
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

- LIGO -

LIGO Laboratory / LIGO Scienti�c Collaboration

Document Type LIGO-T1100071 Oct/18/2011

Frequency Domain Calibration Error Budget
for LIGO in S6

I. Bartos, I. Belopolski, J. Berliner, J. Burguet-Castell, R. De Rosa, P. Daveloza,
A. E�er, T. Fricke, G. Gonzalez, K. Kawabe, M. Landry, G. Meadors, G. Mendell,

J. Rollins, R. Savage, X. Siemens, M. Sung, D. Yeaton-Massey

This is an internal working note
of the LIGO Project.

California Institute of Technology Massachusetts Institute of Technology
LIGO Project - MS 18-34 LIGO Project - NW17-161
1200 E. California Blvd. 175 Albany St.
Pasadena, CA 91125 Cambridge, MA 01239
Phone (626) 395-2129 Phone (617) 253-4824
Fax (626) 304-9834 Fax (617) 253-7014

E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

LIGO Hanford Observatory LIGO Livingston Observatory
P.O.Box 1970 P.O.Box 940
Mail Stop S9-02 Livingston, LA 70754

Richland WA 99352 Livingston LA 70754
Phone (509) 372-8106 Phone (225) 686-3100
Fax (509) 372-8137 Fax (225) 686-7189

http//www.ligo.caltech.edu/



Contents

1 Summary 3

1.1 Calibration Epoch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Overall scaling factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Frequency dependence covers multiple con�gurations and hardware states . . 8

1.4 Data �ags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 High frequency for H1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 How to combine frequency dependence and overall scaling . . . . . . . . . . 9

2 Introduction 10

2.1 Naming Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Error Elements in LIGO Instruments . . . . . . . . . . . . . . . . . . . . . . 12

3 Overall Scaling Coe�cient Error 12

4 Frequency Dependent Error 14

4.1 Error Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Whitening/dewhitening mismatch . . . . . . . . . . . . . . . . . . . . 15

4.1.2 Error in Arm Poles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.3 OMC ADC Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.4 Latency Between Two Sensing CPUs . . . . . . . . . . . . . . . . . . 19

4.1.5 ETMY Abnormal Resonance in H1 . . . . . . . . . . . . . . . . . . . 20

4.1.6 Mass Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.7 OLG Residual and Unknown Delay in the Model . . . . . . . . . . . 21

4.1.8 OLG Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.9 Latency Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.10 Unknown Residual in OLG . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Combining Errors for Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Combining Errors for Closed Loop Response . . . . . . . . . . . . . . . . . . 32

1



4.4 Combining Errors for Response Function . . . . . . . . . . . . . . . . . . . . 32

5 Calibration Factor Error 35

6 In�ating H1 error for [3000, 4000] Hz band. 37

7 Timing Calibration 39

8 Systematics Not Explicitly Put in the Error Budget 43

8.1 Actuation Electronics Frequency Dependence . . . . . . . . . . . . . . . . . . 43

8.2 Optical Spring Due To Radiation Pressure . . . . . . . . . . . . . . . . . . . 44

8.3 Drumhead notch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.4 Violin2 Notch for L1 ETMX . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9 Appendix 47

9.1 Propagation of OLG Error to CLG Error . . . . . . . . . . . . . . . . . . . . 47

9.2 Adding CLG Error and Sensing Error Coherently . . . . . . . . . . . . . . . 50

9.3 List of Con�gurations in S6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.4 Blind Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2



Abstract

S6 error budget of the version 2 (V2) frequency domain calibration is explained. The

analysis method is substantially di�erent from S5 due to the introduction of so-called

open loop residual in the model.

1 Summary

Caution: This document is still a work in progress. As of version 5 of this

document, this summary shows the calibration error estimate for the entire S6,

and all of the numbers in this summary as well as the method used for the

analysis have been vetted. However, readers should be careful as many sections

of this document are still written as if they only target the blind injection.

LIGO data generation goes through two stages. First a frequency domain model collo-

quially called h(f) is constructed as a set of transfer functions and scaling factors, and then

this model is transfered to the time domain model colloquially called h(t) which is used for

the production of the LIGO strain data stream.

We categorize errors in the frequency domain response function R into four: Overall

scaling error that is independent of frequency, frequency dependent error except timing

error, timing error, and time evolution error that is related to the random error in so-called

calibration factor. This is written by

R(f) = ηR(f)RM(f)

= A0 (1 + δA+ − δA−) η0R(f) exp (−2iπfτR) ηγ(f)RM(f)

= A0 (1 + δA+ − δA−) abs
(
η0R(f)

)
exp [i(∆φR(f)− 2πfτR)] ηγ(f)RM(f) (1.1)

where R and RM are �true� and V2 model response function, ηR is the ratio of the two, A0

and δA± are the overall scaling error that is equal to the scaling factor of the actuation, η0R

is the frequency-dependent part of ηR except the timing error and the time evolution error,
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∆φR is the phase of η0R, τR is the timeing error, and ηγ is the time evolution error. Note

that we de�ne �timing error� as any phase systematic that is proportional to the frequency

within LIGO calibration band of [40, 5000] Hz.

The time domain data has all of the errors present in the frequency domain data, but

there might be an additional error related to the conversion from the frequency domain model

to the time domain. We performed two independent tests to make a comparison between

h(f) and h(t) [1] to obtain a conventional error estimate.

Figure 1.1 and 1.2 show the overall scaling, the frequency dependence, and the time

evolution error for L1 and H1 frequency domain response function. Table 1 shows the

recommendation for a conventional error for h(t)/h(f) di�erence. Though the analysis groups

can use the �gures and the table to suite their needs, Table 2 summarizes the recommendation

of the Calibration Committee.

There are several things one needs to know to correctly use and understand the LIGO

calibration.

IFO Epoch [40, 2000] Hz [2000, 5000] Hz

L1 S6a 3 %, 4 degrees 3.5 %, 12 degrees
S6b 7 %, 3.5 degrees 4 %, 2 degrees

H1 S6a 4 %, 2 degrees 6 %, 4.5 degrees
S6b 3 %, 2 degrees 6.5 %, 5 degrees

Table 1: Recommendation for a conventional estimate of h(f)/h(t) di�erence error obtained
from two independent tests.

1.1 Calibration Epoch

In V2 calibration, there are two calibration epochs often called S6a and S6b (Tab.3). This

comes from a large enough change in the interferometer con�guration at both of the sites.

Note that, despite similar naming, these are not to be confused with the epochs used by the

analysis groups.
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Figure 1.1: Summary of L1 frequency domain response function error (except the timing
error) for the S6a and S6b calibration epoch. The time evolution error is much smaller
than the static frequency dependence error and thus can be neglected. For time domain
calibration (colloquially called h(t) calibration), we recommend to add a conservative error
in Table 1 in quadrature to the frequency dependent error. Note that the error range of
the frequency dependent error is dominated by the fact that multiple hardware/software
con�gurations and states are covered by one calibration model per epoch.
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Figure 1.2: Summary of H1 frequency domain response function error (except the timing
error) for the S6a and S6b calibration epoch. For time domain calibration, we recommend to
add a conservative error in Table 1 in quadrature to the frequency dependent error. Because
of the actuation anomaly in H1 EY, any analysis using [3000,4000]Hz band should in�ate the
error for that band to 40% in amplitude and 27 degrees in phase. Note that the error range
of the frequency dependent error is dominated by the fact that multiple hardware/software
con�gurations and states are covered by one calibration model per epoch.
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L1 Overall scaling = 1.02(1+0.13-0.01)
Timing error = [−10,+45]µs

Static frequency dependence recommendation
Epoch [40, 70] Hz [70, 2000] Hz [2000, 5000] Hz

|h(f)| 10% 14 % 20%

S6a |h(t)|
√

102 + 32 = 10 %
√

142 + 32 = 14 %
√

202 + 3.52 = 20%
∠h(f) 7 deg 9 deg 6 deg

∠h(t)
√

72 + 42 = 8 deg
√

92 + 42 = 10 deg
√

62 + 122 = 13 deg
|h(f)| 5% 18% 19%

S6b |h(t)|
√

52 + 72 = 9 %
√

182 + 72 = 19 %
√

192 + 42 = 19 %
∠h(f) 4 deg 7 deg 5 deg

∠h(t)
√

42 + 3.52 = 5 deg
√

72 + 3.52 = 8 deg
√

52 + 22 = 5 deg
H1 Overall scaling = 1.014(1+0.025-0.004)

