
1 of 12

ATION 
ESIGN 
VIEW

, Brian L)
G010017-00-D

LIGO II SEISMIC ISOL
SUBSYSTEM (SEI) D
REQUIREMENTS RE

January 24, 2001

Agenda:

1. Requirements, 30 min (Peter F)

2. Conceptual design, 1 hr (Joe G



2 of 12

GE

fs of 

obertson, Virginio 
G010017-00-D

COMMITTEE1 CHAR

❏  Evaluate requirements:

• are they complete?

• are the values appropriate?

❏  Evaluate conceptual design

• is it consistent with the requirements?

• practicality of design ... appropriate tradeof
performance and risk?

❏  Evaluate testing plan

1.Mark Barton, Jay Heefner, Larry Jones, Gabriela Gonzalez, Norna R
Sannibale, Mike Zucker
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FUNCTIONS &  CONST

❏  Vibration isolation (isolated platfo

• provides roughly 1/3 of the total isolation a

• provides essentially all the isolation in the c
f<10 Hz

❏  Payload support: adequate spac
load capability, counter-weights fo

❏  Coarse positioning of the isolated

❏  External actuation for interferome

❏  In-vacuum cabling: power & sign

❏  Vacuum compatibility of material

❏  Fit in existing chambers; reuse p
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RM

dy; quad pendulum 

m of nominal 

Comments

 height for quad suspension 
 centerline on ITMs at -213 

mm

 low to accommodate triple 
suspension
G010017-00-D

ISOLATED PLATFO

❏  Payload: 800 kg

• to be updated pending a detailed load stu
w/ 40 kg TM and full reaction chain: 400 kg

❏  Platform size & height

❏  Initial positioning: within ±0.5 m
height

SEI type Platform size

Platform height (LIGO global z-
coordinate)

Nominal height
Potential 
Range

BSC 1.5m diam. 1540 mm
1470–1800 

mm

Minimum
w/ beam

HAM 1.9m × 1.7m –315 mm 0
Must be
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ISOLATION PERFORM
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x103 isolation from 
G010017-00-D

ISOLATION PERFORM

❏  Displacement input and require
same in all 3 directions

• vertical motion must be low to make up fo
isolation in the suspensions (could be rela

• transverse horizontal motion requirement
merited

❏  10 Hz: 2 x 10-13 m/rHz

• vs 10-19 m/rHz for BSC/test masses: nee
from quad suspension

➢  5x106 along optic axis for long suspension

➢  3x103 vertically, with 10–3 cross-coupling

• vs 3x10-17 m/rHz for HAM optics: need >7
triple suspension

➢  3x104 along optic axis; 3x102 vertically
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ISOLATION PERFORM

❏  1–10 Hz band: not a ‘hard’ requ

• want to enable ~1 Hz bandwidth loops fo
of-freedom of the interferometer

• SEI requirement corresponds to ~10–11 m

❏  Above 30 Hz: broadband noise

• internal resonances must be above 100 H

• limits to {Q’s, f’s} to be developed with su

❏  Angular degrees-of-freedom:

• must not compromise 10-19 m/rHz requir

• should be less than suspension angular th
10 Hz

• rms angular fluctuations: <10-8 rad in 1 <
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robably more limited 
G010017-00-D

MICROSEISMIC BAND, 0.
❏  Input

• average level of microseismic peak expect
micron-rms (models are 0.6-0.7 micron-rms

• variation over the year is under study at the

• maximum level the system must be able to
saturation): 40 microns pk-pk

❏  Suppression required

• factor of 5 – 10 suppression, to ~0.1 micro

• open issue: suppression of each chamber 
suppression of arm length only

➢ each chamber: leaves pieces of the interferomete
isolated platforms (laser source; photodetectors; baff
respect to the rest ⇒ upconversion of scattered light;
relative motion produces a maximum frequency of 10

➢  arm length only: feedforward suppression only; p
suppression than feedback
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EARTHQUAKES

❏  Small, frequent (several times pe

• don’t significantly increase rms ground mo
microseism

• increase noise in ~0.4 – 3 Hz band by a fa

• SEI system should not saturate with such a
should be characterized with modeling & me

❏  Larger, rarer events (~1 per week

• increase the rms above the microseism lev

• typical motion timescale, 20-30 seconds, la

• SEI system should function without saturat
rarest events 

➢  500 micron pk-pk input at 20-30 second period
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Estimated Yearly Rate of Earthquake-Induced Peak Ground
Motions at Hanford

Averages of rates for 5 seismometers (LVEA, MX, MY, EX and EY) calculated from velocity-
spectra.  Rates were estimated from 47 earthquakes over 6 months using dead-time estimates for
instrument and data acquisition down-time and for USGS email report fractions.

