystal orientations

# LIGO

#### Advanced K&D: Core Optics Sapphire Optical Inhomogeneity



G010237-00-M



#### Advanced K&D: Core Optics **Material Development Status**

- Birefringence (Caltech)
  - » Monitored transmission of high finesse Fabry-Perot cavity as a function of input light polarization
  - » Alignment of input polarization within 10 degree of c-axis gives recycling gain loss of < 5% in advanced LIGO



Proposed Adv. R&D FY 02-06



#### Advanced K&D: Core Optics Material Development Status

- Reduce bulk absorption (Stanford, Southern University, CS, SIOM, Caltech)
  - » LIGO requirement is <10 ppm/cm</p>
  - » Current material ~60 ppm/cm
  - » 15 ppm/cm seen at one boule locatiion with a high purity starting material
  - » 1600C air bake gives 20 ppm/cm uniformly through sample
  - » Vary starting material, boule location
  - » Identify impurities
  - » Vary annealing atmosphere, temperature to reduce absorption



#### Curious observation (κοsetta Sapphire)

- Single 1 cm sample
  - » region with 10 ppm/cm
  - » region with 600 ppm/cm
  - » abrupt boundary between
- Preparation unexceptional
- Tantalizing existence proof
- Mechanism not yet clear
  - » suggests "self-normalizing" measurements 700 measurements



Sapphire cube 8T: IR scan across the scatter boundary (15 mm-long sample)



G010237-00-M



#### Complicated Annealing Phenomena





#### composition Analysis (כטועס): ppm's of everything

| •   | LIGO #1T | LIGO #1M | LIGO #1B | LIGO #2T | LIGO #2M | LIGO #2B | LIGO #3T | LIGO #3M | LIGO #3B | LIGO #4T | LIGO #4M | LIGO #4B | LIGO #5T | LIGO #5M | LIGO #5B |        |
|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------|
|     |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |        |
|     | Sample   | Sample |
|     | #10      | #11      | #12      | #07      | #08      | #09      | #04      | #05      | #06      | #01      | #02      | #03      | #13      | #14      | #15      | #16    |
|     | ppmw     | ppmw   |
| Li  | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05  |
| Ве  | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05  |
| 0   | Major    | Major  |
| F   | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1     |
| Na  | 0.21     | 0.42     | 0.40     | 0.25     | 0.75     | 0.35     | 0.36     | 0.44     | 0.81     | 0.82     | 3.2      | 0.95     | 0.20     | 0.26     | 0.26     | 0.46   |
| Mg  | 0.16     | 0.27     | 0.30     | 0.22     | 0.29     | 0.18     | 0.19     | 0.25     | 0.25     | 0.53     | 0.39     | 0.20     | 0.15     | 0.15     | 0.10     | 0.065  |
| AI  | Major    | Major  |
| Si  | 12       | 8.5      | 10       | 8.5      | 7.5      | 9.5      | 4.2      | 5.9      | 9.5      | 10       | 15       | 8.5      | 15       | 7.5      | 6.9      | 11     |
| Р   | 0.1      | 0.053    | 0.20     | 0.11     | 0.11     | 0.11     | 0.1      | 0.15     | 0.15     | 0.21     | 0.19     | 0.1      | 0.045    | 0.045    | 0.13     | 0.14   |
| S   | 1.1      | 1.5      | 1.8      | 0.79     | 1.2      | 1.6      | 1.5      | 1.5      | 0.21     | 1.5      | 1.8      | 1.1      | 0.88     | 0.60     | 1.6      | 1.1    |
| CI  | 1.2      | 5.5      | 4.2      | 1.5      | 2.5      | 2.5      | 2.6      | 2.9      | 3.1      | 4.7      | 6.0      | 1.0      | 2.5      | 1.7      | 1.5      | 3.9    |
| K   | 0.29     | 0.25     | 0.39     | 0.33     | 0.33     | 0.35     | 0.23     | 0.35     | 0.33     | 1.1      | 1.2      | 0.40     | 0.25     | 0.23     | 0.21     | 0.38   |
| Ca  | 1.1      | 1.2      | 1.1      | 1.1      | 1.1      | 1.5      | 1.2      | 0.63     | 0.75     | 1.7      | 1.4      | 0.75     | 0.80     | 0.86     | 1.0      | 0.82   |
| Ti  | 0.37     | 0.11     | 0.45     | 0.12     | 0.36     | 0.45     | 0.089    | 0.39     | 0.27     | 0.22     | 0.14     | 0.12     | 0.11     | 0.19     | 0.081    | 0.25   |
| V   | 0.10     | 0.037    | 0.026    | 0.12     | 0.23     | 0.37     | 0.026    | 0.021    | 0.04     | 0.11     | 0.086    | 0.095    | 0.056    | 0.072    | 0.066    | 0.086  |
| *Cr | 2.5      | 1.1      | 1.5      | 1.2      | 1.1      | 1.5      | 1.0      | 1.4      | 1.4      | 1.3      | 1.0      | 1.1      | 1.0      | 1.0      | 1.0      | 1.6    |
| Mn  | 0.10     | 0.088    | 0.065    | 0.021    | 0.083    | 0.15     | 0.033    | 0.055    | 0.068    | 0.073    | 0.065    | 0.03     | 0.034    | 0.036    | 0.017    | 0.093  |
| *Fe | 2.5      | 2.2      | 5.5      | 1.8      | 1.4      | 1.5      | 2.1      | 1.8      | 1.8      | 1.5      | 1.3      | 1.5      | 2.7      | 3.3      | 1.8      | 3.3    |
| Co  | 0.10     | 0.018    | 0.02     | 0.02     | 0.01     | 0.012    | 0.01     | 0.018    | 0.06     | 0.01     | 0.01     | 0.01     | 0.01     | 0.01     | 0.01     | 0.02   |
| Ni  | 0.46     | 0.025    | 0.23     | 0.11     | 0.11     | 0.067    | 0.066    | 0.17     | 0.28     | 0.074    | 0.025    | 0.060    | 0.045    | 0.62     | 0.045    | 0.13   |
| Cu  | 0.23     | 0.11     | 0.15     | 0.31     | 0.24     | 0.20     | 0.38     | 0.20     | 0.22     | 0.096    | 0.19     | 0.30     | 0.10     | 0.12     | 0.17     | 0.29   |
| Zn  | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1       | <1     |
| Ga  | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1   |
| As  | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1   |
| Zr  | 0.14     | 0.02     | 0.15     | 0.12     | 0.050    | 0.22     | 0.048    | 0.13     | 0.15     | 0.38     | 0.12     | 0.14     | 0.045    | 0.025    | 0.025    | 0.10   |
| Nb  | 0.027    | 0.13     | 0.11     | 0.047    | 0.037    | 0.041    | 0.065    | 0.092    | 0.025    | 0.019    | 0.045    | 0.045    | 0.021    | 0.021    | 0.014    | 0.019  |
| Мо  | 0.25     | 0.24     | 0.24     | 0.18     | 0.37     | 0.29     | 0.29     | 0.29     | 0.15     | 0.18     | 0.26     | 0.29     | 0.15     | 0.25     | 0.23     | 0.29   |
| Cd  | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2     | <0.2   |
| Sn  | <0.3     | <0.3     | <0.3     | <0.3     | <0.3     | <0.3     | <0.3     | <0.3     | <0.3     | <0.3     | <0.3     | <0.3     | <0.3     | <0.3     | <0.3     | <0.3   |
| Sb  | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1     | <0.1   |
| Ва  | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05  |
| La  | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05  |
| Се  | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05  |
| Hf  | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01  |
| W   | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.2    |
| Pb  | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05  |
| Bi  | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.05  |

