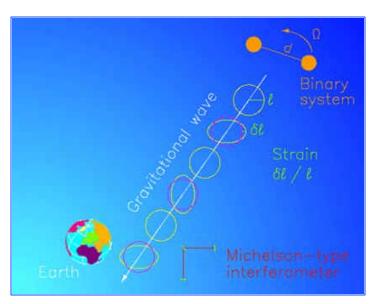
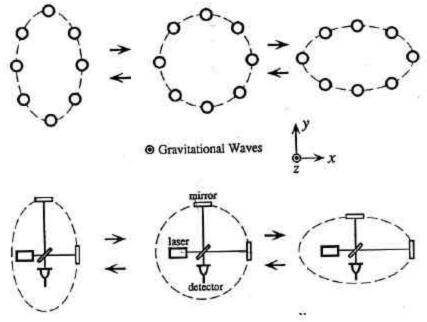


LIGO Introduction

Barry Barish

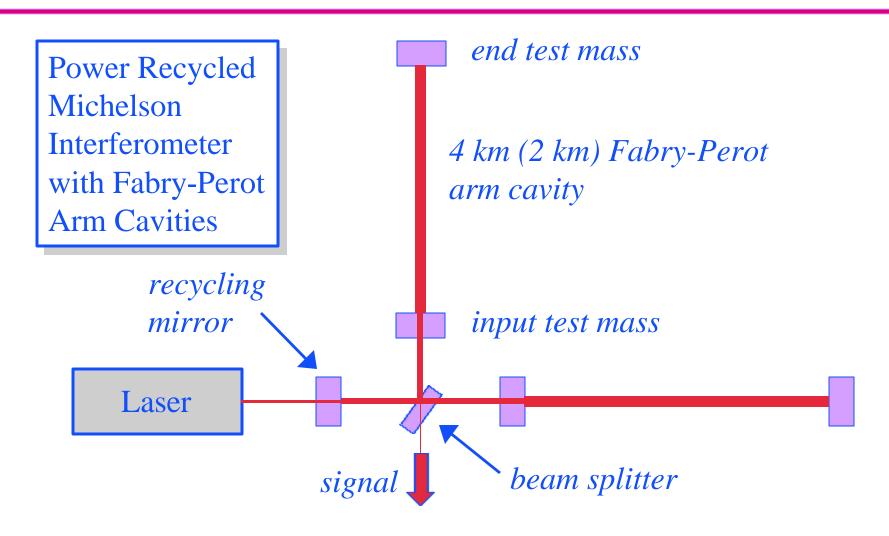
Operations Proposal Review NSF Operations Subpanel February 26, 2001



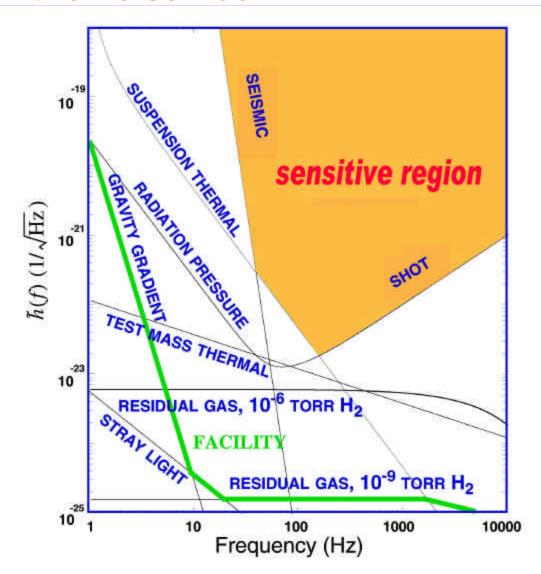

Interferometers

terrestrial

Suspended mass Michelson-type interferometers on earth's surface detect distant astrophysical sources


International network (LIGO, Virgo, GEO, TAMA) enable locating sources and decomposing polarization of gravitational waves.