Ground motions for the 4 quakes that knocked us out of lock during E2 were less than 10 microns.
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t: ±90 µm range 
minutes; required 

nt, <0.1 sec; end/

tform
rad about vert.

 of errors or drift 

Overall maximum, 
multiplied by 1.2, 

microns

130

250

310
G010017-00-D

EXTERNAL ACTUAT
❏  Tidal arm stretching;  estimates f

• must be able to track differential componen
along optic axis; time constant less than 10 
for end/mid station systems only

❏  Microseismic correction: 
• ±10 µm range along optic axis; time consta
mid station systems only

❏  Coarse positioning of isolated pla
• ±1 mm in vert. & transverse horiz.; ±0.25 m
• used only in ‘off-line’ mode; compensation

Tidal component
Maximum pk-pk stretching, microns

LHO LLO

Differential mode 100–110

Common mode 180 200–210

Single arm 260
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MISCELLANEOUS

❏  Operational modes & startup

• design should be flexible to allow different 
operation (trading off stability for isolation, e

• initial startup less than a few hours; power 
operational less than ~30 minutes

❏  Field emission: interaction with s
magnets must be addressed

❏  Drift & thermal expansion: 

• less than 0.1 mm in translation and 100 mi
over any 30 day period
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MISCELLANEOU

❏  Power & signal transmission: su

• vacuum compatible 

• stiffness and mounting so as to not comp
performance and not introduce sources of

• specification of cabling types and numbe

❏  Diagnostics

• must include capability of determining SE

• internal diagnostics

• interface to Global Diagnostics Subsyste
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Advanced LIGO
Seismic Isolation System

Conceptual Design

By the Advanced LIGO Seismic Isolation Team

members∗ at JILA, LLO, LSU, MIT, and Stanford

January 24, 2001 LIGO-G010017-00-D, part 2

∗J. Giaime, B. Lantz, C. Hardham, W. Hua,

R. Adhikari, G. Allen, S. Cowley, D. Debra, G.

Hammond, J. Hammond, J. How, J. Nichol, S.

Richman, J. Rollins, G. Stapfer, R. Stebbins,. . .

January 24, 2001 SEI DRR 1
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Functional Breakdown

6-DOF, 0 Hz BW coarse 
actuation system

1-DOF, 5 Hz BW Fine 
actuation system

Mass-spring four-layer 
isolation stack

Single-pendulum test mass 
suspension

6-DOF, 0 Hz BW coarse 
actuation adjustment in 
hydraulic system

6-DOF, 10 Hz BW 
Hydraulic fine actuation 

Two-layer active noise 
reduction platform

Quad-pendulum test mass 
suspension

LIGO-I Subsystem Advanced LIGO Subsystem Functions

Minimize thermal noise, 
passively isolate test mass

GW band isolation,
(Advanced LIGO:
  RMS motion reduction)

Feedback/ feedforward 
compensation of earthtides 
and microseismic motion

Coarse alignment during 
installation and occasional 
drift correction

Seismic isolation functions in LIGO-I and Advanced LIGO. (The pendulum
suspension, though not part of SEI, is shown because it contributes
significant seismic isolation.)