Timing error = [0,+30]µs
Static frequency dependence recommendation

Epoch [40, 70] Hz [70, 2000] Hz [2000, 5000] Hz
|h(f)| 13 % 8 % 40 %

S6a |h(t)|
√

132 + 42 = 14 %
√

82 + 42 = 9 %
√

402 + 62 = 40 %
∠h(f) 7 deg 5 deg 27 deg

∠h(t)
√

72 + 22 = 7 deg
√

52 + 22 = 5 deg
√

272 + 4.52 = 27 deg
|h(f)| 11 % 16 % 40 %

S6b |h(t)|
√

112 + 32 = 11 %
√

162 + 32 = 16 %
√

402 + 6.52 = 41 %
∠h(f) 6 deg 5 deg 27 deg

∠h(t)
√

62 + 22 = 6 deg
√

52 + 22 = 5 deg
√

272 + 52 = 28 deg

Table 2: Recommendation for the error for the entire S6. The error for [2000,5000] Hz
band for H1 was in�ated using a very conservative assumptions because of our incomplete
knowledge of EY actuation resonances in [3000,4000] Hz band. If [3000,4000] Hz band is
excluded, you can use

√
112 + 62 = 13 %,

√
82 + 4.52 = 9 degrees for S6a, and

√
152 + 6.52 =

16 %,
√

82 + 52 = 9 degrees for S6b. A positive time delay means that the h(f) signal or
h(t) signal is delayed from the physical strain (e.g. induced by gravitational wave).
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S6a S6b

L1 [928368015, 938995214] [941997600, end]
H1 [929904671, 942436810] [942436815, end]

Table 3: Two calibration epochs in S6. Though these are often called S6a and S6b by the
calibration group, these are not to be confused with the epochs used by the analysis groups.

1.2 Overall scaling factor

The overall scaling factor error is plotted as three lines (A0 × [1, 1 + δA+, 1 − δA−]). This

didn't change for the entire S6 run. It directly comes from the error in the scaling factor of

the coil-magnet actuator strength, and we do not expect this to change.

1.3 Frequency dependence covers multiple con�gurations and hard-

ware states

The frequency dependent error changed through the run as interferometer hardware/software

con�gurations (such as whitening/dewhitening mismatch for the OMC photo detectors) and

hardware states (such as the ADC timing) changed. The calibration committee tracked these

changes over the entire run and estimated the error for each and every con�guration and

hardware state. The frequency dependent error presented as a band in Figures 1.1 and 1.2

shows the maximum and minimum error, e.g. [min(η0R),max(η0R)] for amplitude, per the

calibration epoch. This is not a true representative of the statistical errors, as it includes

relatively large known systematics of several con�gurations and many hardware states in

addition to statistical errors associated with the measurements of relevant con�gurations

and states. The calibration review committee concluded that it is safe to handle them as

one-sigma error bar in that doing so would over estimate the error.

This means that, for any given time, the frequency dependent calibration error is un-

derstood with much better accuracy than Figures 1.1 and 1.2. If there arises a signi�cant

need to have a �ner-grained calibration error analysis at a speci�c time, e.g. a potential

detection candidate, the calibration committee can provide a much better estimate of the

calibration. An example would be the calibration analysis for the blind hardware injection
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in S6b calibration period (see 9.4).

This also means that, by merely targeting a speci�c hardware/software con�guration,

even though it still includes many hardware states, you may �nd the calibration error that

is more accurate than Figures 1.1 and 1.2 and Table 2. For example, for the most part of

S6b except the gps time [948444884, 948539900] and [961827382, 961835000], H1 frequency

domain error for [70, 2000]Hz range was 11% in amplitude and 3 degrees in phase rather

than 15% and 5 degrees. See Figures 4.17, 4.18 and Table 10 for details.

1.4 Data �ags

Several calibration-related data �ags were made, i.e. one related to so-called spike glitches

in L1, one related to abnormally large time o�set, and one related to incorrect software

con�guration. The �agged data might still not be corrupt, however no serious attempt was

made to validate the calibration for these data segments. The calibration committee can

o�er the community some general advice, however ultimately the analysts should decide how

to handle the �agged segments.

1.5 High frequency for H1

Due to a resonant structure only in the H1 EY actuation (4.1.5), anybody planning to

use [3000, 4000] Hz band should use a larger error of 40% in amplitude and 27 degrees

in phase. This doesn't mean that the error is believed to this much. Rather, this is a

conservative estimate of the calibration error which safely covers this frequency band even

if our measurement doesn't capture the exact peaks and valleys of the resonant structure

observed in EY. Figure 1.2 doesn't include this e�ect, but the Table 2 does. See 6 for details.

1.6 How to combine frequency dependence and overall scaling

If nessesary, the error bar of the overall scaling factor and the amplitude error of the frequency

dependent part can be added in quadrature in Table 2 to make a combined amplitude error,

9



L1 S6a
√

132 + 142 = 19 %

S6b
√

132 + 192 = 23 %

H1 S6a
√

2.52 + 92 = 9.3 %

S6b
√

2.52 + 162 = 16 %

Table 4: Example of resulting amplitude error bar for [70, 2000] Hz. The relevant data are
|h(t)| and the scaling from Table 2. In addition to this error, the h(t) scaling factor 1.02
(for L1) or 1.014 (for H1) has to be taken care of separately by either rescaling h(t) or by
changing the e�ective distance of the injections.

e.g. for L1 [70, 2000] Hz band for S6b, the overall amplitude error could be expressed as

1.02(1+
√

0.132 + 0.192−
√

0.012 + 0.192) = 1.02(1+0.23−0.19). Again the review concluded

that it would be safe to use it as if it is a one sigma error bar even though the frequency

dependent error band is not a true statistical error bar.

For example, one way to apply a single amplitude error bar for a search that uses only

the [70, 2000] Hz band, taking the maximum of the scaling factor error and using Table 2,

would be to use the values of Table 4.

Note that the overall scaling factor, 1.02 for L1 and 1.014 for H1, has to be taken into

account by either rescaling the original h(t) data itself or by correcting for the distance of

the injections used in the analysis, e�ectively making them a factor of 1.02 or 1.014 closer.

2 Introduction

In LIGO calibration model, a LIGO instrument is represented by four elements colloquially

called the sensing (C), the digital (D) and the actuation (A) functions, and the calibration

factor (γ). Response function R is a function of these four:

R =
1 + γCDA

γC
≡ 1 + γG

γC
(2.1)

where G is the open loop transfer function of the control loop.

It's not within the scope of this document to explain what the above equation means.

This document does provide a detailed description of the error budget of R for the
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�True� S6 Model �True�/Model ratio Fractional error

Response function R RM ηR = R/RM δηR = ηR − 1
Sensing C CM ηC = C/CM δηC = ηC − 1
Actuation A AM = AM0 ×ResMe−2πifτM ηA = A/AM δηA = ηA − 1
Digital D DM = D 1 0
OLG G GM = AMCMDM ηG = ηCηA = G/GM δηG = ηG − 1

Calibration factor γ(t) γM (t) ηγ(t) = γ(t)/γM(t)

Table 5: Naming convention. AM0 is the actuation model constructed from known elements.
So-called �OLG residual� represented by ResM is put in the actuation model to take care of
the bulk of discrepancy between the OLG model and the OLG measurements at high kHz.
Likewise, an ad-hoc time delay parameter τM is put in the actuation to take care of the
latency discrepancy between the OLG model and the OLG measurements.

frequency domain calibration. We will explore uncertainties and known systematics in each

part of the model and study how these propagate to the uncertainties and systematic error

in R.

2.1 Naming Convention

Elements in the V2 calibration model have subscript �M�.

The ratio of the �true� physical quantity and the model is represented by η, e.g. ηA =

A/AM .

Fractional errors are prepended by δ, i.e. a fractional error associated with η is δη = η−1.

Models are constructed only from components known at the time of constructing the

model, except two systematic of unknown origin called open loop gain residual (OLG resid-

ual) and a small ad-hoc time delay parameter ( see 4.1.7 for details).

Note that there are systematics that are not in the model but identi�ed with very good

accuracy after publishing the model, which are explained in 2.2.

A symbol θ is used for systematics of known quantity that are not explicitly put in the

model. Whenever it is appropriate, a phase systematic that can be regarded as a true timing

11



Symbol Origin A�ects

Actuation coe�cient error A0, δA± A overall scaling
White/dewhite mismatch θwh C frequency dependence

Arm poles error θarm C frequency dependence
EY abnormal resonance θY A frequency dependence
Normal mass deformation θmass A frequency dependence

ADC time delay τADC C frequency dependence
Latency between sensing CPUs τCPU C frequency dependence
Control loop latency mismatch τG A and C frequency dependence

Calibration factor error θγ C time evolution error
OLG mismatch θOLG Unknown frequency dependence

= ηG exp(−2iπfτG)

OLG residual ResM Unknown, put in A frequency dependence
Ad-hoc delay τM Unknown, put in A frequency dependence

Table 6: Table of the elements in the calibration error budget. The latency between the
two sensing CPUs is in the model, and we consider only the deviation from the model here.
OLG residual and ad-hoc delay are two elements that were explicitly put in the model as a
bu�er to fold into calibration the combined e�ect of all known and unknown errors that are
not explicitly in the model.

error is represented by a symbol τ separately from a systematic that is not proportional to

the frequency which is represented by ∆φ.