G010237-00-M



- Demonstration of super polish of sapphire (150mm diameter, m-axis)
- Radius of Curvature
  - » Requirement: ROC 50 km +/- 10 km, OR sagitta of 52 nm +/- 10 nm
  - » Achieved: 47 nm sagitta
- Surface Error
  - » Requirement: <0.8 nm rms over the central 120mm <0.4 nm rms over the central 80mm</p>
  - » Achieved: 1 nm rms over the central 120mm 0.6 nm rms over the central 80mm probably limited by metrology will be measured by Caltech

#### • Microroughness

- » Goal <0.1nm rms; Requirement <0.2 nm rms
- » The average microroughness over the surface was 0.18 nm rms (though due to measurement noise expected to be actually 0.12 nm rms)







G010237-00-M



- Optical Homogeniety compensation
  - » Need 5 to 10 x reduction of inhomogeneity
  - » Computer controlled 'spot' polish by Goodrich (formerly HDOS)
    - has done compensating polish on a-axis sapphire, they have not seen the types of stria that we observe
    - will spot polish the 25 cm dia. Piece
    - expect to compensate for frequencies up to .08/mm or ~ 12mm/cycle
  - » Ion beam etching, fluid stream polish, compensating coating by CSIRO
    - Have experience in ion beam etching and compensating coating
    - Difficulty is high spatial frequency for correction
  - » Investigate a-axis and m-axis homogeneity (as alternative to caxis)