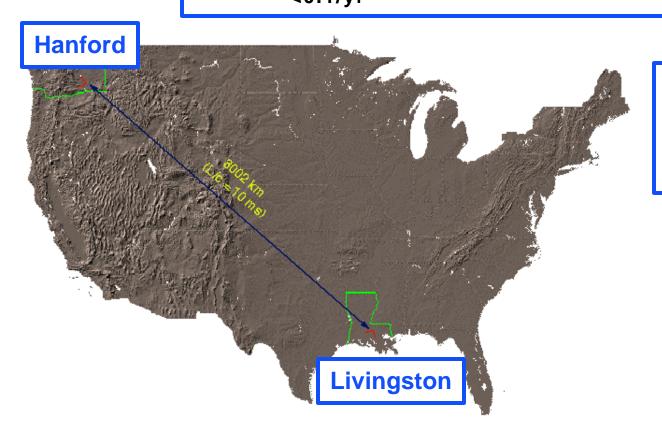
LIGO Interferometers



LIGO I

the noise floor

- Interferometry is limited by three fundamental noise sources
 - > <u>seismic noise</u> at the lowest frequencies
 - thermal noise at intermediate frequencies
 - shot noise at high frequencies
- •Many other noise sources lurk underneath and must be controlled as the instrument is improved



■Two Sites - Three Interferometers

»Single Interferometer non-gaussian level ~50/hr

»Hanford (Doubles) correlated rate (x1000)
~1/day

»Hanford + Livingston uncorrelated (x5000)
<0.1/yr</pre>

Coincidences between LLO & LHO

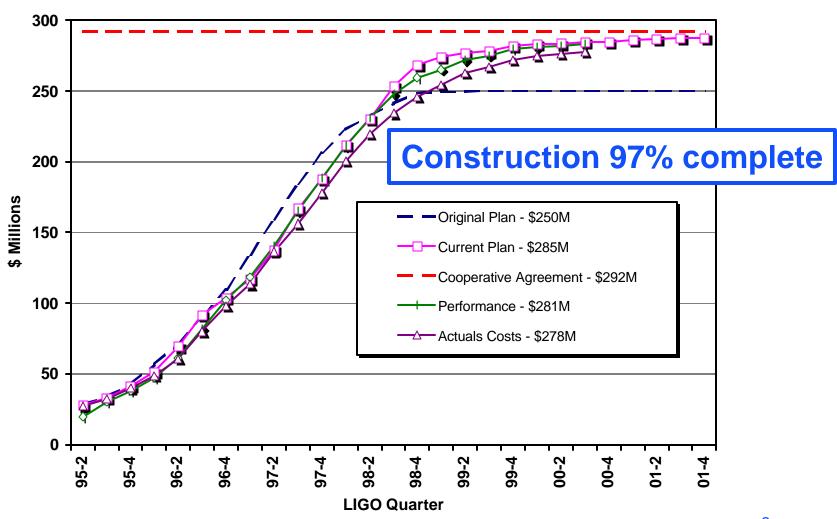
LIGO Plans schedule

1996	Construction Underway (mostly civil)
1997	Facility Construction (vacuum system)
1998	Interferometer Construction (complete facilities)
1999	Construction Complete (interferometers in vacuum)
2000	Detector Installation (commissioning subsystems)
2001	Commission Interferometers (first coincidences)
2002	Sensitivity studies (initiate LIGO I Science Run)
2003+	LIGO I data run (one year integrated data at $h \sim 10^{-21}$)
2006+	Begin 'advanced' LIGO installation

MRE Funds

Budget History

Fiscal Year	Construction (\$M)	R&D (\$M)	Operations (\$M)	Advanced R&D (\$M)	Total (\$M)
1992 - 94	35.90	11.19	-	-	47.09
1995	85.00	3.95	-		88.95
1996	70.00	2.38	-		72.38
1997	55.00	1.62	0.30	0.80	57.72
1998	26.00	0.86	7.30	1.82	35.98
1999	0.20	-	20.78	2.28	23.26
2000	-	-	21.10	2.60	23.70
2001	-	-	19.10 (10 Months) 22.92	2.70	21.80 25.6
			(12 Months)		(12 Months)
Total	272.10	20.00	68.58	10.20	370.88