2.2 Error Elements in LIGO Instruments

Elements that are known to the calibration group to potentially a�ect the calibration of

LIGO instruments were measured and analyzed. Out of these, twelve systematics listed in

Table 6 were explicitly put in the error budget. These are explained in detail in the following

sections.

For the systematics that are not explicitly in the error budget (but nevertheless measured

and evaluated), see Sec.8 and Tab.9.

3 Overall Scaling Coe�cient Error

In S6, the strength of the coil-magnet actuators were measured by two techniques. One

uses the Michelson interferometer (MICH) to calibrate the ITM actuation and transfer it to

12
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Figure 3.1: Actuation coe�cient for each of the masses (left) and the combined DARM
actuation coe�cient (right).

the ETMs, and the other pushes the ETMX using radiation pressure of an auxiliary laser

colloquially called photon calibrator or Pcal.

Figure 3.1 and Table 7 show the result of the analysis of the scaling coe�cient. Note that

V2 model was generated by one set of MICH measurement, but there are three more MICH

data set with smaller error bars. MICH numbers in the table is a combined number of four

sets, and the error bar is the standard error combining four standard deviation taken from

four data set. For a full description of measurements, see the calibration review wiki[2].

As one can see, Pcal and latest MICH results agree within one per cent for H1. There used

to be larger discrepancy, which was resolved by a careful measurement of the transmissivity

of the viewport window for Pcal injection after EX vacuum chamber was opened. V2 number

and latest MICH number di�ers by about 1 %, and the end result is about a factor of 1.014

mean plus 2.5% minus 0.4% error bar.

This is not the case with L1. There is about 13% di�erence between Pcal and the latest
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V2 [nm Hz2/ct] MICH [nm Hz2/ct] Pcal [nm Hz2/ct] A0(1 + δA+ − δA−)

L1 0.454 0.464(1±0.012) 0.523 1.02(1+0.13-0.01)
H1 1.198 1.215(1±0.004) 1.228 1.014(1+0.025-0.004)

Table 7: DARM Actuation Scaling Coe�cient for S6.

MICH numbers VS about 2% between V2 and the latest MICH, and as a result we decided to

take a factor of 1.02 plus 13% minus 1% error bar. The error is dominated by the systematic

di�erence between MICH and Pcal. Note that the transmissivity of Pcal viewport was not

remeasured for L1, as the vacuum chamber is still closed.

Though the actuation function does not explicitly appear in Eq.2.1, the actuation scaling

error is equal to the response scaling error as suggested by Eq.1.1. This is because of the way

the LIGO instruments are measured and modeled. Of the three components (C, A and D),

the sensing function is something we cannot directly measure. We use another measurable

quantity G as a boundary condition such that the overall scale of C is de�ned by G/(AD).

Any overall scaling error in A is equal to the inverse of the scaling error in C. Since the

response function is inversely proportional to C, the overall scaling error in R is equal to the

overall scaling error in A.

4 Frequency Dependent Error

We'll �rst look at each independent element contributing to the error, then combine them

together to get a frequency dependent error in the closed loop response 1 + G, the sensing

C, and �nally the response function R.

Since some of the elements are speci�c to the interferometer con�guration, the ADC tim-

ing and the latency in DARM loop, the latter two being dependent on CPU initialization etc.,

the most detailed error budget should be generated for each of the distinctive con�gurations,

ADC timing and a latency mismatch observed.

In this document, however, such a detailed analysis was only done to one period from

September 14 2010 to the end of S6. For any other periods, we make one error budget per

14



calibration epoch that covers all con�gurations and hardware status that are applicable.

4.1 Error Components

4.1.1 Whitening/dewhitening mismatch

The matching of analog whitening �lter and digital dewhitening �lter for OMC ADC is not

perfect, and this is not accounted for in the V2 model. We call this systematic θwh.

For L1, people used four di�erent con�gurations for OMC whitening �lters: FM1/FM2 for

both PD1 and PD2 (θ0wh), FM1/FM2/FM3 for both PD1 and PD2 (θFM123
wh ), FM1/FM2/FM3

for PD1 and FM1 for PD2 (θtest1wh ), and FM1/FM2 for PD1 and FM1/FM2/FM3 for PD2

(θtest2wh ). The �rst one is the con�guration the V2 model is based on, and therefore �nominally

correct�. The second one was used for the later S6b. The latter two are due to intentional

test during the science mode by detchar group. Figure 4.1 shows the mismatch of all four

con�gurations.
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Figure 4.1: L1 sensing systematics due to whitening/dewhitening mismatch in OMC for S6a
(left) and S6b (right). Nominally correct con�guration and the con�guration used in the
blind injection are marked by (*) and (I) in the legend.
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Figure 4.2: H1 sensing systematics due to whitening/dewhitening mismatch in OMC for S6a
(left) and S6b (right). Nominally correct con�guration and the con�guration used in the
blind injection are marked by (*) and (I) in the legend.

For H1, there are two con�gurations: �Nominally correct� one is FM1/FM2/FM3 for

both PD1 and PD2 (θ0wh), and FM1/FM2 for both PD1 and PD2 (θFM12
wh ) that was used for

a very short period (Fig.4.2).

Note that |θwh| shown here are scaled such that |θwh|=1 at the nominal unity gain fre-

quency, fUGF , of the DARM servo loop. This is because the calibration code tries to dy-

namically scale the sensing so the OLG is the most correct at this frequency. The error in

this scaling is evaluated separately.

Also note that θwh contains a phase systematic that is proportional to the frequency:

θwh ≡ |θwh| exp(i∆φwh − 2πifτwh). (4.1)

In the phase plot, the time shift is already removed from the mean (green) trace. Table

8shows the time delay of the mismatch for each of the con�gurations.
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L1 τ 0wh = 16.3µs τFM123
wh = 7.1µs τ test1wh = 11.9µs τ test2wh = 11.4µs

H1 τ 0wh = 8.8µs τFM12
wh = 18.1µs

Table 8: List of time delay in whitening/dewhitening mismatches. Positive number means
that the true sensing is delayed than the model.

4.1.2 Error in Arm Poles

Version 2 calibration model has two (in the case of L1) or one (H1) parameter representing

the corner frequencies of the arm cavities that were simply inherited from S5 model. Any

di�erence between the real corner frequencies and the model parameters should be captured

in the OLG residual.

There are three sets of relevant measurements for arm poles after S5 completed. All of

the measurements were done by ring down measurement of arm cavities. First one of the

arm cavities is locked and then unlocked as fast as possible, and the power of the leakage

from inside the cavity is measured and the time constant is obtained by �tting the time

series to the exponential decay. The errors associated with the measurements are dependent

on the unlocking method. These measurements are shown in Fig.4.3.

Each of the measurements comprises multiple trials, so we have a mean and a standard

deviation for each:

farmn = meanarmn ± σarmn (4.2)

where n is either 1, 2 or 3, and arm is either X or Y. The weighted average, weighted one

sigma error and the worst case numbers are obtained by

farmwAvg = Σnf
arm
n warmn /Σnw

arm
n (4.3)

σarmwAvg = 1/
√

Σnwarmn (4.4)

warmn = 1/(σarmn )2 (4.5)

farmmax = max(farmn + σarmn ) (4.6)

farmmin = min(farmn − σarmn ). (4.7)
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Figure 4.3: Arm pole measurements. L1 model (bottom) uses two parameters (one each per
arm) while H1 model (top) uses only one parameter, i.e. the mean pole.

Figure 4.4 shows the ratio of the measurement/V2 sensing function ratio using the measured

arm poles. Though the plots show the raw ratio, in the calibration analysis code θarm is

scaled such that |θarm(fUGF )| = 1, just like θwh.

4.1.3 OMC ADC Clock Timing

Because of a CPU startup problem etc., the timing of the OMC ADC is known to have

changed during S6. This has been monitored throughout S6 by injecting a signal generated

by arbitrary waveform generator (AWG) into one of the unused OMC ADC channels. To

distinguish the timing change of the AWG from that of OMC ADC, the same AWG signal

was also monitored by the ADC in the LSC, which works independently of the OMC ADC:

If a timing change comes from AWG, both OMC and LSC should see the same change at
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Figure 4.4: Sensing function ratio θarm using the measured arm poles over V2 model.

the same time.

The timing delay of τADC causes the delay of the sensing function, and therefore the

advancement of the response function, by that much.