G010237-00-M



#### Advanced K&U: Uptics Coating Research

- Quote from Research Electro-Optics (REO, Boulder) for advanced LIGO fabrication phase was much higher than LIGO Lab anticipated based on initial LIGO experience
  - » \$2,250,000 for coating development that included procurement of an Ion Beam Sputtering System
  - » fabrication phase was quoted as an additional \$2,000,000
  - » high cost reflects a change in REO's business plan to emphasize telephony and communications and a concomitant de-emphasis on research
- LIGO Lab contacted other vendors with credible high performance, ion deposition, dielectric coating capability
  - » resulted in cooperative development with Virgo-SMA (Lyon, France) and MLD (Oregon)
  - » develop the required capability for advanced LIGO
  - » develop ultra-low loss coatings at Lyon (~0.1 ppm)
  - » Research effect of coating on Q (with the SUS group)
  - » Coating birefringence on sapphire substrates



#### Advancea K&D: Optics Input Optics Layout & Functions



Conceptual layout of IO optical components

| Parameter                       | LIGO I | Advanced LIGO |  |  |  |
|---------------------------------|--------|---------------|--|--|--|
| Laser Power                     | 8.5 W  | 180 W (150 W) |  |  |  |
| Overall IO                      | 750/   | 66%           |  |  |  |
| Efficiency (TEM <sub>00</sub> ) | 7370   | 0070          |  |  |  |
| Optical Isolation               | 70 dB  | (> 85 dB)     |  |  |  |



# R&D Issues

- Advanced LIGO will operate at 180W CW powers
  - -- presents some "challenges":
  - » Thermal Lensing --> Modal Degradation
  - » Thermally induced birefringence
    - Faraday Isolator (FI): loss of isolation
    - Electro-Optic Modulation (EOM): spurious amplitude modulation
  - » Damage
  - » Other (nonlinear) effects (SHG, PR)
- Research Program:
  - » Modulator Development:
    - RTA material performance (should be better than KTP)
    - Mach Zehnder topology for modulation as an alternative
  - » Isolator Development:
    - Full FI system test (TCFI, EOT)
    - Possible thermal compensation (-dn/dT materials)
  - » Telescope Development:
    - in-situ mode matching adjustment

G010237-00-M



ii) position dependent



#### Advanced K&D: Optics Thermal Compensation

- Thermal lensing forces polished-in curvature bias on initial LIGO core optics for cavity stability at operating temperature
- LIGO II will have ~20X greater laser power, ~3X tighter net figure requirements
  - » higher order (nonspherical) distortions significant; prepolished bias, dynamic refocusing not adequate to recover performance
  - » possible bootstrap problem on cold start
- Test mass & coating material changes may not be adequate
  - »  $SiO_2$  has low  $k_{th}$ , high dn/dT, but low bulk absorption
  - » Al<sub>2</sub>O<sub>3</sub> has higher k<sub>th</sub>, moderate dn/dT, but high bulk absorption (so far...)
  - » coating improvements still speculative



#### Advanced K&D: Optics Thermal Compensation





#### Advanced K&D: Optics Thermal Compensation

- Extend LIGO I "WFS" to spatially resolve phase/ OPD errors
  - » scanning "Phase Camera" (MIT)
  - » staring "Bullseye WFS" (UF)
- Thermal actuation on core optics (MIT)
  - » Noncontact actuator with minimal spurious phase noise
  - » Time constants matched to disturbance timescales
- Two actuators in development
  - » passive radiative ring heater and low- emissivity shields
    - Only copes w/axisymmetric errors, but minimal potential for spurious noise
  - » Scanned directed beam
    - Arbitrary spatial correction, but induced thermoelastic noise is a concern



#### Compensation Actuators





#### Compensation Potential Implementation




# Compensation Issues

- Total heat deposited & net temperature rise
  - » "Efficient" compensation will ~ double net DT w.r.t. ambient
  - » 30K total rise plausible, would increase kT noise 5%
- Noise
  - » Thermoelastic response to varying beam intensity/position (for sapphire)
  - » Developing time-dependent thermal FEA to model better
- Absorption spatial inhomogeneity
  - » Determines pixellation, complexity/depth of compensation required
- Net efficacy & trade with optics/ material improvements
  - » Depends on sensitivity of IFO sensing to Þgure errors & their spatial scales



# Compensation Verification

- Vacuum Chamber experiment on ring heater and scanned laser thermal compensation continues
- Finite element analyses of transient thermoelastic response
- Melody code analysis of the effect of the thermal compensation on the interferometer performance









Proposed Adv. R&D FY 02-06



# Compensation OPD Radial Variation



Proposed Adv. R&D FY 02-06



# Compensation Plans

- 2Q01: Proof-of-concept experiment & IFO model results
  - » Improved requirements definition
  - » Performance figure of merit vs. COC losses, power, etc.
  - » Enables conceptual design for Advanced LIGO
- 3Q02: Full scale radiative compensator demonstration
  - » Engineering prototype at full mechanical scale (time constants, etc.)
  - » Also demo main parts of wavefront error sensing technology
- 4Q04: Full scale directed beam actuation demonstration