Construction Project

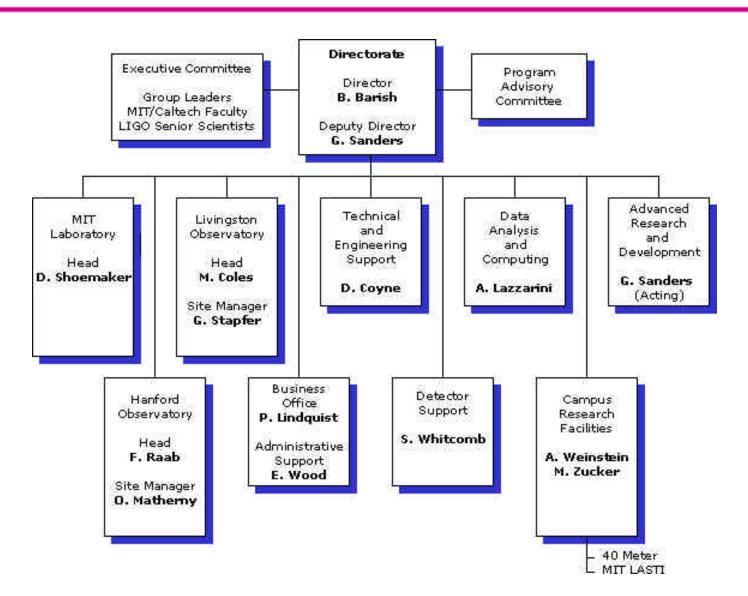
Operations

LIGO Project

construction and related R&D costs

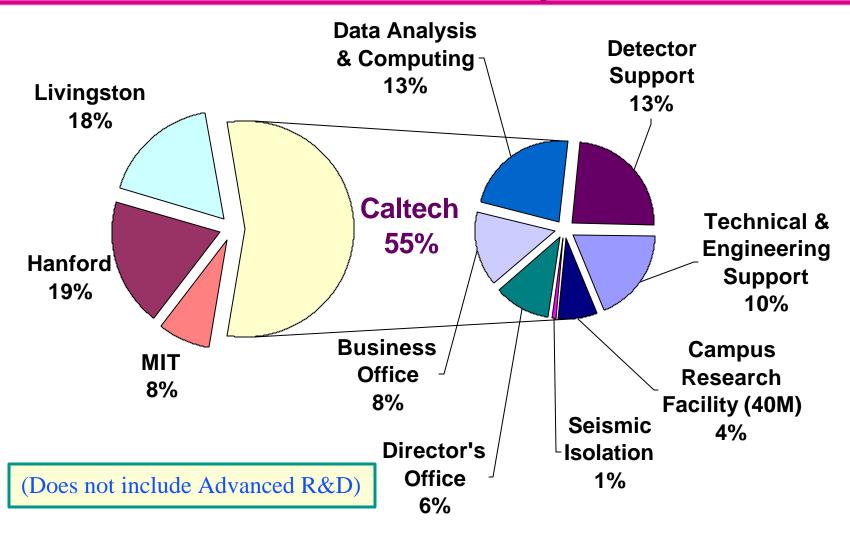
MRE Funds

Budget History

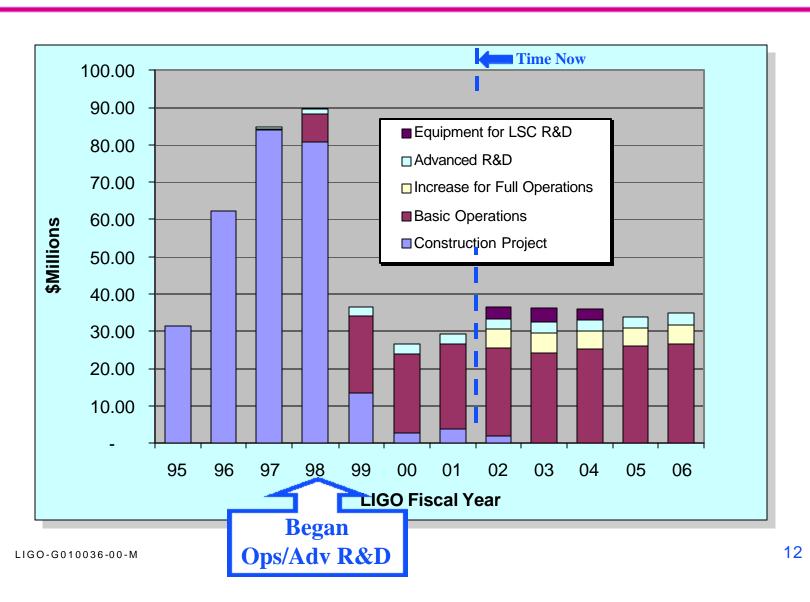

Fiscal Year	Construction (\$M)	R&D (\$M)	Operations (\$M)	Advanced R&D (\$M)	Total (\$M)
1992 - 94	35.90	11.19	-	-	47.09
1995	85.00	3.95	-		88.95
1996	70.00	2.38	-		72.38
1997	55.00	1.62	0.30	0.80	57.72
1998	26.00	0.86	7.30	1.82	35.98
1999	0.20	-	20.78	2.28	23.26
2000	-	-	21.10	2.60	23.70
2001	-	-	19.10 (10 Months) 22.92	2.70	21.80 25.6
			(12 Months)		(12 Months)
Total	272.10	20.00	68.58	10.20	370.88