Figure 4.5 shows the OMC ADC timing trend for the entire S6. L1 has seen many distinct

timing jumps, but eventually τADC settled down to 17 µs delay. Note that there was a large

recon�guration of the timing system at LLO (indicated by a black broken line). H1 has been

very stable at 1.2 µs delay except very small percentage of science segments.

4.1.4 Latency Between Two Sensing CPUs

In S6 each LIGO instrument used two CPUs called OM1 and LSC for the sensing function.

The analog signal is recorded by ADC and processed by OM1, then passed to LSC for further

processing. The latency between these two CPUs is supposed to be 2 clock cycles of OM1

or about 61 µs, however it was not always the case for the issue of the CPU initialization

and data hand-o�. For S6b, 61 µs was used in the model. For S6a, due to various reasons,
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Figure 4.5: ADC timing for L1 (left) and H1 (right) for the entire S6. For L1, several distinct
timing jumps happened, and eventually it settled to about 17 µs of delay. H1 OMC ADC
has been delayed by 1.2 µs except very small percentage of science segments.

45.8 and 53.4 µs were used for L1 and H1, respectively.

Figure 4.6 shows the OM1-LSC latency di�erence between the measurement and the V2

model for the entire S6. Positive number means that the reality was delayed than the model

suggested.

4.1.5 ETMY Abnormal Resonance in H1

It was found that H1 ETMY has some unknown resonant structures at high kHz frequency

range. The EY abnormal resonance e�ect θY (Fig.4.7, left ) is calculated by �rst by injecting

into ETMX and ETMY independently, and then making the DARM actuation e�ect by

taking a ratio (Ax + Ay)/2Ax.

For H1, the e�ect is smaller than 5% for f<2kHz, and since at 1 kHz the amplitude is

already 1.018 and the phase −0.07 degrees, we simply assume that it is equal to unity for

f < 1000. For L1, since the same measurement showed no such anomaly, we assume that

θY = 1. Any remaining systematic due to this e�ect for both of the interferometers should

appear in OLG error measurement.
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Figure 4.6: OM1-LSC latency di�erence between the measurement and the model for the
entire S6a. Broken line indicates the end of S6a calibration epoch. Positive number means
that the reality was delayed than the model suggested.

4.1.6 Mass Deformation

The mass deformation systematic θmass comes from the fact that the mirror is not a rigid

body and therefore deforms according to the actuation force on the magnets. This e�ect was

calculated by �nite element analysis (Fig. 4.7, right) assuming that there is no abnormal

resonance structure like θY .

For frequency larger than 1kHz, two systematics θY and θmass should be accounted for

in the known part of our best-guess actuation model:

ABM0 = AM0θY θmass. (4.8)

4.1.7 OLG Residual and Unknown Delay in the Model

In S6 calibration model, there are two systematics the origin of which are not fully known.

These are in the actuation model as a bu�er so that the OLG model agrees with the mea-
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Figure 4.7: EY actuation anomaly systematic θY that is only in H1 (left), and the mass
deformation systematic θmass (right). Smaller peaks/valleys of 2% 1 degree level in θY are
the measurement noise, but larger structures in amplitude and phase for f > 3000 Hz are
real resonance.

surement:

G ∼ GM = GinitialResMe
−2πifτM (4.9)

where Ginitial is the open loop transfer function with only known modeled elements. In this

expression, a phase systematic that is proportional to the frequency is parametrized as an

ad-hoc time delay τM and the rest is modeled as a function called the OLG residual (ResM).

These two systematics are supposed to represent the combined e�ect of all unknown and

known systematic that are not explicitly put in the model. True unknown systematics are

derived from ResM and τM by removing all known systematics.

OLG residual and unknown time delay in the model were generated by a �t of OLG

measurement G over the initial model. As such, OLG residual does capture the overall

trend of the systematics, but sharp features like resonant structures of θY are not captured.

Sometimes the �t was done for the mean of several measurements (S6a), thus the OLG

residual does not necessarily capture any speci�c hardware con�guration.
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Figure 4.8: OLG residual of L1 (left) and H1 (right). For L1, S6a OLG residual is identical
with S6b. The di�erence between S6a and S6b for H1 is the quality of the �t.

Figure 4.8 shows the OLG residual for L1 and H1. Note that L1 has a single OLG residual

that is used for the entire S6a, while H1 has two. This is not due to physical change in the

H1 instrument, but rather due to an improvement in the �t technique. In S6a, the H1 �t

was confused by the high frequency phase structure of θY that was out of LIGO calibration

band of [40, 5000] Hz, skewing both the amplitude and the phase for f > 3 kHz. This was

much improved in S6b.

4.1.8 OLG Mismatch

Even with the OLG residual in the model, there might still be a systematic error in the OLG

model partly due to a limited S/N for any of the measurements used to generate the model,

inaccuracy in the �t (e.g. H1 S6a) and partly due to the fact that the LIGO instruments

are sometimes in con�gurations other than nominally correct one. This error was evaluated

regularly throughout the S6 run by measuring the open loop transfer function.

Figures 4.9 and 4.10 show the ratio of the measurement over the V2 model for S6a and
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Figure 4.9: Ratio of the open loop transfer function measurements over the V2 model for
S6a.

S6b, respectively. All measurements are scaled such that the discrepancy becomes minimal at

the unity gain frequency to factor out small di�erences in the optical gain due to alignment of

the optics, thermal lensing in the ITMs and any incompleteness in the dynamic gain scaling

code of the LIGO control system. Note that there are many distinctive phase systematics

that are proportional to the frequency in the middle plots. This is mostly the latency jump

in the loop due to the CPU initialization issue etc., mainly at the end stations, for both

IFOs (another reason is the whitening con�guration change in L1, which is discussed later).

There is little uncertainty in latency mismatches, so it is convenient to divide ηG into two

parts, i.e. the systematic except the latency mismatch and the latency mismatch:

ηG = θG exp(2iπfτG) (4.10)

θG = abs(ηG)× exp(i∆φG). (4.11)

In the bottom plots, this latency mismatch was subtracted from the phase.
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Figure 4.10: Ratio of the open loop transfer function measurement over V2 model in the
second calibration epoch for L1 (left) and H1 (right). Error bars show the standard deviation.
For L1 we cannot use this as is for the assessment of the true statistical error inherent in the
OLG measurements, as two di�erent con�gurations are present in the measurement.

Even after subtracting the latency changes, however, because of the fact that di�erent

whitening/dewhitening con�gurations are present in the OLG measurements, we cannot use

the measurement over the V2 model as is to make a correct assessment of the statistical

error in the OLG measurements. One could obtain an error for a speci�c con�guration

by only using the measurements in that con�guration. However, in doing so, the number

of measurements is going to be limited (or none for some of the con�guration). Instead,

assuming that we know all the di�erences between di�erent con�gurations, we can propagate

an error in any con�guration into �nominally correct� one by building a con�guration-speci�c

open loop transfer function model.

True mismatch in �nominally correct� con�guration Figure 4.12 on the left shows

the L1 OLG measurement data divided by con�guration-speci�c OLG model. For �nominally

correct� con�guration, the measurement was divided by V2 model GM . For the measure-
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Figure 4.11: S6a OLG measurements divided by the con�guration-speci�c OLG models for
L1 (left) and H1 (right).

ments made with θFM123
wh con�guration for example, we used GMθ

FM123
wh /θ0wh instead. This

shows how the OLG mismatch would have looked if all measurements were done with nomi-

nally con�guration, and as such this is a true measure of the OLG mismatch for the nominally

correct con�guration.

The top and the bottom represents the ratio of the measured and the V2 model open

loop transfer function in amplitude and phase except the latency mismatch for the nominally

correct con�guration, i.e. abs(θ0G) and ∠θ0M :

G0 = G0
M |θ0G| × expi(∠θ0M + 2πfτG) (4.12)

|θ0G| = < |θ0G| > ±std|θ0G| (4.13)

∠θ0G = < ∠θ0G > ±std(∠θ0G) (4.14)

where <> and std() means the mean and the standard deviation. Uncertainty in latency
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Figure 4.12: S6b OLG measurements divided by the con�guration-speci�c OLG models for
L1 (left). Error bars represent the standard deviations. H1 data (right) is the same as the
one in Fig.4.10. These represent the open loop transfer function error of V2 model ηG only
for a nominally correct con�guration. Note that these plots don't include the correction for
the H1 ETMY anomaly in the actuation.

part τ 0M is so small that it's ignored.

The latency part at any GPS time is obtained by a single measurement, either from an

OLG measurement close enough to the gps time of interest (see 4.1.9 and Fig.4.13), or from

the calibration factors.

The error of the OLG mismatch measurement is in general the smallest in [80 1000]

Hz band. As you go lower in frequency, both the instrument noise and the amplitude of

the OLG become larger very quickly, resulting in a smaller coherence of the measurement.