# Advanced K&D: High Power Laser LIGO System Layout



Proposed Adv. R&D FY 02-06

77

G010237-00-M



# Advanced K&D: High Power Laser Research Stages

- Develop alternative concepts
- Design and build laboratory version
- Design, build and test final version in LASTI
- <u>Team</u>
- <u>Key Milestones</u>



# Advanced K&D: High Power Laser Develop Concepts

- increase power of front-end
- evaluate high-power-stage concepts
  - » MOPA slab (Stanford)
    - uses proven technology but expensive due to the large number of pump diodes required
  - » stable-unstable slab oscillator (Adelaide)
    - typically the approach adopted for high power lasers, but not much experience with highly stabilized laser systems
  - » rod systems (Hannover)
    - uses proven technology but might suffer from thermal management problems
- test power and frequency stabilization schemes

# Advanced K&D: High Power Laser LIGO Stanford MOPA Design





# Advanced K&D: High Power Laser Stanford MOPA Results to Date

- 12W injection locked laser was shipped to Stanford and showed stable operations
- 27W stable operation of first ampl. stage
- some fluid (oil?) on the entrance surface of second ampl. slab degraded its performance for powers above 35W
- Expect 100W by, or shortly after, the end of CY01

# LIGO

# Advanced K&D: High Power Laser Adelaide Configuration





# Advanced K&D: High Power Laser Adelaide Results to Date

- Laser head assembled
  - » initial problems with fibers & birefringence seems to be solved
  - » measurements show the expected slope
  - » Pumping the laser head with ~200W produces a strong vertical thermal lens which makes the oscillator configuration unstable
  - » Reassembling of the laser head with a different side-cooling geometry is planned to solve this problem.
- plan to demonstrate 100 W by 1Q02



# Advanced K&D: High Power Laser Hannover Configuration





# Advanced K&D: High Power Laser GEO600 Slave Laser



G010237-00-M



# Advanced K&D: High Power Laser Hannover Results to Date

- amplifier design completed
- investigating alternative pump wavelengths (885 nm c.f. 810 nm)
- investigating Nd:YV0<sub>4</sub> and Nd:YAG rods
- 100W demonstration by 1Q02

# **LIGO** Advanced K&D: High Power Laser Design & Build Laboratory Version

- design reliable laser heads for power stages
- include suitable actuators in laser design
- integrate stabilized front-end, high-power-stages and premodecleaner
- design power stabilization (in-loop test)



# Advanced K&D: High Power Laser Design & Build Final Version

- optimize design according to lessons learned with lab-version and including system aspects like reliability, safety, robustness, automation and system interfaces (DAQ, power, cooling, ...)
- keep flexibility to react on long-term behavior of lab-version
- Deliver to LASTI (MIT) for integrated mode cleaner testing

# Advanced κ&υ: High Power Laser LIGO Team





# Advanced K&D: High Power Laser Key Schedule Milestones

- concept phase (100W)
- lab-version phase (200W)
- longterm test (Hannover/LASTI)
- final version phase

- Jan01 Apr02
- Apr02 Feb04
- Feb04 Feb 05
- Feb04 Jul05h



# **Proposal Request**

| Includes<br>technical support<br>for R&D    |                   |                   |                   |                   |                   |             |
|---------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------|
|                                             | FY<br>2002<br>\$M | FY<br>2003<br>\$M | FY<br>2004<br>\$M | FY<br>2005<br>\$M | FY<br>2006<br>\$M | Total<br>SM |
| Currently Funded Operations                 | 23.63             | 24.32             | 25.05             | 25.87             | 26.65             | 125.52      |
| Increase for Full Operations                | 5.21              | 5.20              | 4.79              | 4.86              | 4.95              | 25.01       |
| Advanced R&D                                | 2.77              | 2.86              | 2.95              | 3.04              | 3.13              | 14.76       |
| R&D Equipment in Support of<br>LSC Research | 3.30              | 3.84              | 3.14              |                   |                   | 10.28       |
| Total Budgets                               | 34.91             | 36.21             | 35.93             | 33.77             | 34.74             | 175.57      |



# וחכרeased Staming to Support אשט and Modeling

Increased staff in the Technical and Engineering Support and Detector Support Groups. The Caltech campus-based support to the observatories declines significantly after the Detector is commissioned. However, the increase for the R&D for an advanced LIGO (planned for installation in 2005-2006) is significant and results in a net increase.
 Increment for engineering and technician labor (4 FTEs) at Livingston to \$506,300

support the LSC science team responsible for Seismic Isolation development. This effort is for two years only and is non-recurring.

 Increased support staff for Modeling and Simulation Group. The increase \$282,485 was suggested by an NSF Review panel.