Construction Project

Operations


LIGO Laboratory Organization

10



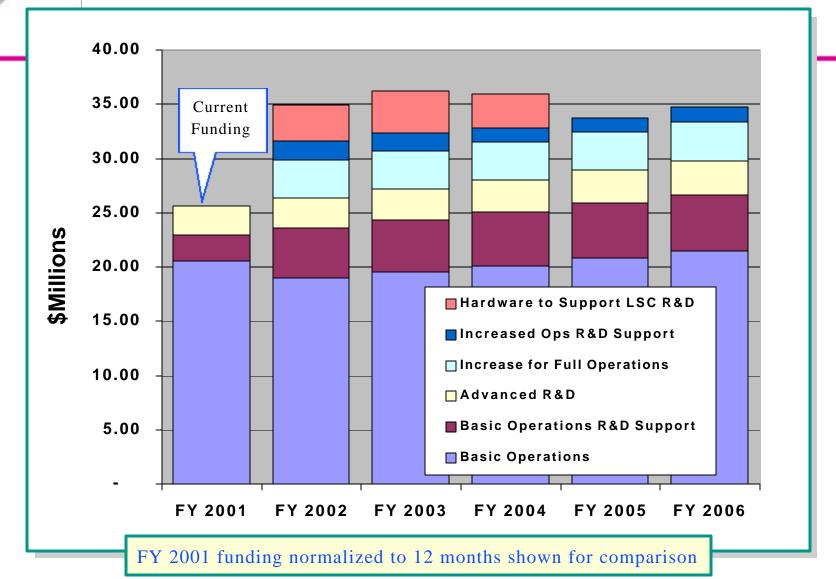
FY 2000 Expenses

Funding History and Request

LIGO funding request

	FY 2001 (\$M)	FY 2002 (\$M)	FY 2003 (\$M)	FY 2004 (\$M)	FY 2005 (\$M)	FY 2006 (\$M)	Total 2002-6 (\$M)
Currently funded Operations	22.92	23.63	24.32	25.05	25.87	26.65	125.52
Increase for Full Operations		5.21	5.20	4.79	4.86	4.95	25.01
Advanced R&D	2.70	2.77	2.86	2.95	3.04	3.13	14.76
R&D Equipment for LSC Research		3.30	3.84	3.14			10.28

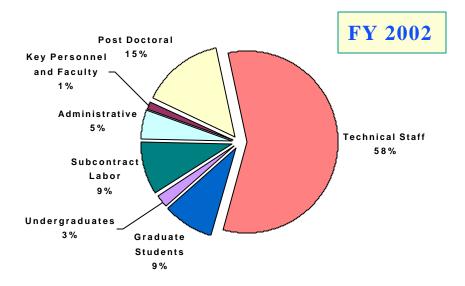
FY 2001 currently funded Operations (\$19.1M for ten months) is normalized to 12 months and provided for comparison only and is not included in totals.

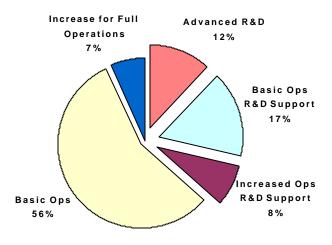


Increase for Full Operations

Budget						
Category	Increase	FY 2002	FY 2003	FY 2004	FY 2005	FY 2006
Basic Opera	tions					
*	CDS Hardware Maintenance	513,800	502,434	517,507	533,032	549,023
·	LDAS Maintenance	1,378,728	1,378,728	1,322,235	1,303,163	1,303,163
	Outreach	249,848	257,343	265,063	273,015	281,206
*	Site Operations	558,485	575,240	592,497	610,272	628,580
	Telecommunications / Networking	540,500	542,200	542,200	539,500	539,500
	Staff for Site LSC Support	254,678	262,318	270,187	278,293	286,642
Basic Opera	tions Totals	3,496,039	3,518,263	3,509,689	3,537,275	3,588,114
Operations S	Support of Advanced R&D					
	Seismic Development	506,300	434,574			
*	Engineering Staff	920,868	948,494	976,949	1,006,257	1,036,445
	Simulation & Modeling Staff	282,485	293,949	305,614	317,772	330,617
R&D Total		1,709,652	1,677,017	1,282,562	1,324,029	1,367,062
Grand Total		5,205,691	5,195,280	4,792,252	4,861,304	4,955,176