On the opposite side of the LIGO frequency band, as you go higher than 1000 Hz, though

the instrument noise and the OLG amplitude stays reasonable, it becomes more and more

di�cult to drive the mirrors with a good S/N because of 1/f 2 dependence, again making it

very di�cult to obtain a good coherence.
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True mismatch in other con�gurations For any con�guration other than the nominally

correct one, the open loop transfer function error is composed of two elements, i.e. the error

of an unknown origin that is represented by Fig.4.12 (|η0G| and ∆φ0
G) and a known systematic

due to con�guration change, e.g.

∣∣θFM123
G

∣∣ =
∣∣θ0G∣∣× ∣∣θFM123

wh /θ0wh
∣∣ (4.15)

∠θFM123
G = ∠θ0G + ∆φFM123

wh −∆φ0
wh. (4.16)

Again, the latency mismatch should be obtained from the near-by OLG measurement or

from the factor analysis.

4.1.9 Latency Mismatch

Latency mismatch τG is the time constant of the phase systematic that is linear to the

frequency derived from OLG measurements divided by the V2 model. Figure 4.13 shows the

latency mismatch τG obtained from the OLG measurement and V2 model as a function of

GPS time. Other timing parameters are also shown in the plot: Model timing parameter

τM representing an ad-hoc delay which is placed in the actuation, ADC timing delay τADC ,

OM1-LSC latency error τCPU which is the di�erence of the true OM1-LSC latency and the

latency number in the model, and whitening/dewhitening mismatch delay τwh. See Section

7 for the details of the timing analysis.

4.1.10 Unknown Residual in OLG

As we learned, the combination of OLG residual, ad-hoc delay and OLG mismatch represents

the e�ect of all known and unknown systematic. Since we do not know if this residual is

in the sensing or not, as a conservative measure we fold this into the potential error in the

sensing. The timing shift part of this was already explained in the previous section, so let's

now look at the amplitude and the phase systematic that is not a time delay.

All actuation systematics as well as the most likely value of the arm pole error are simply
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Figure 4.13: Latency mismatch τG obtained from the ratio of OLG measurement over the V2
OLG model (red) together with other timing-related parameters. Negative τG means that
the model is advanced, and needs more delay in order for the model to become consistent
with the measurement. Note the notation di�erence here: τG, τM , τADC and τwh in the
text are written as tOLG, udelay, tADC and twh−dw in the plot. Also, τCPU in the text is
represented by tlatency − Odelay in the plot. Another measure of latency is obtained from
the analysis of the calibration line that is constantly injected to the coil actuator, which is
represented by tgamma in the plot.

removed from the OLG residual. Since OLG residual was constructed using �nominally

correct� whitening �lter con�guration, these sensing systematics should also be removed

from the OLG residual to obtain the unknown part:

ResBM =
ResM exp(−2πifτ 0wh).

θ0whθarmθY Xθmass
(4.17)

This represents the unknown part of the OLG residual. Note the delay parameter in the

numerator that was put in to remove the timing part from θ0wh.

The product ResBM ×θ0OLG represents the true unknown residual in the OLG. Figure 4.14

shows ResBM together with ResBM × θ0OLG.
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Figure 4.14: Red traces represent the OLG residual after all known systematics are removed
for �nominally correct� con�guration in S6b for L1 (left) and H1 (right). Only the arm pole
error bar is considered for the error bar of the red traces. Blue traces are the V2 OLG
residual model. Green traces are the product of the red traces and the OLG mismatch θOLG.
This represent the truly unknown residual in the OLG, and the error bar is dominated by
that of θOLG.

4.2 Combining Errors for Sensing

The error in the sensing function except the overall factor comprises the known systematic

in the sensing, the ADC timing, OMC-LSC CPU latency, and the unknown residual in

the OLG. This is written by the known sensing systematic ηknownC and unknown systematic

uncertainty ηUC as

C ≡ CMη
known
C ηUC (4.18)

ηknownC ≡ θwh(f)θarm(f) exp [−2iπf(τADC + τCPU)] (4.19)

= |θwh(f)θarm(f)| expi [∆φwh + ∆θarm − 2πf(τwh + τADC + τCPU)] (4.20)

ηUC ≡ [1, ResBMθ
0
OLG]. (4.21)

The last equation is worth an explanation. Since we don't know if the unknown residual
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Figure 4.15: Sensing Errors at the end of S6b starting 14/Sep/2010 corresponding to the
case where all (green) or none (red) of the true unknown mismatch in the OLG are in the
sensing. Note that the known timing delay (τwh + τADC + τCPU=24.5 µs for L1 and 10.0 µs
for H1) are removed from the phase plot.

in the OLG (ResBMθ
0
OLG) comes from the sensing, this is folded into the systematic error of

the sensing. We consider two extrema cases where either none or all of ResBMθ
0
OLG is in the

sensing (ηUC = 1 or ResBMθ
0
OLG).

Latency mismatch is not explicitly put into the sensing error, as the timing is handled

separately later.

The sensing function error budget is shown in Fig.4.15. for the sensing error budget using

the above equations.
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4.3 Combining Errors for Closed Loop Response

Since the response function is proportional to the close loop response 1 + G, we need to

propagate the error in G to 1 +G:

η(1+G) =
1 +GMθOLG exp(2iπfτG)

1 +GM

= |η(1+G)| × exp(i∆φ(1+G)) (4.22)

< |η(1+G)| > =

∣∣∣∣1 +GM < |θOLG| > exp i(< ∆φOLG > +2πfτG)

1 +GM

∣∣∣∣ (4.23)

std(|η(1+G)|) =
|GM |

√
std(|θOLG|)2 cos2 ε+ < |θOLG| >2 std(∆φOLG)2 sin2 ε

|1 +GM |
(4.24)

std(∆φ(1+G)) =
|GM |

√
std(|θOLG|)2 sin2 ε+ < |θOLG| >2 std(∆φOLG)2 cos2 ε

|1 +GM < |θOLG| > exp i(< ∆φOLG > +2πfτG)|
(4.25)

where <> and std() represent the mean and the one-sigma level error bar corresponding to

the standard deviation of the open loop transfer function error, and ε is the angle between

1 +GM < |θOLG| > exp i(2iπfτG) and GM < θOLG > exp(2iπfτG). For a full derivation, see

Sec.9.1.

Figure 4.16 shows η(1+G) for the last part of S6b: θ
FM123
wh con�guration with τG = −13.3µs

for L1, and θ0wh con�guration with τG = −1.6µs for H1.

4.4 Combining Errors for Response Function

Now we combine the error of the sensing and the closed loop response to obtain an error

budget of the response function. For notational simplicity, we ignore the overall timing factor
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Figure 4.16: Closed loop response error η(1+G) example (red) for the last part of S6b starting
Sep/14/2010. The error bar represents the standard deviation of the OLG mismatch (ηG,
blue) propagated to η(1+G).

in the form of exp 2iπfτ , and calculate the timing error separately later in Section 7.

ηR(ηUC = 1) =
η(1+G)

ηknownC

=
1 +GMθOLGe

2iπfτG

(1 +GM)θwhθarm
(4.26)

ηR(ηUC = ResBMθ
0
OLG) =

η(1+G)

ηknownC ResBMθ
0
OLG

(4.27)

=
1 +GMθOLGe

2iπfτG

(1 +GM)θwhθarm
ResM

θ0whθY Xθmassθarm
θ0OLG

(4.28)

=
GMθY Xθmass

(1 +GM)ResM
× 1 +GMθOLGe

2iπfτG

GMθOLGe2iπfτG
(4.29)

=
GMθY Xθmass

(1 +GM)ResM
× 1 +G

G
. (4.30)

We used the relation θG = θ0Gθwhe
−2if(τ0wh−τwh)/θ0wh (again note the omission of overall timing

factor in the equations), and substituted GMθOLGe
2iπfτG with G to obtain the last expression.
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For a reasonable error evaluation, two error bands corresponding to one sigma error were

calculated �rst, i.e. one with ηUC = 1 and another with ηUC = ResBMθOLG. The �rst case is

simple enough as there is no correlation between the denominator and the numerator:

∣∣η±R(ηUC = 1)
∣∣ =

< |η(1+G)| >
<
∣∣ηknownC

∣∣ >
1±

√√√√sigma
(
|η(1+G)|

)2
< |η(1+G)| >2

+
sigma

(∣∣ηknownC

∣∣)2
<
∣∣ηknownC

∣∣ >2

 . (4.31)

For the second case, the error bar of G in (1 + G)/G should be calculated as shown in

Section 9.2.