# **R&D** Effort

| • | Stochastic Noise. LASTI integrated system tests of the advanced seismic iso-<br>lation and suspension prototypes.                                                                | \$275,222 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| • | Thermal Noise Interferometer. Direct measurement of test mass thermal noise for initial and advanced LIGO designs.                                                               | \$176,697 |
| • | Advanced Core Optics including Sapphire Optics                                                                                                                                   | \$283,937 |
| • | Advanced Interferometer Sensing and Control including Photodetector<br>Development                                                                                               | \$298,779 |
| • | Stiff Seismic Isolation System Development                                                                                                                                       | \$46,353  |
| • | Auxiliary Optics Systems including Active Thermal Control                                                                                                                        | \$366,088 |
| • | Advanced Suspensions including Fiber Research.                                                                                                                                   | \$208,725 |
| • | Improved Low Frequency Strain Sensitivity.                                                                                                                                       | \$345,637 |
| • | 40-Meter Advanced R&D. Tests of controls and electronics for a signal and power recycled configuration with the read-out scheme and control topology intended for advanced LIGO. | \$235,075 |
| • | Advanced Controls & System Identification. Research on application of<br>advanced system identification and control concepts to LIGO.                                            | \$188,677 |
| • | Advanced (highly stabilized) Input Optics Systems.                                                                                                                               | \$347,423 |
|   |                                                                                                                                                                                  |           |

# LIGO

# Research Program

- Equipment costs for the development of advanced seismic isolation prototypes.
- Equipment costs for the development of multiple pendulum, fused silica fiber suspension prototypes.
- Materials and manufacturing subcontracts to support the development of sapphire test masses and high Q test mass materials and coatings research.
- Investment and non-recurring engineering costs for a large coating chamber and its commissioning
  - » study of coating strategy in progress



(STO, SUS, TNI, SEI)

#### FY02

| Staff             | Org          | Adv. R&D<br>(FTE) | LSC Support<br>R&D | Operations<br>(FTE) | LIGO<br>(FTE, | Lab<br>\$K) |
|-------------------|--------------|-------------------|--------------------|---------------------|---------------|-------------|
| ISOLATIO          | <b>N</b>     |                   |                    |                     |               |             |
|                   | MIT          | 1                 | 0                  | 2.4                 | 3.4           | <u>8</u> 1  |
| Sci & PD          | CIT          | 3                 | 0                  | 1.7                 | 4.7           | 0.1         |
| UG &              | MIT          | 3                 | 0                  | 0.0                 | 3.0           | 50          |
| Grads             | CIT          | 2                 | 0                  | 0.0                 | 2.0           | 5.0         |
|                   | MIT          | 0                 | 0                  | 2.8                 | 2.8           |             |
| Eng &             | CIT          | 0                 | 0                  | 6.9                 | 6.9           | 14.2        |
| Techs             | LLO          | 0                 | 0                  | 4.5                 | 4.5           |             |
| Т                 | otals (FTE): | 9                 | 0                  | 18.3                | 27.           | 3           |
| Equip. & Supplies |              | \$54              | \$1,595            | 0.0                 | \$1,6         | 49          |

N.B.: Does not include LSC research staff.



# Lasers & Optics Research

(LAS, OPT, IOS, AOS)

#### FY02

| Staff    | Org          | Adv. R&D<br>(FTE) | LSC Support<br>R&D | Operations<br>(FTE) | וs LIGO La<br>(FTE, \$P |     |
|----------|--------------|-------------------|--------------------|---------------------|-------------------------|-----|
| LASERS   | & OPTICS     |                   |                    |                     |                         |     |
|          | MIT          | 0                 | 0                  | 0.1                 | 0.1                     | 33  |
| Sci & PD | CIT          | 1                 | 0                  | 2.3                 | 3.3                     | 0.0 |
| UG &     | MIT          | 1                 | 0                  | 0.0                 | 1.0                     | 20  |
| Grads    | CIT          | 1                 | 0                  | 0.0                 | 1.0                     | 2.0 |
| Eng &    | MIT          | 0                 | 0                  | 0.0                 | 0.0                     | 20  |
| Techs    | CIT          | 0.5               | 0                  | 1.5                 | 2.0                     | 2.0 |
| Т        | otals (FTE): | 3.5               | 0                  | 3.8                 | 7.3                     | 3   |
| Equip.   | & Supplies   | \$755             | \$1,706            | 0.0                 | \$2,4                   | 61  |

N.B.: Does not include LSC research staff.