^{*} Need recognized by NSF panel





Staffing

Category	FY 2002	FY 2003	FY 2004	FY 2005	FY 2006
Key Personnel / Faculty	2.6	2.6	2.6	2.6	2.6
Post Doctoral	27.0	27.0	26.0	26.0	26.0
Technical Staff	104.7	105.7	101.7	102.7	102.7
Graduate Students	18.0	17.0	17.5	17.5	17.5
Undergraduate	4.9	4.9	4.9	4.9	4.9
Subcontract Labor	17.0	17.0	17.0	16.0	16.0
Administrative	9.9	9.9	9.9	9.9	9.9
Grand Total	184.1	184.1	179.6	179.6	179.6

Numbers shown
Are Full Time
Equivalent
Employees
(FTEs) actually
charged

LIGO civil construction

LIGO (Washington)

LIGO (Louisiana)

LIGO vacuum chambers

LIGO beam tube

1.2 m diameter - 3mm stainless NO LEAKS !!
50 km of weld

- LIGO beam tube under construction in January 1998
- 65 ft spiral welded sections
- girth welded in portable clean room in the field

LIGO Facilities

beam tube enclosure

- minimal enclosure
- reinforced concrete
- no services

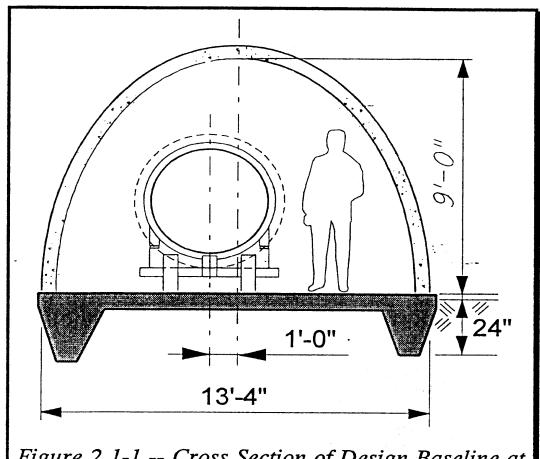
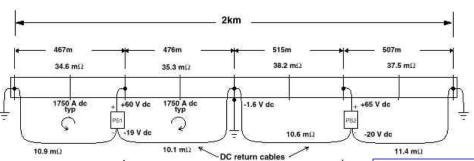
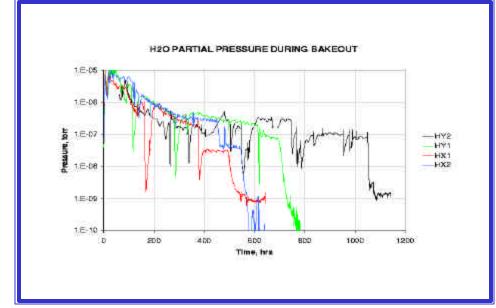


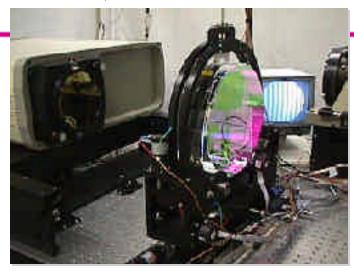
Figure 2.1-1 -- Cross Section of Design Baseline at Hanford


LIGO

Beam Tube

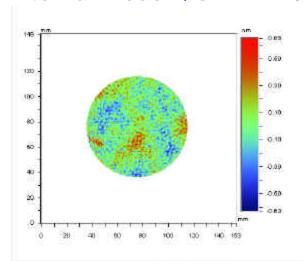
bakeout




- I = 2000 amps for ~ 1 month
- no leaks !!
- final vacuum at level where it is not source of limiting noise (even future detectors)

Core Optics

fused silica


LIGO measurements

- central 80 mm of 4ITM06 (Hanford 4K)
- rms = 0.16 nm
- optic far exceeds specification.

Surface figure = 1/6000

LIGO requirements

- Surface uniformity < 1 nm rms
- Scatter < 50 ppm
- Absorption < 2 ppm
- ROC matched < 3%
- Internal mode Q's $> 2 \times 10^6$

Date: 10/17/2000 Time: 09:26:37 Wavelength: 1.064 um

Pupil: 100.0 % PV: 1.2818 nm

RMS: 0.1620 nm Rad of curv: 14.053 km X Center: 283.00 Y Center: 244.00 Radius: 150.00 pix Terms: Till Power Astig

Filters: None

Masks: Analysis 4.0 Sigma Masks Awerages:

Ref Sub:

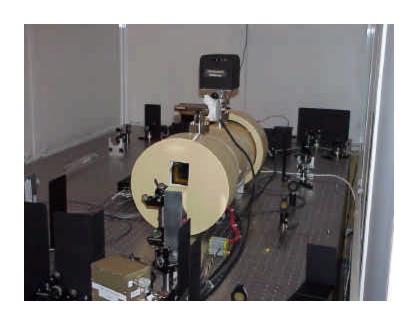
22

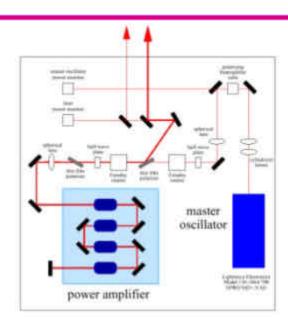
LIGO

Core Optics installation and alignment

Commissioning

configurations

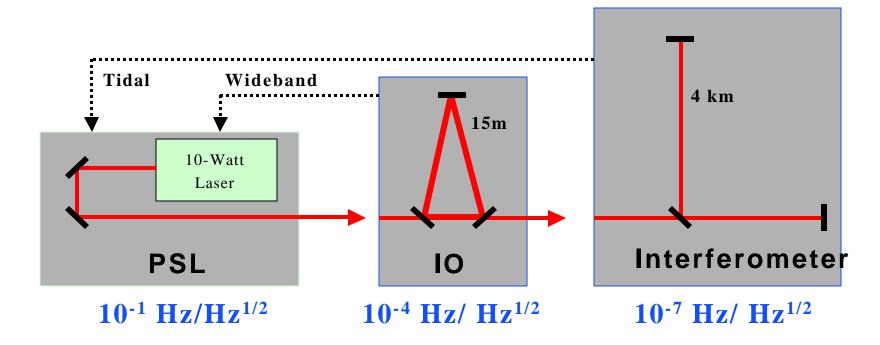

- Mode cleaner and Pre-Stabilized Laser
- 2km one-arm cavity
- short Michelson interferometer studies
- Lock entire 2km Michelson Fabry-Perot interferometer with Power Recycling (Hanford)
 - » First lock Oct 00
 - » Robust locking Jan 01
- Lock one 4km arm (Livingston)
 - » First single long arm Jan 01



LIGO

laser

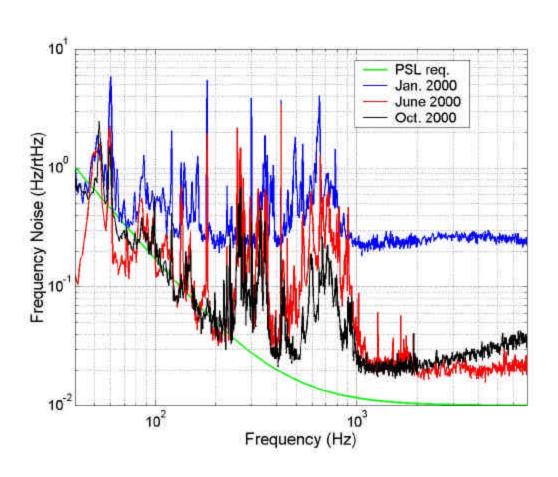
- Nd:YAG
- 1.064 μm
- Output power > 8W in TEM00 mode



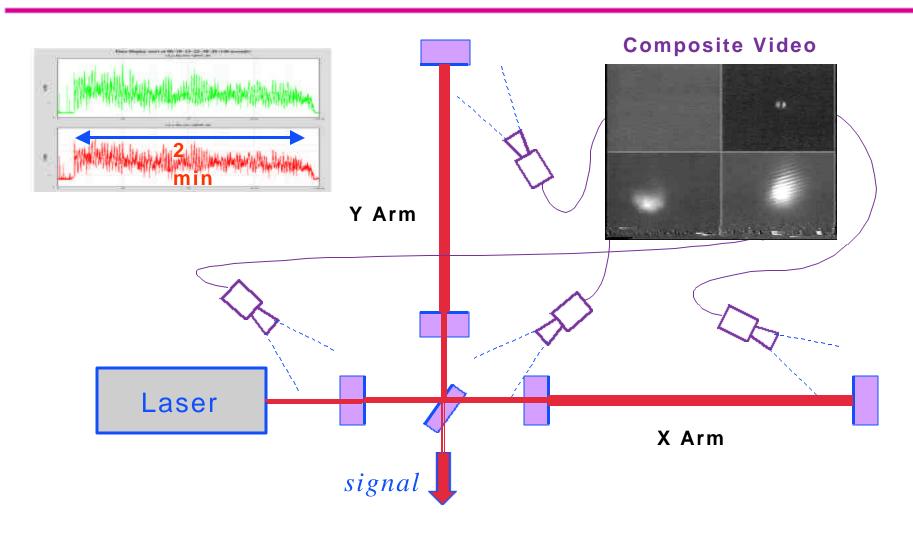
Laser

stabilization

- Deliver pre-stabilized laser light to the 15-m mode cleaner
 - Frequency fluctuations
 - In-band power fluctuations
 - Power fluctuations at 25 MHz