∣∣η±R(ηUC = ResBMθOLG)
∣∣ =

∣∣∣∣ η(1+G)

ηknownC ResBMθOLG

∣∣∣∣
(

1±
std
(∣∣1+G

G

∣∣)〈∣∣1+G
G

∣∣〉
)

(4.32)

There are no error bars per se in θY X and θmass, as any error is in e�ect included in θOLG.

As a total error bar, we simply choose the maxima and minima of the four boundary

numbers,

∣∣η+R(total)
∣∣ = max

(∣∣η±R(ηUC = 1)
∣∣ , ∣∣η±R(ηUC = ResBMθOLG)

∣∣)∣∣η−R(total)
∣∣ = min

(∣∣η±R(ηUC = 1)
∣∣ , ∣∣η±R(ηUC = ResBMθOLG)

∣∣) .
For convenience we also de�ne the mean number and the error bar corresponding to the

standard deviation as

< |ηR(total)| > =

∣∣η+R(total)
∣∣+
∣∣η−R(total)

∣∣
2

(4.33)

|ηR(total)| = < |ηR(total)| > ±
∣∣η+R(total)

∣∣− ∣∣η−R(total)
∣∣

2
. (4.34)

One can obtain the phase mean number and the error bar exactly in the same way.

Figure 4.17 shows the response function error |ηR(total)| and angle(ηR(total)) for the
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Figure 4.17: Response function error |ηR| and angle(ηR) except the time delay for L1. Am-
plitude larger than 1 means that the signal calibrated by V2 calibration is smaller than it
should be. Positive phase means that the signal calibrated by V2 calibration is delayed than
it should be. See also Table 10, the time table of all con�gurations used in S6.

last part of S6b. To stay on the safer side, we recommend that the analysis group use

±max(|η+R(total)|, |η−R(total)|) and ±max(|∆φ+
R|, |∆φ

−
R|) as the amplitude and the phase

error. A summary list of the amplitude and the phase error for several frequency bands was

calculated this way.

5 Calibration Factor Error

Due to the fact that only a �nite time integration is used to calculate the calibration factor,

there is always an uncertainty associated with a measurement noise. Since the factor gener-

ation is in the time domain data generation code, and since all analysis groups use the time

domain data, the calibration factor error for frequency domain calibration was not included

in the error budget of this document. However, just for completeness the magnitude of this

noise is described here.

35



10
2

10
3

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2
H1S6a Response Function Error

a
b
s

 

 

c
re

a
te

d
 b

y
 k

n
o
w

n
S

y
s
te

m
a
ti
c
s
 o

n
 1

7
−

N
o
v
−

2
0
1
1
 K

a
w

a
b
e

10
2

10
3

−8

−6

−4

−2

0

2

4

6

8

Hz

d
e
g

(*)wh/dw(1)

total (max and min)

10
2

10
3

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
H1S6b Response Function Error

a
b
s

 

 

c
re

a
te

d
 b

y
 k

n
o
w

n
S

y
s
te

m
a
ti
c
s
 o

n
 1

7
−

N
o
v
−

2
0
1
1
 K

a
w

a
b
e

10
2

10
3

−8

−6

−4

−2

0

2

4

6

8

Hz

d
e
g

wh/dw(1)

wh/dw(2)

(I)(*)wh/dw(3)

total (max and min)

Figure 4.18: Response function error |ηR| and angle(ηR) except the time delay for H1. See
also Table 10, the time table of all con�gurations used in S6.

The calibration factor error was evaluated from the imaginary part of γM which should

be dominated by Gaussian noise. Using the data produced by the time domain calibration

code, one sigma level fractional error was about 0.5%:

γ ∼ γM(1± δηγ) (5.1)

δηγ = 0.5%. (5.2)

Putting the above and γM = ηG = ηC = 1 into Eq.2.1 we obtain

R =
1 + (1± δηγ)GM

(1± δηγ)CM
(5.3)

ηR =
1 + (1± δηγ)GM

(1± δηγ)CM
× 1

RM

. (5.4)

Figures 5.1-5.2 show the uncertainty corresponding to one sigma level errors (i.e. 0.5%)
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Figure 5.1: L1 response uncertainty VS factor uncertainty.

into Eq.5.4. Note that the phase error caused by the factor error becomes small when the

phase angle of GM is close to (n+ 1/2)π where n is an integer.

6 In�ating H1 error for [3000, 4000] Hz band.

Though our error analysis fully incorporates the measured H1 EY actuation anomaly θY

(Fig.4.7), a special cate has to be taken for a frequency band of [3000, 4000] Hz where some

peaks/valleys were observed. Because the frequency resolution of our measurement for θY

is �nite, we cannot guarantee that the measured θY correctly captured the exact peaks and

valleys. Even though this is in the actuation, this could skew our estimate of the response

function via the closed loop response. Since we cannot accurately assess the error at around
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Figure 5.2: H1 response uncertainty VS factor uncertainty.

the true peaks/valleys without any new measurements, we'll give an in�ated error for the

entire band of [3000, 4000] Hz with some very generous assumptions.

Since the observed resonances in Fig.4.7 are with relatively low Q, it seems safe to assume

that true θY cannot be outside of [0.5, 2] range in amplitude. Since we are not attempting

a �ne grained analysis, we ignore the fact that V2 model incoorporates the overall trend of

θY , and simply state that the V2 open loop transfer function model could be in [0.5, 2] range

in amplitude. To stay on a safer side, we also assume that the phase error could be any

number.

Since we know that this is in the actuation, the error in the response function is thus

obtained by

1 + aY e
iφYGM

1 +GM

(6.1)

where aY is the amplitude error of V2 model due to θY and φY is the phase. We calculated

the amplitude and phase of this quantity over aY = [0.5, 2] and φY = [−π,+π] to obtain an
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Figure 6.1: Upper and lower bound of the H1 response function error between 3000 and
4000 Hz assuming that θY for H1 is within [0.5,2] range in amplitude and an arbitrary phase
error, even at the true resonance peaks and valleys.

array of potential errors. Figure 6.1 shows the upper and lower bound of the error. From

this plot, we obtain an in�ated error of 40% in amplitude and 26 degrees in phase.

7 Timing Calibration

Throughout the entire science run, three numbers related to the timing of the sensing have

been measured and tracked. These are the ADC timing error (τADC), the OMC-LSC latency

error (τCPU), and the time part of the whitening/dewhitening mismatch (τwh). The timing

error of the calibrated data of LIGO instruments is represented by the sum of these and an
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Figure 7.1: Timing error of L1 (left) and H1 (right) for the entire S6. The timing error itself
is derived from the known systematic in the sensing, but the error bar is set by two di�erent
techniques. Blue and red traces represent the error bars obtained from the coil calibration
line and the OLG. Though the OLG data provides more accurate measure of the true timing
than the calibration line data, tha latter is calculated for all science segments.

error bar:

τV 2 = τADC + τCPU + τwh + δτ+V 2 − δτ
−
V 2. (7.1)

Sign convention is such that a positive number means the true sensing function is delayed

from the V2 model, i.e. the calibrated V2 data should be advanced to match the physical

strain.

We have four sets of measurements that can be used for verifying the above timing and for

de�ning the error bar, i.e. the latency mismatch measured by the OLG, the phase mismatch

constantly monitored by the coil calibration line at around 1.1 kHz, the phase mismatch

constantly monitored by the photon calibrator at around 400 Hz and the phase mismatch

measured by the photon calibrator at around 100 Hz.
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The latency mismatch measured by the OLG (4.1.9), τG, doesn't include any phase

systematics that is not proportional to the frequency, because the OLG is measured at many

frequency points between 40 and 5000 Hz, against which a linear phase �t is applied to get

τG. The latency residual of an unknown origin is de�ned by

τunknownG = τG + τADC + τCPU + τwh − τM (7.2)

where τM is the actuation delay of unknown origin in the model. Take extra care of the sign

convention here: Positive τG means a smaller delay (or a time advancement) in the actual

servo than the model, ditto for τM , while positive τADC , τCPU and τwh means a larger delay.

This latency residual is closely related to the timing error bar. If this is in the sensing, the

LIGO timing is systematically o� by the same amount. Even though it most likely originates

in the timing systematic in the actuation, we cannot prove it as the S/N of the actuation

timing monitor circuit was not good enough to draw any meaningful data.

Though the OLG latency mismatch gives the true measure of latency, only a limited

set of OLG measurements is available (24 measurements for L1 and 26 for H1 over the

entire S6). However, we have been continuously monitoring the calibration line at about

1.1 kHz, and we can use this data in a similar manner as the OLG. Even though a single

frequency measurement means that it includes both the latency mismatch as well as the

phase systematic that is not proportional to the frequency, we can still use it as a conservative

measure of the latency error. We have measured the calibration line for a few minutes per all

version 4 science segments, and obtained the following unknown residual per each segment

τunknowncoil = τcoil + τADC + τCPU + τwh − τM (7.3)

where τcoil is the equivalent latency mismatch obtained from the measurement at the cali-

bration line frequency.

