Linear Dynamic Model for Advanced LIGO Isolation System

Wensheng Hua, Brain Lantz, Dan Debra, Jonathan How, Corwin Hardham, Sam Richman, Rana Adhikari, Richard Mittleman

LIGO-G010135-00-Z

Aim of modeling

- Help to understand the dynamics of the system.
- Help to control the system.
- Help to design future system.

What are we trying to model?

•LIGO suspension system is a complicated nonlinear dynamic mass spring system.

•We need to build a linear model of it in full degrees of freedom.

Stanford Active Platform with Pendulums

Two stage active platform in the BSC

Double Stage Prototype

Elements of the systems.

- Stages (Masses)
- Springs
- Sensors
- Actuators

Big picture of the model

General Form of a Dynamic Model $\dot{X}=AX+Bu$ Y=CX+Du

Matrix A for a Suspension System

$$X = \begin{bmatrix} d \\ V \end{bmatrix} \quad \stackrel{\bullet}{X} = AX$$
$$A = \begin{bmatrix} 0 & I \\ I \\ M & K & M & D \end{bmatrix}$$

v = da = vF = MaF = Kd + Dv $a = M^{-1}Kd + M^{-1}Dv$

 $\begin{bmatrix} \dot{d} \\ \dot{V} \end{bmatrix} = \begin{pmatrix} 0 & I \\ \bar{N}^{1}K & \bar{N}^{1}D \end{pmatrix} \begin{pmatrix} d \\ V \end{bmatrix}$ K: reaction force matrix D: Damping force matrix

M: mass/inertia matrix

Stiffness Matrix K

- The stiffness matrix is defined as the reaction forces and torques on stages due to small movement of the stages around equilibrium positions.
- In small range of motion, the changes of reaction forces and torques are linear to the perturbations of the positions of stages.

3 Steps of making stiffness matrix K

- Convert Stage motion into relative motion of two ends of springs around equilibrium positions.
- Calculate each spring's reaction force and torque.
- Sum up forces and torques from all springs on stages.

Example: Simple Wire Spring

Example: Loaded Blade

Reason

Some features of the model

- The principle is simply based on F=Kx and F=Ma.
- To linearize each spring is simpler than to linearizie the whole system at ones.
- Make use of Simulink and toolboxes in Matlab.

Model constructor

- There are many systems to be modeled.
- There are many different types of springs, actuators and sensors in the system.
 - Springs: Stretchable Wire, Blade, more general spring.
 - Sensors: Optical Sensor, Geophone.
 - Actuators: Voice coil.
- For each system, we only need to feed its geometry and physical information to the model constructor.
- The information should be in the form of defined data structures.
 - Stage, spring, actuator, sensor, control law.

Product line of modeling

Tilt horizontal coupling

Predicted Motion of Optics Table

Simulink Model Diagram

Model used to simulate the dynamics of the reference design.

The controller can be cross-compiled onto dSPACE hardware and used on the real system.

Conclusion

- A linear dynamic model of advanced LIGO isolation system directly based on very simple physics principles.
- This model is used to analysis the dynamics of several prototype systems and to design control laws for them.
- This model is also used to design future LIGO isolation systems. Based on our experience, we feel confident of the predictions which the model made.