# Advanced Interferometer Systems, Sensing & Control (ISC, 40m, SID, SYS)

#### F<u>Y02</u>

| Staff    | Org          | Adv. R&D<br>(FTE) | LSC Support<br>R&D | Operations<br>(FTE) | LIGO<br>(FTE, | Lab<br>\$K) |
|----------|--------------|-------------------|--------------------|---------------------|---------------|-------------|
| Advanced | d Interferon | neter System      | is, Sensing & Co   | ontrol (ISC)        |               |             |
|          | MIT          | 0                 | 0                  | 1.7                 | 1.7           | 60          |
| Sci & PD | CIT          | 2                 | 0                  | 3.2                 | 5.2           | 0.9         |
| UG &     | MIT          | 1                 | 0                  | 1.0                 | 2.0           | 50          |
| Grads    | CIT          | 3                 | 0                  | 0.0                 | 3.0           | 5.0         |
| Eng &    | MIT          | 0                 | 0                  | 0.8                 | 0.8           | 10.2        |
| Techs    | CIT          | 0                 | 0                  | 9.5                 | 9.5           | 10.2        |
| Т        | otals (FTE): | 6                 | 0                  | 16.1                | 22.           | 1           |
| Equip.   | & Supplies   | \$313             | \$0                | 0.0                 | \$31          | 3           |

N.B.: Does not include LSC research staff.



# **Total LIGO Laboratory R&D**

| FY02 | Staff    | Org          | Adv. R&D<br>(FTE) | LSC Support<br>R&D | Operations<br>(FTE) | LIGO<br>(FTE, | Lab<br>\$K) |
|------|----------|--------------|-------------------|--------------------|---------------------|---------------|-------------|
|      | TOTAL fo | r advanced   | LIGO R&D (        | including CRY)     |                     |               |             |
|      |          | MIT          | 1                 | 0                  | 4.2                 | 5.2           | 20.3        |
|      | Sci & PD | CIT          | 8                 | 0                  | 7.2                 | 15.2          | 20.5        |
|      | UG &     | MIT          | 5                 | 0                  | 1.0                 | 6.0           | 13.0        |
|      | Grads    | CIT          | 7                 | 0                  | 0.0                 | 7.0           | 13.0        |
|      |          | MIT          | 0                 | 0                  | 3.5                 | 3.5           |             |
|      | Eng &    | CIT          | 0.5               | 0                  | 17.9                | 18.4          | 26.4        |
|      | Techs    | LLO          | 0                 | 0                  | 4.5                 | 4.5           |             |
|      | Т        | otals (FTE): | 21.5              | 0                  | 38.2                | 59.           | 7           |
|      | Equip.   | & Supplies   | \$1,139           | \$3,301            | 0.0                 | \$4,4         | 40          |
|      |          |              |                   | •<br>•             | MIT                 | 14.           | 7           |
|      |          |              |                   |                    | CIT                 | 40.           | 5           |
|      |          |              |                   |                    | LLO                 | 4.5           | 5           |

N.B.: Does not include LSC research staff.



# to meet the NSF Counterproposed Budget

#### Analysis of Proposal Budget Reductions

|                            | FY2002     | FY 2003    | FY 2003    | FY2003     | FY2003     |             |
|----------------------------|------------|------------|------------|------------|------------|-------------|
| NSF_Delta                  | Amount     | Amount     | Amount     | Amount     | Amount     | Total       |
| Baseline                   | 34,910,865 | 36,214,889 | 35,930,651 | 33,770,448 | 34,739,382 | 175,566,235 |
| Management Reserve         | -232,653   |            |            |            |            | -232,653    |
| Deferred Hiring            | -2,375,268 |            | 196,000    |            |            | -2,179,268  |
| Eliminate WAN OC3          | -540,500   | -542,200   | -542,200   | -539,500   | -539,500   | -2,703,900  |
| Defer LSC Suspensions      | -300,000   |            | 198,117    |            |            | -101,883    |
| Remove LSC Core Optics     | -600,000   | -1,971,000 | -2,638,000 |            |            | -5,209,000  |
| Remove Laser Diodes        |            | -450,000   |            |            |            | -450,000    |
| Slip Advanced ISC          | -190,000   | 80,750     | 61,750     | 47,500     |            | 0           |
| Remove Auxiliary Optics    | -272,319   | -97,381    | -51,253    |            |            | -420,952    |
| Slip Advanced Controls     | -188,677   | 10,982     | -44,139    | -4,263     | -4,391     | -230,487    |
| Slip Advanced Input Optics | -347,423   | -18,495    | 57,027     | 308,891    |            | 0           |
| Remove New Outreach        | -249,848   | -257,343   | -265,063   | -273,015   | -281,206   | -1,326,476  |
| Defer LDAS Maintenance     | -1,000,000 |            |            |            |            | -1,000,000  |
| Remove LSC Support         | -254,678   | -262,317   | -270,187   | -278,293   | -286,642   | -1,352,117  |
| Miscellaneous Equipment    | -359,500   |            |            |            |            | -359,500    |
| Grand Total                | 28,000,000 | 32,707,885 | 32,632,703 | 33,031,768 | 33,627,643 | 160,000,000 |