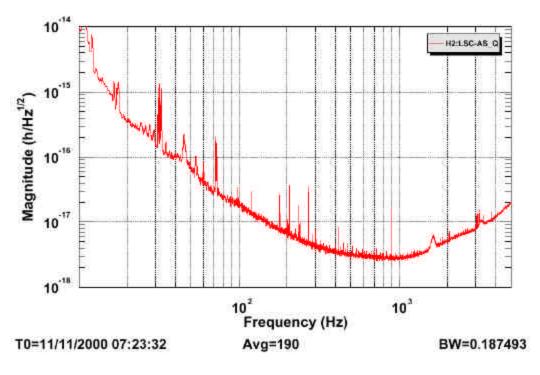

- Provide actuator inputs for further stabilization
 - Wideband
 - Tidal

Pre-stabilized Laser


performance

- > 18,000 hours continuous operation
- Frequency and lock very robust
- TEM₀₀ power > 8 watts
- Non-TEM₀₀ power < 10%

LIGO first lock



Strain Sensitivity

Nov 2000

2-km Hanford Interferometer

- operating as a Michelson with Fabry-Perot arms
- reduced input laser power on the beam splitter (about 3 mW)
- without recycling
- noise level is a factor of 10⁴-10⁵ above the final specification
- sources of excess noise are under investigation

Significant Events

Hanford	Single arm test complete	6/00
2km	installation complete	8/00
interferometer	interferometer locked	10/00
	robust locking	1/01
Livingston	Input Optics completed	7/00
4km	interferometer installed	10/00
interferometer	short Michelson locked	1/01
	interferometer locked	3/01
Coincidence Engineering Run	Initiate (Upper Limit Run)	9/01
Hanford 2km& Livingston 4km	Complete Engineering Runs	7/02
Hanford	All in-vacuum seismic installed	1/00
4km	interferometer installed	6/01
interferometer	interferometer locked	8/01
LIGO I Science Run	> Initiate	7/02
(3 interferometers)	\triangleright Complete(obtain 1 yr @ $h \sim 10^{-21}$)	1/05

LIGO I

steps prior to science run

- commissioning interferometer
 - » robust locking
 - » three interferometers
 - » sensitivity
 - » duty cycle
- interleave engineering runs (LSC)
 - » implement and test acquisition and analysis tools
 - » characterization and diagnostics studies
 - » reduced data sets
 - » merging data streams
 - » upper limits

LIGO Scientific Collaboration

LSC

The LIGO Laboratory

- » MIT, Caltech, LHO and LLO groups operating as one integrated organization.
- » maintains the fiduciary responsibility for LIGO and is responsible for operations and improvements.

The LIGO Scientific Collaboration

- » The underlying principle in the organization is to present "equal scientific opportunity" to all collaborators.
 - LSC has developed its own governance, elects its own leadership, and sets its own agenda.
 - The LSC has an elected spokesman, has an executive committee, collaboration council and several working groups in different research areas and generally operates independently of the LIGO Laboratory management..
 - The scientific research of the LIGO Laboratory staff is carried out through the LSC.

LIGO Scientific Collaboration

LSC

- LIGO is available to all interested researchers through participation in the LSC, an open organization.
 - » a research group defines a research program with the LIGO Laboratory through the creation of a Memorandum of Understanding (MOU) and relevant attachments
 - When the group is accepted into the LSC it becomes a full scientific partner in LIGO

LIGO Scientific Collaboration

Member Institutions

LSC Membership

35 institutions > 350 collaborators

University of Adelaide ACIGA

Australian National University ACIGA

California State Dominquez Hills

Caltech LIGO

Caltech Experimental Gravitation CEGG

Caltech Theory CART

University of Cardiff GEO

Carleton College

Cornell University

University of Florida @ Gainesville

Glasgow University GEO

University of Hannover GEO

Harvard-Smithsonian

India-IUCAA

IAP Nizhny Novgorod

Iowa State University

Joint Institute of Laboratory Astrophysics

LIGO Livingston LIGOLA

LIGO Hanford LIGOWA

Louisiana State University

Louisiana Tech University

MIT LIGO

Max Planck (Garching) GEO

Max Planck (Potsdam) GEO

University of Michigan

Moscow State University

NAOJ - TAMA

University of Oregon

Pennsylvania State University Exp

Pennsylvania State University Theory

Southern University

Stanford University

University of Texas@Brownsville

University of Western Australia ACIGA

University of Wisconsin@Milwaukee

International

India, Russia, Germany, U.K, Japan and Australia.