Since τunknownG was about 2 µs in late S6 where we checked the actuation timing in both L1

41



and H1, we claim that our error in the timing cannot be smaller than 2 µs. As a conservative

measure, we took the largert and smallest number possible for the timing error bar as follows:

δτ+V 2 = max(2µs, τunknownG ) or max(2µs, τunknowncoil ) (7.4)

δτ−V 2 = min(−2µs, τunknownG ) or min(−2µs, τunknowncoil ). (7.5)

Figure 7.1 shows the timing error represented by Equations 7.1, 7.4 and 7.5. Based on this

analysis, a timing error was determined to be [−10, 45] µs for L1 and [0, 30] µs for H1. A

calibration data �ag is going to be made [3,4] using the following criteria:

• Timing error threshold is [−10, 45] µs for L1 and [0, 30] µs for H1.

• Any science segment is �agged if τV 2 is out of the above threshold.

• Even if τV 2 doesn't exceed the threshold, the science segment is still �agged if the error

bar width δτ+V 2 − δτ
−
V 2 is larger than the width of the threshold.

There are two phase systematic measurements using the photon calibrator. One was done

by monitoring the lines constantly injected by the photon calibrator at around 400 Hz, the

data of which was available for the entire S6 [5,6]. The other used two lines at about 110 Hz

separated by 1 Hz that was temporarily injected out of the science time [7]. Being basically

single frequency measurements, just like coil calibration line measurement at 1.1 kHz these

cannot separate the timing from other phase systematics, but they are extremely useful

as the photon calibrator was the only method in S6 that measured the response of LIGO

instruments independently of the coil actuators. Both of these measurements agreed well

with the timing and phase error budget of S6.

For example, two of the 110 Hz measurements for L1 claimed about 100 µs or 4 degrees

of delay in the calibrated h(t) data in July and October 2010, or 376 and 459 days from the

start of S6. On the other hand, at the time of these measurements, the L1 timing delay was

about 24 µs with the errorbar smaller than 10 µs according to Figure 7.1, which is equivalent

of 1 degree with an error bar smaller than 0.5 degrees at 100 Hz. Both of the measurements
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Error Origin L1 H1

Frequency dependence of A <2%, 0.6 degrees <1.5%, 0.7 degrees
the actuation electronics

Optical spring A and C <1% at 40Hz, becomes smaller by 1/f 2

Drumhead notch A and C <0.1%, 0.1 degrees <0.12%, 0.7 degrees
Violin2 notch for L1 A <1% 0.5 degrees none

except [600 800] Hz

Table 9: Errors not explicitly put in the error budget. Violin notch refers to an out-of-
con�guration operation of L1 that a�ected a small number of science segments that were
�agged. Note that the combined e�ect of all of these except Violing2 should be consistent
with the unknown part of OLG residual plus the error in the OLG.

were done when the L1 con�guration corresponded to the third S6b con�guration in the error

budget plot (Figure 4.17 right, magenta traces), which gives about 3.5±1.5 degrees of phase

delay at 110Hz. Note that the sign convention in the error budget plot is that the positive

phase means that the LIGO calibrated data is delayed. Therefore LIGO error budget gives

3.5 + 1± 1.5 = 4.5± 1.5 degrees. The agreement with the photon calibrator measurement is

very good.

8 Systematics Not Explicitly Put in the Error Budget

All known systematics that were not explicitly put into the error budget analysis are discussed

here. Table 9 shows the errors and their magnitude. The fact that these were not put into the

error budget does not mean that the e�ect of these are ignored. Quite contrary, the combined

e�ect of these are indirectly put into the error budget analysis via unknown part of OLG

residual and the OLG error. There is only one systematic that is not entirely negligible

(frequency dependence of the actuation electronics), and we'll see if this is consistent with

the unknown part of the OLG residual.

8.1 Actuation Electronics Frequency Dependence

Frequency dependence of the actuation electronics was measured using a coil current monitor,

and is shown in Fig.8.1. Though this is not explicitly put into the error budget, this is
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Figure 8.1: Actuation electronics frequency dependence.

consistent with the unknown OLG mismatch (see Fig.4.14). We can safely say that this is

correctly taken care of by ResUMθOLG.

8.2 Optical Spring Due To Radiation Pressure

Radiation pressure exerted on the test masses by the light circulating in the arm cavities is

the function of the length of the arms. Depending on the deviation from the exact resonance,

the radiation pressure can work like a normal spring (when the length is longer than the

exact resonance) or a negative spring (shorter). In eLIGO interferometers, since both of the

arms have o�set from the resonance point, but with opposite signs, one arm has positive

optical spring making the pendular resonance "sti�er", and the other arm becomes "softer"

(or unstable depending on the amplitude of the optical spring) with negative spring.

This only a�ects the calibration of the actuation chain at lower frequency. For eLIGO

calibration band of [40, 5000] Hz, both a �rst-principle calculation and a comparison of open

loop transfer function measurements at two di�erent laser power levels show that this is
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Figure 8.2: Drumhead notch e�ect for L1, which is very small and is safely ignored in the
error analysis. Blue trace shows the �lter itself, while red shows the DARM response function
ratio of �EX notch o�� over �both on�.

negligible[8].

8.3 Drumhead notch

For S6b, a new OMC alignment method was developed that necessitates to turn o� all notch

�lters for ETMX that suppresses the drumhead mode at 9kHz. For L1, this only means

that one notch �lter in ETMX (named �Drumhead�) is turned o�, while for H1 both ETMX

(�TMnotch�) and OMC (�HumDrum9k�) notch �lters are turned o�.

Whether or not to use this new alignment method was left for the operators/SciMons

depending on the behavior of the IFOs, and therefore both of the con�gurations (�Drumhead

ON� and �Drumhead OFF� for L1, �TMnotch and HumDrum9k ON� and �TMnotch and

HumDrum9k OFF�) are considered normal.

As shown in Figs.8.2 and 8.3, the di�erence between �drumhead on� and �o�� is so small

that these con�gurations can be practically considered identical.
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Figure 8.3: Drumhead notch e�ect for H1. This is safely ignored in the error analysis.

8.4 Violin2 Notch for L1 ETMX

The notch �lter for the second violin mode resonance for L1 ETMX, which is supposed to

be always on, was turned o� for relatively small number of science segments within a period

of about two weeks between Mar/24/2010 and Apr/8/2010. The segments a�ected were

�agged as L1:DCH-ETMX_VIOLIN2OFF:1.

The calibration is not a�ected except a narrow band between 600 and 800 Hz as shown

by the red trace in 8.4. Analysis groups should judge by themselves if their analyses are

vulnerable to this.
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Figure 8.4: L1 EX violin2 �lter e�ect. Red trace shows how the response function is altered
when this �lter is mistakenly disabled. Only a small number of segments were found to be
with this con�guration, and were �agged as L1:DCH-ETMX_VIOLIN2OFF:1.

9 Appendix

9.1 Propagation of OLG Error to CLG Error

Suppose that we have a measurement of an arbitrary transfer function G with an amplitude

error bar and the phase error bar:

|G| = G0 ± δa (9.1)

δa ≡ std(|G|) (9.2)

∠G = ψ0 ± δψ (9.3)

δψ ≡ std(∠G) (9.4)

where G0 and ψ0 are the mean amplitude and the phase, while δa and δψ are the standard

deviation of the amplitude and the phase. We want to propagate δa and δψ to the error of

CLG = 1 +G. Figure 9.1 left shows CLG and G in a measurement coordinate system where
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Figure 9.1: Open loop transfer function G (blue) and closed loop transfer function 1 + G
(red). The elliptical blob shows the error distribution. The mean of 1 +G is centered at the
origin of a new coordinate (X, Y ) (right).

x and y are the real and imaginary part, respectively.

The calculation becomes simpler when you move to a coordinate system (X, Y ) in which

the error blob is centered at the origin and the mean of G is a real number (Figure 9.1 left).

