

- Responsible for the GW sensing and overall control systems
- Addition of signal recycling mirror increases complexity
 - Permits 'tuning' of response to optimize for noise and astrophysical source characteristics
 - Requires additional sensing and control for length and alignment
- Shift to 'DC readout'
 - Rather than RF mod/demod scheme, shift interferometer slightly away from dark fringe; relaxes laser requirements, needs photodiode develop
- Requires both proof-of-principle and precision testing (40m)
- Schedule Highlights:
 - → 2Q01: Design Requirements Review
 - → 2Q02: Tabletop DC readout test results
 - → 2Q03: GEO 10m prototype test results/review
 - → 4Q03: Final design complete

- Subsystem Scope:
 - optoelectronic sensors*
 - signal conditioning electronics *
 - → servo-control electronics (analog & digital) *
 - control topology & laws *
 - locking algorithm
 - interferometer supervisory controls
 - interferometer system diagnostics
 - calibrated strain readout signal

- Research Scope:
 - → low noise ADC & DAC research
 - segmented, high frequency RF, wavefront sensor
 - → high frequency, low noise RF photodiodes
 - → DSP investigation (to allow more computation-intensive filter techniques and enhance control robustness and timing margins)
 - Control law/topology design
 - Controls and electronics testing (definition & assist to GEO 10m & LIGO 40m experiments)
 - Simulation extensions & modeling

- Signal- & power-recycled interferometer has 8 independent optical path lengths, one identical to re-scaling the wavelength
- independent and significant alignment degrees of freedom:
 - → 12 angular & 2 centering dof for the core optics
 - 2 angular & 2 centering dof for the input mode cleaner
 - → 2 angular dof for the input mode cleaner
- ➡ 28 'global' degrees of freedom

Symbol	was	Description	Definition
D	L.	Arm cavity differential (a strain)	(ETMx-ITMx) - (ETMy-ITMy)
С	$L_{\scriptscriptstyle +}$	Arm cavity common mode	(ETMx-ITMx)/2 + (ETMy-ITMy)/2
т	l_	Michelson differential	(ITMx-PRM) - (ITMy-PRM)
р	l_{+}	Michelson common mode	(ITMx-PRM)/2 + (ITMy-PRM)/2
S	2	Signal recycling cavity length	(ITMx-SRM)/2 + (ITMy-SRM)/2
1	1	Laser wavelength	
i	l_{MC}	Input mode cleaner length	
0	~	Output mode cleaner length	

- Schnupp asymmetry/frontal modulation method (used in initial LIGO) is extended by adding a second set of resonant sidebands
- The three auxiliary cavity lengths p, m and s are measured with minimal interaction from the arms, by looking at beat notes between the two sideband systems:
 - → directly at the difference frequency, in the reflected port
 - \rightarrow by double demodulation, at the antisymmetric port
- The arm cavity mean length *C* is readily derived from interference of the 9 MHz sidebands with the returning carrier at the reflected port
- 'DC readout' of the gravitational wave signal *D*, rather than the traditional RF homodyne detection
- robust separation is achieved between the internal coordinates

Port	Frequency	С	D	p	m	S
Reflection	171 MHz	-0.4	0	80	-1	40
PRC Sample	171 MHz	-2	0	72	-63	960
Antisymmetric	171 MHz	0	0	0.1	-1	1.95
Antisymmetric	189 MHz	0	0	-0.3	-1	-1.95

G010019-00-D

Servo Controls

- preliminary modeling:
 - → with the planned advanced SEI & SUS attenuation
 - → damping and control of the auxiliary p, m and s lengths (< 10⁻¹⁰ m RMS, adequate to reject optical noise effects) requires only ~1 Hz unity-gain loop bandwidths
- allows a full frequency decade below the noise-critical sensing band for aggressive signal filtering
- ➡ If actuation for auxiliary lengths are applied to the BS, PRM & SRM, contamination of the gravitational wave readout *D* will be minimal:
 - ➤ Noise figures in the range of 10⁻¹⁴ m/Hz^{1/2}, some million times noisier than the strain readout, could be tolerated
 - depends, on the development of adequate low-noise (e.g., passive eddy-current) damping for the suspension eigenmodes of the cavity mirrors to obviate the need for interferometric damping feedback.

Servo-Controls Research Tasks

- advanced SEI & SUS systems will have radically different controller interfaces
 - actuation to upper stages which are separated from the mirror position (readout variable) by complex mechanical transfer functions
 - anticipate significant work required to define pre- and post-conversion signal processing for each of these stages, with the goal of building a composite virtual "super actuator" for each degree of freedom
 - → controllability issues may play a strong role in the suspension actuator selection
- ➡ Software tools for control algorithm construction & maintenance:
 - → initial LIGO control loop software is implemented in compiled C code
 - successful and efficient, but cumbersome to adapt to new purposes and depends on a high degree of programming expertise
 - ➡ intend to preserve our substantial investment in the EPICS/VxWORKS architecture

propose to develop dynamic libraries, programming tools and user interface layers for our existing realtime operating systems and application environments
GO10019-00-D Interferometer Sensing & Control R&D 8

Servo-Controls Research Tasks (continued)

