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Sensitivity Goal for LIGO 2
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Total noise for LIGO 1       

Extend the range by 10
   for NS-NS inspirals
improve event rate by 1000.

Open up the bandwidth
   to 10 Hz to see new events,
   such as merger of 10 - 30
   solar mass black holes.

As a result,
at 10 Hz we demand that the test mass motion
have equal contributions from

ÒintrinsicÓ thermal noise of 10-19 meters/ÃHz &
ground motion of 10-9 meters/ÃHz
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Functional Description of the System

Mass-spring four-layer 
isolation stack

Single-pendulum test mass 
suspension

Two-layer active noise 
reduction platform

Quad-pendulum test mass 
suspension

6-DOF, 0 Hz BW coarse 
actuation system

1-DOF, 5 Hz BW Fine 
actuation system

6-DOF, 0 Hz BW coarse 
actuation adjustment in 
hydraulic system

6-DOF, 2 Hz BW Hydraulic 
fine actuation system

LIGO-I Subsystem LIGO-II Subsystem

Minimize thermal noise, 
passively isolate test mass

GW band isolation,
(LIGO-II: RMS motion reduction)

Feedback/ feedforward 
compensation of earthtides 
and microseismic motion

Coarse alignment during 
installation and occasional 
drift correction

~10-6 m rms,
~10-9 m/ÃHz at 10 Hz

~10-7 m rms,
~10-9 m/ÃHz

10-8 m rms,
10-13 m/ÃHz

10-14 m rms,
10-19 m/ÃHz

Brian Lantz
These numbers are no longer accuratePlease refer to the Advanced LIGO Seismic Isolation System Conceptual Design (LIGO-E010016-00-D) and theLIGO II SEI Design Requirements Review(LIGO-G010017-00-D) 
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Stanford is Addressing Four Parts
of Isolation and Alignment System

¥ External Hydraulics - Corwin

¥ Design questions for active platforms

¥ Modeling of active platforms

¥ Design of Advanced LIGO isolation and
alignment system
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Active Isolation
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Suspended platform with inertial sensor
Feedback loop is used to add active isolation based on sensor
Decouples low frequency sensor from stiff platform
Used at JILA to achieve >=70dB isolation above 1Hz
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Geometry of our 6 DOF platforms

Consider,

¥Triangular platform.

¥ Compliant attachment to
support structure.

¥Instrument each corner
with 2 DOF controls for
vertical and tangential
directions.
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View of a
2 DOF corner

Hung with springs at 7 Hz
from support structure

Each corner has vertical
and tangential control

Sensors for both
   inertial motion and
   relative displacement

Collocated actuators
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Single Layer Platform
with Pendulums

¥ Demonstrate 6 DOF active platform
with collocated sensors and
actuators.

¥ Demonstrate sensor blending.

¥ Validate computer model used to
design LIGO system.

¥ Demonstrate sensor correction to
reduce ground motion.

¥ Demonstrate reliable operation of
stiff platform and pendulum working
together.
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The Single Layer Platform
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Results from Single Layer Platform

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

System Transmission

Data from Nov 5
Generated by nov_performance1.m

open loop                   
closed loop prediction      
closed loop measured        
sensor correction prediction
sensor correction measured  

Frequency (Hz)

T
ra

ns
m

is
si

on
 A

m
pl

itu
de



Brian Lantz, Feb  2000, page 11

Pendulum Interactions
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Simulink Model Diagram

Requires the excution of the m-file mkModel

Run tests with the m-file runModel

Wensheng Hua, Brian Lantz, Sam Richman 
Feb 2000

BSC isolation model - 2 Active stages

1

Out3

Cont2

stage 2 controller

Cont1

stage 1 controller

output order

no input1

no input

input order

Term 1

stage2 sensor s stage2 supersensors

Stage 2 super sensors

Stage 2 sensor defs

ground position

Stage positions

Sensor Noise

Sensor Out

Stage 2 sensor

stage1 sensor s stage1 supersensors

Stage 1 super sensors

ground position

Stage positions

Sensor Noise

Sensor Out

Stage 1 sensors

Stage 1 sensor defs

Mux

Mux

ground position in

ground force in

stage force in

ground  force out

ground position out

stage positions

Mechanical Model

-1

Gain

Actuator Input

Actuator Noise

ground force

stage force

Actuators

1

In1

6 6

12

12
12

12
21
21

6
6

6

12

12

6

6
21

21

6
6

6

6

6

6

12
12

12

12
6

6

6

6

12

12

12
12

12
12

2

In 2

Model used to simulate the dynamics of the reference design.
The controller can be cross-compiled onto dSPACE hardware and used on the real system. 
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Model Construction

1) A set of test inputs and outputs.

2) A mechanical model of the two stage system

3) A set of sensors which are distributed on the outer stage

4) Filters which blend the outer stage sensors into six Òsuper-sensorsÓ

5) A set of sensors which are distributed on the inner stage

6) Filters which blend the inner stage sensors into six Òsuper-sensorsÓ

7) A set of actuators between the outer stage and the ground

8) A set of actuators between the inner stage and the outer stage

9) A set of 12 SISO control laws which connect the 12 actuators to the 12 super-sensors
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Model of Rapid Prototype
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Predicted Motion of Optics Table
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Next Step:
Two Stage Prototype
for Advanced LIGO

¥ Prototype for the HAM chamber system,
to be installed in vacuum at the Stanford ETF.

¥ Same sensors, similar actuators as the Advanced LIGO system.

¥ Same dynamics as the Advanced LIGO system.

¥ Centers of mass of two stages at the same location.

¥ Sensors and actuators well aligned.

¥ How well does it work? Feed design information to the
Pathfinder design at LASTI.
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Views of the
Prototype

inner stage
(table top removed)

inner stage with outer stage
and supports

assembled system
with table top
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Prototype installed in the
ETF vacuum system

Ideal Facility for
Engineering Prototype

¥ Easy access to system

¥ Modest requirements
for vacuum components

RFQ on the way to
contractors

Install in ~4 months

2 sets of data to
the LASTI Pathfinder
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Sketch of Active System in HAM Tank
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View of the Tanks
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1 DOF Model

+

ground

+ force
plant

ground

spring

actuator

displacement
sensor

feedback
geophone

+

geophone
filter

displacement
filter

ground
sensor

compensation
filter

platform motion

controller

feedforward

+