The international partners are involved in all aspects of the LIGO research program.

GWIC

Gravitatational
Wave
International
Committee

Science in LIGO I

LSC data analysis

Compact binary inspiral:

- "chirps"
- » NS-NS waveforms are well described
- » BH-BH need better waveforms
- » search technique: matched templates
- Supernovae / GRBs:

"bursts"

- » burst search algorithms excess power; time-freq patterns
- » burst signals coincidence with signals in E&M radiation
- » prompt alarm (~ 1 hr) with v detectors [SNEWS]
- Pulsars in our galaxy:

"periodic"

- » search for observed neutron stars (freq., doppler shift)
- » all sky search (computing challenge)
- » r-modes
- Cosmological Signals

"stochastic background"

Inspiral Sources

Inspiral Sources

LSC Upper Limit Group

Bruce Allen ballen@gravity.phys.uwm.edu Sukanta Bose bose@aei-potsdam.mpg.de Douglas Boyd Douglas.Boyd@astro.cf.ac.uk Patrick Brady patrick@gravity.phys.uwm.edu **Duncan Brown** duncan@gravity.phys.uwm.edu Jordan Camp camp_j@ligo.caltech.edu Nelson Christensen nchriste@carleton.edu Jolien Creighton jolien@gravity.phys.uwm.edu S.V. Dhurander sdh@iucaa.ernet.in Gabriela Gonzalez gig1@psu.edu Andri Gretarsson andri@suhep.phy.syr.edu Gregg Harry gharry@phy.syr.edu* Syd Meshkov meshkov_s@ligo.caltech.edu Tom Prince prince@srl.caltech.edu David Reitze reitze@phys.ufl.edu B.S. Sathyaprakash B.Sathyaprakash@astro.cf.ac.uk Peter Shawhan shawhan_p@ligo.caltech.edu

Co-chair P Brady, G Gonzalez

Data & Computing Group engineering & science runs

- » Simulation & Modeling:
 - detector support
 - data analysis
- » Data Management
 - movement of large volumes of data
 - archive
- » Data Analysis
 - pipeline analyses running
 - participation in analysis teams
- » Software
 - maintenance/improvements/enhancements
- » LSC support
- » LIGO Lab IT support

LIGO I Science Run

Data Analysis Model

- Astrophysical searches: follow plan in the LSC Data
 Analysis White Paper http://www.ligo.caltech.edu/LIGO_web/lsc/lsc.html
 - » organized around teams as in near-term upper limit studies
 - » open to all LSC members contributing to LIGO I
- LDAS resources to be shared among the teams
- LSC institutional resources used by individuals
- Longer term
 - » distributed computing LIGO/LSC Tier 2 centers GriPhyN
 - » LSC open to researchers wanting access to LIGO data

LIGO I

science run

Strategy

- » initiate science run when good coincidence data can be reliably taken and straightforward sensitivity improvements have been implemented (~ 7/02)
- » interleave periods of science running with periods of sensitivity improvements

Goals

- » obtain 1 year of integrated data at $h \sim 10^{-21}$
 - searches in coincidence with astronomical observations (eg. supernovae, gamma ray bursts)
 - searches for known sources (eg. neutron stars)
 - stand alone searches for compact binary coalescence, periodic sources, burst sources, stochastic background and unknown sources at $h \sim 10^{-21}$ sensitivities
- » Exploit science at $h \sim 10^{-21}$ before initiating 'advanced' LIGO upgrades

LIGO Science

physics schedule

- LIGO I
- $(\sim 2002 2006)$
- » LIGO I Collaboration of LSC
- » obtain data for one year of live time at $h \sim 10^{-21}$ (by 2005)
- » one extra year for special running or coincidences with Virgo
- Advanced LIGO (implement ~2006+)
 - » broad LSC participation in R&D, design and implementation
 - » design sensitivity $h \sim 10^{-22}$ (or better)
 - » 2.5 hr will exceed <u>all</u> LIGO I (rate increase ∝ sensitivity cubed)
- 'Facility Limited' Detectors (> 2010 +)
 - » new optical configurations, new vacuum chambers, cryogenic, QND, etc
 - » sensitivity $h \sim 10^{-23}$

LIGO

Outreach and Education

REU, teacher training, student researchers, minority programs, public lectures and educational materials