- Modeling & Analysis: extend to signal recycled configuration
 - MELODY
 - → FFT Propagation Code
 - ➡ Modal Model
 - → Matlab IFO Control Model
 - → End-to-End (E2E)
 - validate models with 10m and 40m experiment results
- Servo-control topology and control law development
 - robust control approach, with initial LIGO experience in modeling uncertainties and plant & disturbance variability
 - define control laws & deliver code to 40m experiment

Advanced Controls & System Identification (SID)

- Programmatic Scope:
 - Integrated with the ISC design effort
 - → Initial LIGO
 - Advanced LIGO
 - interfaces with existing infrastructure
- Technical Scope:
 - Robust modern control approach
 - Optimal controls approach
 - System identification
 - → Adaptive control

Advanced Controls & SID Motivation

- Challenging LIGO detector availability goals:
 - Single interferometer operations > 90% of the time with 40 hr. min. continuous lock periods
 - Double coincidences > 85% time and triple coincidences > 75% time with 100 hr. min. continuous lock periods
- ➡ 40 m prototype experience:
 - → 40m prototype lock durations vary from seconds to a few hours
 - Control system instabilities caused by drifts in the interferometer system parameters
 - → Displacement noise events which kick the interferometer out of lock
- Initial LIGO experience:
 - Lock durations currently limited by tidal drift to ~hours; with tidal actuation may be limited to a few days between earthquakes that knock cavities out of lock
 - Too early to tell if alignment or parameter drift is a serious problem or not; system is 'maturing' and becoming (or perceived as?) more stable with time

Advanced Controls & SID

- LIGO has frequency, length and alignment servo-control loops
 - The optical model for the core optics length control system is a 4x4 matrix of transfer functions
- The interferometer optical alignment model is a 10x10 matrix of transfer functions whose elements have a similar form

Advanced Controls & SID

- Potential hardware imperfections, model errors, unknowns or parameters subject to drift which could effect control system robustness include:
 - \Rightarrow Beamsplitter reflectivity \neq 50%
 - Mixer phase error
 - Deviations from resonance
 - → Visibility variation
 - ➡ Fabry-Perot cavity input and end test mass absorption (resulting in radius of curvature changes)
 - Sensor & actuator cross-talk (optical, mechanical & electrical)
 - Alignment/length Coupling
 - Modulation depth & phase variation
 - ⇒ etc.

Strategy

- System identification will be used in conjunction with subsystem diagnostic and measurement techniques to update our understanding of the system and its control
- Once the system susceptibilities are understood, an adaptive controller can be formulated to compensate
- SID and Adaptive Control are mature technologies; The application to Interferometry is unique

System Identification

- System Identification (SID) is an empirical approach to modeling interferometer system dynamics
 - → Non-parametric identification (i.e. frequency response estimation)
 - Parametric system models (e.g. state space representation)
- For LIGO we seek a <u>recursive</u>, real-time <u>parameter identification</u> of the multi-input/multi-output optical response of the interferometer in <u>Detection Mode</u>
- Many techniques are available and will be explored; Potential candidates include:
 - Generalized Least Squares and Maximum Likelihood Estimators (e.g. the Prediction Error Method) are computationally simple
 - Observer/Kalman Filter Identification (OKID) -- time domain based, can be extended to identification of closed loop effective controller/observer combination (Observer Controller Identification, OCID)

State-Space Frequency Domain (SSFD) identification -- frequency domain based (can use spectrum analyzers)
Interferometer Sensing & Control R&D

Adaptive Control

- Adaptive Control can improve sensitivity while maintaining robustness to disturbances and plant variations
- Adaptive control time scales:
 - milliseconds for the ordinary feedback
 - many minutes for updating the control parameters and performing SID
- Possible adaptive control algorithm: Model Reference Adaptive Control

Collaborators & Responsibilities

- Stanford Univ. plans to explore system identification and adaptive control on advanced seismic isolation and suspension subsystems
- LIGO will concentrate on identification and control (length, alignment and frequency) of the optical plant for a power recycled configuration
- GEO plans to explore adaptive control for autonomous and teleremote operation

Advanced Controls & SID

- Schedule Highlights
 - → 4Q02: System identification for the initial LIGO detector
 - → 4Q03: Adaptive control for the initial LIGO detector
 - → 1Q04: Application to 40m configuration testbed
 - → 2Q05: System identification for the advanced LIGO configuration

Advanced Interferometer Systems, Sensing & Control (ISC, 40m, SID, SYS)

FY02

	Org	Adv. R&D (FTE)	LSC Support R&D	Operations (FTE)		
Advanced Interferometer Systems, Sensing & Control (ISC)						
	MIT	0	0			6 97
Sci & PD	CIT	2	0	3.2	5.2	0.07
	MIT	1	0	1	2	5
UG & Grads	CIT	3	0	0	3	5
	MIT	0	0	0.75	0.75	10.22
Eng & Techs	CIT	0	0	9.48	9.48	10.23
To	otals (FTE):	6	0	16.1	22.1	
Equip. & Su	pplies (\$K)	\$275	\$0	\$0	\$275	

N.B.: Does not include LSC research staff.

G010019-00-D