Angular Fluctuations

Biplab Bhawal (LIGO-Caltech), Gabriela González (Penn State),
Dave Ottaway (LIGO-Hanford), Tiffany Summerscales (Penn State)

March 15, 2001

Presenter: Tiffany Summerscales

Detector Characterization Session

LIGO-G010092-00-Z

Goals

- Estimate the angular motion in the mirrors
- Analyze the influence of the control signals fed back to the mirrors in the angular motion of those mirrors
- Analyze the effect of mirror angular motion in the interferometer performance

E2 Channels Used

- BS, ETMX, ETMY, ITMX, ITMY, FMX, FMY
- Optical Levers (Pitch Yaw)
- Local Sensors (LL, LR, UL, UR, Side)

Problems:

- Some Optical Levers had lower hardware sampling rates (ETMs, BS, FMs) than the data acquisition sampling rate.
- Antialiasing Filters not set for 256 Hz Local Sensor sampling rate. (However, ETMX, BS, and FMs accidentally sampled at 2048 Hz)
- ETMX Optical Lever pitch and yaw are switched
- ETMY LL sensor was dead
- ITM Optical Lever signals were not properly saved for recombined times and null when arm was unlocked.
- •Moral: we need to check for the status of signals before the data is acquired! (we did this for E3).

ETMX

RMS Pitch

Y-arm = $0.5 \mu rad$

X-arm = 1.1 μ rad

 $recomb = 1.6 \mu rad$

RMS Yaw

Y-arm = $0.37 \mu rad$

X-arm = 0.48 μ rad

 $recomb = 0.77 \mu rad$

ITMY

Recombined Interferometer, ITMY Optical Lever Pitch, 14/11/2000 08:13:34 and 15:32:00

ITMX

Yaw:

$$(f/0.6Hz)^2$$

Pitch:

 $\theta = Mirror \ pitch \ x = Mirror \ Translation \ X = Frame \ Translation$

$$\frac{\theta}{X} = \frac{\omega^2/g}{(1 + (\frac{f}{f_{\theta}})^2)(1 + (\frac{f}{f_x})^2)} \qquad \frac{x}{X} = \frac{1}{(1 + (\frac{f}{f_x})^2)}$$

 M_x = position monitor = x-X

$$x = M_x \left(\frac{f}{f_\theta}\right)^2 \qquad \theta = \frac{M_x \left(\frac{\omega^2}{g}\right)}{\left(1 + \left(\frac{f}{f_\theta}\right)^2\right)}$$

ITMX

Mirror motion and detector performance

Conclusions

- Angular Motion is on the order of about 1 μ rad in pitch and tenths to one μ rad for yaw
- Control signal feedback tends to increase angular motion by a factor of ~ 2 .
- Angular Motion is coherent with CARM: the mirrors are moved in angle due to forces cross-coupled into torques.