# **Advanced LIGO Detector Reach**

**LIGO** "...2.5 hours of operation will exceed the integrated observations of the 1 year LIGO



G010237-00-M

Proposed Adv. R&D FY 02-06

100



# KOIE OT LIGO SCIENTITIC Collaboration

- The LSC and Lab submitted a White Paper and a Conceptual Project plan in late 1999
  - » this was reviewed by NSF -----> encouraging current R&D
- This LIGO study sharpened the design and the R&D focus
- The R&D program has been highly coordinated across the LSC by the Lab and LSC
  - » the program is conducted as the early stages of a construction project
  - » all R&D tasks are defined in MOU's with the Laboratory
  - » systems engineering is carried out
  - » the R&D is organized with a detailed cost estimate and schedule
  - » monthly coordinating meetings are held to monitor progress

# LIGO

# LSC Participation in Advanced LIGO R&D

| Australian Consortium for Interferometric Gravitational Astronomy (ACIGA)<br>Australian National University (ANU), University of Adelaide (AU), and<br>University of Western Australia (UWA) | 13.5 FTE |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Caltech Experimental Gravitational-Physics Group                                                                                                                                             | 1.3 FTE  |
| German British Collaboration for the Detection of Gravitational Waves (GEO 600)                                                                                                              | 17 FTE   |
| University of Hannover, Garching, Albert Einstein Institute in Potsdam,<br>University of Glasgow, and Cardiff University                                                                     |          |
| Institute of Applied Physics of the Russian Academy of Sciences at Nizhny Novgorod                                                                                                           | 9.5 FTE  |
| Iowa State University, Eddy-Current Subgroup                                                                                                                                                 | 0.5 FTE  |
| University of Colorado, JILA Gravity Group                                                                                                                                                   | 1.5 FTE  |
| Louisiana State University, Experimental Relativity Group                                                                                                                                    | 1.5 FTE  |
| Moscow State University                                                                                                                                                                      | 10 FTE   |
| National Astronomical Observatory of Japan TAMA Group                                                                                                                                        | 2 FTE    |
| Pennsylvania State University Experimental Relativity Group                                                                                                                                  | 4.7 FTE  |
| Department of Physics of Southern University and A&M College                                                                                                                                 | 1.5 FTE  |
| Stanford Advanced Gravitational Wave Interferometry Group                                                                                                                                    | 12 FTE   |
| Syracuse University Experimental Relativity Group                                                                                                                                            | 4 FTE    |
| University of Florida Laser Interferometric Gravitational Wave Group                                                                                                                         | 2.5 FTE  |



# Najor International Roles In Advanced LIGO

- GEO (UK, Germany) project has joined the LSC
  - » Initial LIGO involvement is in data algorithms and analysis
  - » advanced LIGO involvement includes leading roles in suspensions, configurations, prestabilized laser.
  - » GEO is proposing a capital contribution/partnership in construction of adv. LIGO
    - ~\$6M USD from UK
    - ~\$6M USD from Germany
- ACIGA project has joined LSC
  - » Initial LIGO involvement is in data algorithms and analysis
  - » advanced LIGO involvement includes laser development, sapphire development and high power issues
  - » ACIGA is proposing a capital contribution/partnership in construction of adv. LIGO

- ~\$2.5M USD

• Recent discussions have begun with Virgo on collaboration in coating development and in joint data taking and data analysis



# Approacn to interterometer Upgrades

- Gravitational wave interferometers are "point" designs
  - » substantial improvements in performance are difficult to achieve with incremental upgrades
  - » lowering one noise floor encounters another
  - » changing the performance of one subsystem causes system mismatch with other subsystems
- Installing an interferometer into the vacuum system is a major campaign
  - » much of the campaign overhead is encountered even with subsystem upgrades
- Installing an interferometer has a high cost in missed scientific opportunity

Upgrade should be a major increase in sensitivity



# Reduction

- All significant risks are planned for measurement or verification during the proposed program
- Faithful prototypes of advanced LIGO subsystems are fully tested in parallel to operating LIGO
- Goal is to fully qualify all designs before installing in LIGO vacuum system
  - » 40 Meter qualifies controls system
  - » LASTI qualifies the isolation/suspension system and the prestabilized laser/input optics systems
  - » GinGin & UFL research addresses risks associated with high power
- Installation into LIGO vacuum system occurs when new systems are fully ready and qualified



# **Development Plan**

- R&D including Design through Final Design Review
  - » for all long lead or high risk subsystems
  - » LIGO Lab contracts and funds large R&D equipment in 2001-2004
  - » Substantially complete by 2004, tests into 2005
  - » Some long lead purchases occur as early as 2003, esp. COC
    - NSF budget reduction from request puts this in jeopardy
- Isolation Test Bed (LASTI)
  - » full scale, integrated suspensions & seismic Isolation testing
  - » in-chamber assembly & installation procedure check-out
  - » possible first article test bed
- Integrated Systems Tests
  - » Pre-Stabilized Laser (PSL), Input Mode Cleaner, Suspensions and Seismic Isolation Test at LASTI
  - » Controls & read-out proof-of-concept at GEO 10m in 2002-2003
  - » Integrated Servo Control Electronics Testing at the LIGO 40m Lab
  - » High power system testing at the GinGin facility
  - G010237 Rossibly early End Test Mass Suspension & Seismic Isolation 106 replacement at a LIGO Observatory



