Results from the Stanford 10m all-reflective polarization Sagnac interferometer

Peter Beyersdorf TAMA300

peter.beyersdorf@nao.ac.jp

R.L. Byer M.M. Fejer S. Traeger

The Stanford 10m Sagnac interferometer

- Description of the interferometer
 - Delay line Sagnac interferometer
 - uncontrolled suspended optics
 - no transmissive optics
- Results
 - stable operation without active control
 - shot noise limited sensitivity at 1kHz

Q: Why the delay line Sagnac interferometer?

A: It is well suited to handle the high circulating power necessary for LIGO III

Allows the use of all-reflective optics
Beams travel a common path

Simple control scheme
robust operation in the presence of (dynamic)
thermal effects

LIGO III thermal distortion limited sensitivity

Stability requires $\Delta \zeta < \frac{\omega_{max}^2}{2R_{max}}$

Design elements of the 10m prototype

Straw-man design

- All reflective optics
 - grating beamsplitter
 - delay lines for energy storage

Stanford's 2m Sagnac interferometer

- Polarization control for operation on the symmetrical port of the beamsplitter
 - Polarizing beamsplitter
 - half-wave plate for polarization rotation

Reflective Waveplates

periscope

A periscope can rotate the spatial profile of a beam, thereby rotating the polarization

dielectric mirror

A dielectric mirror can introduce a phase shift between the s and p polarization components of a beam, thereby rotating the polarization

The Grating Beamsplitter

A transmissive beamsplitter and a grating are 4 port devices that are functionally equivalent

$$S_{bs} = \begin{bmatrix} 0 & r & it & 0 \\ r & 0 & 0 & it \\ it & 0 & 0 & r \\ 0 & it & r & 0 \end{bmatrix} \qquad S_{gr} = \begin{bmatrix} 0 & r & \eta & 0 \\ r & 0 & 0 & \eta \\ \eta & 0 & 0 & r \\ 0 & \eta & r & 0 \end{bmatrix}$$

A grating has the undesirable effect of converting laser frequency noise to pointing noise and distorting the spatial profile of the diffracted beam. These effects can be compensated for:

Eliminating noise from scattered light

Any noise from scattered light with a delay, t_{sc} , much less than the modulation period, T, will be shifted

The Stanford all-reflective 10m delay-line Sagnac prototype

The 6" silicon delay-line mirrors

6 inch diameter (1 inch thick) silicon substrates, coated and polished cost \$7,000 from General Optics. Only 15% more than fused silica

Motion of suspended mirrors

100 kHz signal and noise floor of modulated output

Frequency (MHz) - 96 MHz

Noise Floor of Demodulated Output

Facts of Interest

- Long term stability ~ 5 days
- Average time to realign ~2 minutes
- Vacuum Pressure <10⁻⁶ torr
- Time to cycle vacuum system ~6 hours
- Fringe contrast 42 dB
- Clipping factor 2.5
- Peak of frequency Response 217 kHz
- Circulating Power 150 mW
- Local Oscillator power 2mW

State of the Sagnac research

- The delay-line polarization Sagnac interferometer with a laser frequency chirp addresses the challenges of detection on the dark fringe and tuning to low frequencies
- The robustness of the design has been demonstrated on a 10m suspended interferometer
- The development of a high-powered green laser is necessary for implementation in LIGO III

Conclusion

- The Stanford 10m Sagnac interferometer was operated for many days at a time without active control of the optics.
- The scattered light noise was frequency shifted by using a laser frequency chirp so that shot-noise-limited operation was possible at 1 KHz.
- Phase sensitivity of 2•10⁻⁹ rad/Hz^{1/2} at 1 kHz was possible despite 50 micron motion of delay line mirrors at 1 Hz.