G = G0 +X + iY (9.5)

std(X) = δa (9.6)

∠G = atan

(
Y

G0 +X

)
(9.7)

std(∠G) = δψ

∼ std

(
Y

G0 +X

)
∼ std(Y )/G0. (9.8)
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CLG is written by

CLG = G0 +X + cosψ0 + i(Y − sinψ0) (9.9)

|CLG| ∼
√
G2

0 + 2G0 cosψ0 + 1

[
1 +

X(G0 + cosψ0)− Y sinψ0

G2
0 + 2G0 cosψ0 + 1

]
= | < CLG > |+X cos ε− Y sin ε (9.10)

| < CLG > | =
√
G2

0 + 2G0 cosψ0 + 1 (9.11)

tan ε ≡ sinψ0

G0 + cosψ0

(9.12)

∠CLG = atan
Y − sinψ0

G0 + cosψ0 +X

∼ atan

[
−(1− X

G0 + cosψ0

− Y

sinψ0

)× sinψ0

G0 + cosψ0

]
= −atan

[
(1− X

| < CLG > | cos ε
− Y

| < CLG > | sin ε
) tan ε

]
∼ −ε− cos ε sin ε

[
− X

| < CLG > | cos ε
− Y

| < CLG > | sin ε

]
= −ε+

1

| < CLG > |
(X sin ε+ Y cos ε). (9.13)

Using Eqs. 9.1-9.13, the standard deviation of the amplitude and phase of CLG is written

by

std(|CLG|) =
√

(δa cos ε)2 + (G0δψ sin ε)2

=

√
std2(|G|) cos2 ε+ < |G| >2 std2(∠G) sin2 ε (9.14)

std(∠CLG) =

√
std2(|G|) sin2 ε+ < |G| >2 std2(∠G) cos2 ε

| < CLG > |
. (9.15)

If G is written by

G = GM |θOLG| exp i(2πfτG + ∆φOLG), (9.16)
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we can put the following into Eqs.9.14 and 9.15

< |G| > = |GM | < |θOLG| > (9.17)

std(|G|) = |GM |std(|θOLG|) (9.18)

std(∠G) = std(∆φOLG) (9.19)

(note that GM and τG are not statistical variables) to obtain the closed loop gain errors in

Eqs.4.24 and 4.25:

std(|η1+G|) = std

(
|1 +G|
|1 +GM |

)
=
|GM |

√
std2(|θOLG|) cos2 ε+ < |θOLG| >2 std2(∆φOLG) sin2 ε

|1 +GM |
(9.20)

std

(
∠

1 +G

1 +GM

)
= std (∠(1 +G)) (9.21)

=
|GM |

√
std2(|θOLG|) sin2 ε+ < |θOLG| >2 std2(∆φOLG) cos2 ε

|< 1 +GM |θOLG| exp i(2πfτG + ∆φOLG) >|
(9.22)

∼ |GM |
√
std2(|θOLG|) sin2 ε+ < |θOLG| >2 std2(∆φOLG) cos2 ε

|1 +GM < |θOLG| > exp i(2πfτG+ < ∆φOLG >)|
(9.23)

9.2 Adding CLG Error and Sensing Error Coherently

As was described in 4.4, there is a case where we need to assume that the error bar in the

sensing and the closed loop response are 100% positively correlated. An

error bar of a quantity de�ned by (1 + G)/G = 1 + 1/G needs to be calculated. Using

the same notation as 9.5-9.8, absolute value and phase of 1/G are represented by

〈∣∣∣∣ 1

G

∣∣∣∣〉 =
1

G0

(9.24)

std

(∣∣∣∣ 1

G

∣∣∣∣) =
std(|G|)
G2

0

(9.25)〈
∠

1

G

〉
= −ψ0 (9.26)

std

(
∠

1

G

)
= std (∠G) . (9.27)
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Substituting all quantities related to G with the ones related to 1/G in Eqs.9.14 and 9.15,

and using Eqs.9.24-9.27, we obtain the following:

tanκ ≡ − sinψ0

1/G0 + cosψ0

(9.28)

std

(∣∣∣∣1 +
1

G

∣∣∣∣) =

√
std2

(∣∣∣∣ 1

G

∣∣∣∣) cos2 κ+

〈∣∣∣∣ 1

G

∣∣∣∣〉2

std2
(
∠

1

G

)
sin2 κ

=

√
std2 (|G|) cos2 κ+G2

0std
2 (∠G) sin2 κ

G2
0

(9.29)

std

(
∠(1 +

1

G
)

)
=

√
std2 (|G|) sin2 κ+G2

0std
2 (∠G) cos2 κ

G2
0 |< 1 + 1/G >|

. (9.30)

9.3 List of Con�gurations in S6

In S6, due to various reasons we have multiple con�gurations for the sensing hardware

and/or software in a single calibration epoch. Table 10 shows the gps time each of these

con�gurations was used.

9.4 Blind Injection

At GPS time 968654558, a hardware injection was performed on L1, H1 and Virgo instrument

at the same time without the knowledge of the LIGO and Virgo personels except a few. This

�blind� injection event was handled as a real astronomical event candidate until the blind

injection committee revealed the nature of the event.

Using the systematics obtained from the hardware con�gurations and the latency mis-

match of −13.3µs for L1 and −1.6µs for H1 that were measured both before and after the

event, it's possible to do a �ner grained analysis for the calibration of this event. Figure 9.2

shows the frequency dependent part of the error for both L1 and H1. There are two things

to note.

First, the error bar of the calibration systematic is very small compared to the entire run.

Note that the code discards some errors (most notably the statistical measurement error for

the estimate of Gamma systematic that is up to about 1%) and therefore the actual error
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S6a S6b IFO
L1 S6a wh/dw 1: L1 S6b wh/dw 1 (*):
[931071407, 931219000] [939020344, 957229000]

[957247016, 957567100]
L1 S6a wh/dw 2 (*): L1 S6b wh/dw 2:
[931219808, 937984100] [957229340, 957246400]
L1 S6a wh/dw 3: L1 S6b wh/dw 3 (I):
[937984783, 938316000] [957567771, 968092000] L1
[938370827, end of S6a] [968261889, 968411200]

[968436964, end of S6b]
L1 S6a wh/dw 4: L1 S6b wh/dw 4:
[938316290, 938370200] [968092571, 968261300]

L1 S6b wh/dw 5:
[968411871, 968436300]

H1 S6a wh/dw 1: H1 S6b wh/dw 1:
[931052708, end of S6a] [948444884, 948539900]

H1 S6b wh/dw 2:
[961827382, 961835000] H1
H1 S6b wh/dw 3 (*)(I):
[942440116, 948444200]
[948540482, 961826800]
[961835601, end of S6b]

Table 10: Table of gps time per each con�guration. Nominally correct con�guration and
blind injection are indicated as (*) and (I). Two GPS time in a bracket means that any
science segments in this speci�c range belongs to the con�guration shown in the left column.
Sometimes there are more than one ranges for one con�guration.

bar is as large as 1 or 2 %, but this is already very good.

Second, the systematic error is signi�cantly larger in L1 than in H1, and L1 error budget

is not compatible with what was originally reported to the LVC detection committee. One

of the two reasons for this is that the S6b whitening/dewhitening con�guration information,

which was originally obtained by manually searching through the �lter archive, was incorrect,

which made us underestimate the systematic by up to 4% depending on the frequency. This

was �xed after we implemented a script to automatically search for any changes in the �lter

archive. A greater impact, though, came from the fact that the e�ect of Gamma systematic

(as opposed to the Gamma error due to the measurement noise) was not originally taken

into account. Because L1 was not in the nominally correct S6b con�guration, our estimate

of Gamma factor was about 4% larger systematically than it should be, and this is ampli�ed
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Figure 9.2: Calibration error of LIGO instruments at GPS time 968654558.

by up to about a factor of 2 (i.e. 8 to 9 %) due to the closed loop response of the control loop

between 200 and 400 Hz. The overall error of L1 was dominated by the 15% scaling error

bar originally, but now we know that the frequency dependent systematic of about 12% at

around 270 Hz is comparable to the scaling error bar. Impact of Gamma factor systematic

on H1 is not as large as L1, since H1 was running in a nominally correct S6b con�guration.

In addition, a closer look at the timing plot (Figure 7.1) shows that L1 and H1 response

function was 24.5 µs and 10.0 µs delayed relative to the physical strain for this event, with

about 2 µs uncertainty.
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Figure 9.3: Blind injection calibration that was originally reported to the LVC detection com-
mittee. L1 data is not compatible with the latest error estimate for GPS time of 968654558
(Figure 9.2) any more.

IFO V2 OLG V2 ADC delay OMC-LSC Whitening Residual
latency error ad-hoc delay latency error delay

L1 τG =-13.3 µs τM =9.0 µs τADC =17.3 µs τCPU = 0 τwh =7.2 µs +2.2 µs
H1 τG =-1.6 µs τM =10.1 µs τADC =1.2 µs τCPU = 0 τwh =8.8 µs -1.7 µs

Table 11: Timing budget using the last three (L1) or four (H1) measurements of OLG
corresponding to the last part of the second calibration epoch starting 14/Sep/2010. Residual
represents the truly unknown systematic, and is obtained by τG − τM + τADC + τCPU + τwh.
The sensing delay that is not accounted for in the V2 model is equal to the delay of the
calibrated frequency domain strain signal, and is represented by τADC + τCPU + τwh (24.5 µs
for L1 and 10.0 µs for H1, a positive number means the response function has an additional
delay).
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