# **Development Plan**

- Construction Phase Proposal
  - » Major Research Equipment (MRE) funding for construction
  - » includes 'prosaic' design efforts
  - » Assembly and test outside vacuum system in 2005
  - » Installation:
    - Minimum of a 1 year of Integrated Science Run Before a Major Upgrade
    - Schedule to be Coordinated with International GW Observatories to Keep  $\geq$  2 Detectors Operating
    - Start Installation Only When Production & Assembly Pipeline Will Not Limit the Installation Schedule
    - Install One Advanced LIGO Interferometer and Incorporate Lessons Leaned into the Subsequent Advanced Interferometers (time lag of ~ 18 months)



# Subsystem Development Plan Highlights



• Core Optics

- » sapphire material development with Crystal Systems & SIOM
- » joint mechanical & optical material test matrix in development
- » spot polishing to compensate for inhomogeneity
- » coating facility development & low absorption research (MLD & Virgo/Lyon)
- Seismic Isolation
  - » Full scale, HAM-type technology demonstrator
     @ ETF, Stanford
  - » Full scale prototypes (HAM & BSC types)
    @ LASTI, MIT
- Suspension
  - » U. of Glasgow/GEO takes the lead to PDR, LIGO Lab leads in Final Design

Proposed Adv. R&D FY 02-06 » Triple & quad pendulum 'controls' & 'noise'

nrototypes tested with the SEI prototypes at

G010237-00-M


# vevelopment Plan Highlights (continued)



G010237-00-M

#### Laser

- » 3 alternative approaches in trade study
- » Laser Zentrum Hannover/GEO to take lead; LIGO Lab supplies requirements, interface, and test
- » Intensity stabilization research at CIT
- Input Optics System (IOS)
  - » University of Florida takes lead, GEO suspensions, LIGO controls
  - » UFL performs enabling high power research on modulators & isolators
- Auxiliary Optics System (AOS)
  - » Substrate thermal focus compensation

•Interferometer Sensing & Control (ISC)search @ MIT

»Shift to 'DC readout' (relaxes laser frequendo to abate the provident of the stem as a CIT

- »Requires both proof-of-principle (GEO 10m) and precision testing (40m)
- »High power system testing at the GinGin facility

»LIGO Lab leads, with contributions from LSC, esp. GEO

Proposed Adv. R&D FY 02-06



### Advanced LIGO Major Research Equipment (MRE): Overall Proposed Schedule

#### **DIFFICULT TRANSITION PERIOD** 2001 2002 2003 2004 2005 2006 2007 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Task Name Initial LIGO Initial LIGO Commissioning Detector Improvements/Noise Reduction LOE Tasks (Mgmt, config. control, document, ...) LDAS Mock Data Challenge **Engineering Runs** Science Runs Advanced R&D 40 meter Lab LASTI Advanced LIGO System Engineering E2E enhancements for Adv. LIGO (E2E) enhance/observe or Support construct/install ramp-up steady-state Construction MRE funding

Proposed Adv. R&D FY 02-06

110

## **LIGO DRAFT** Summary Schedule R&D $\rightarrow$ MRE



# **LIGO** UKAFI Summary Schedule K&U $\rightarrow$ MRE



#### Proposed Adv. R&D FY 02-06



### Advanced LIGO Major Research Equipment (MRE): MRE Proposal Status

- Technical proposal for advanced LIGO was submitted as part of the Operations and R&D renewal grant proposal
- What remains is basically a costing & schedule estimating exercise
- Initial bottoms-up cost and schedule estimate will be completed in Aug 01
  - » Subsystem by subsystem
  - » Building a data base for the WBS and basis of estimate
  - » Integrating the subsystem schedules
- Major Decisions/Issues to resolve:
  - » 2 or 3 interferometers to upgrade (cost driven decision)
  - » Potentially curtail sapphire development program to reduce cost risk (only if overall costs warrant this action)
  - » Phased implementation for high power (to reduce development risk & cost)



### Advanced LIGO Proposal (FY2004 MRE funding start)

- Aug 2001 LIGO Lab MRE Cost Estimate Completed
- Oct 2001 Final MRE Proposal from the LIGO Lab
- Nov 2001 NSF Panel Review
- Nov 2002 NSB approval

The LIGO Lab will continue to work very closely with the larger LSC to prepare and present the MRE proposal to the NSF