January 24, 2001 SEI DRR 2
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Active Seismic Isolation
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Active seismic isolation, with 1994 JILA results
showing 70 dB of isolation.
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Feedback, feed-forward, sensor correction

G  (s)

K(s) G(s)  

+

+
y(ω)

+

+

n(ω)

y  (ω)m

r(ω) + −

d

d(ω)

command
input

measured
output sensor

noise

environmental
disturbance

"real"
output

feedback
controller

system
dynamics

+

-

G  (s)ff
+ +

n  (ω)d 

feed-forward
controller

environment
sensor noise

K  (s)ff

M(s)

other
measurements

measured
environment

sensor
correction

Feedback:

y = (I + GK)−1GK r command tracking

+(I + GK)−1Gd d disturbance suppression

−(I + GK)−1GK n. noise

Feedforward: If KffGffG = Gd, environmental noise
cancelled.

January 24, 2001 SEI DRR 4
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The Quiet Hydraulic Actuator.

Hydraulic actuator will provide ±1 mm, 2 Hz BW continuous actuation in
6 DOF. Each bellows assembly acts in 1 DOF; two DOF at each corner.
Viscous fluid and remote pump assure quiet operation.

January 24, 2001 SEI DRR 5
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Differential bellows:

RR R

pump

1
2

3

4

5

4

3

The control valve creates a pressure differential on the bellows. The middle
plate is attached with flexures to both the base and the payload, only
constraining motion in 1 DOF.

January 24, 2001 SEI DRR 6
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BSC Design

Rendering of BSC design of the two-stage active
platform.

January 24, 2001 SEI DRR 7
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HAM Design

Rendering of the HAM design.

January 24, 2001 SEI DRR 8
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Sensor noise
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Cap. Displacement
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Sensors:

Capacitive Bridge Sensor: used to measure the
relative displacement between adjacent SEI stages.
Queensgate NXD or better.

Broadband Seismometer: used to measure velocity
of the outer stage in the inertial frame, over 8 mHz
- 50 Hz range. Streckeisen STS-2 is best choice.

Geophone: used to measure velocity of the inner and
outer stage in the inertial frame, over 1 Hz -
100 Hz range. Geotech GS-13 is best choice.

Cover removed

Single sensor

STS-2 Three sensors,
  Top view

January 24, 2001 SEI DRR 10
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Actuators:

• voicecoil - permanent magnet non-contacting
forcers

• rectangular coil in constant field on two sides, to
minimize cross coupling.

• iron flux path, to minimize emission.

• good linearity.

• large (±1 mm) gaps.

• Custom design, UHV compatibility under study at
JILA.

January 24, 2001 SEI DRR 11
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Dynamic and noise model

Requires the excution of the m-file mkModel

Run tests with the m-file runModel

Wensheng Hua, Brian Lantz, Sam Richman 
Feb 2000

BSC isolation model - 2 Active stages

1
Out3

Cont2

stage 2 controller

Cont1

stage 1 controller

output order

no input1

no input

input order

Term 1

stage2 sensor s
stage2 supersensors

Stage 2 super sensors

Stage 2 sensor defs

ground position

Stage positions

Sensor Noise
Sensor Out

Stage 2 sensor

stage1 sensor s
stage1 supersensors

Stage 1 super sensors

ground position

Stage positions

Sensor Noise
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Stage 1 sensors

Stage 1 sensor defs

Mux
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ground position in
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stage force in

ground  force out
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Mechanical Model
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Simulink model used to calculate the dynamics, servo compensation, and
noise propagation in the conceptual design two-stage active platform.
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Model construction:

1. a set of test inputs and outputs.

2. a mechanical model of the two stage system.

3. a set of sensors which are distributed on the outer
stage.

4. filters which blend the outer stage sensors into six
super-sensors.

5. a set of sensors which are distributed on the inner
stage

6. filters which blend the inner stage sensors into six
super-sensors.

7. a set of actuators between the outer stage and the
ground.

8. a set of actuators between the inner stage and the
outer stage.

9. a set of 12 SISO control laws which connect the 12
actuators with the 12 super-sensors.

January 24, 2001 SEI DRR 13
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Tilt-horizontal coupling
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Tilt-horizontal coupling at very low frequencies: Tilt
step function can cause slow horizontal excursion.
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Displacement noise performance
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Displacement amplitude spectral density on the two-stage active platform.
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Root-mean-squared motion
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Integral of RMS displacement noise of the SEI optics table.
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Pitch and Yaw motion
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Integral of RMS pitch and yaw motion of the SEI optics table. Note that
these curves assume zero ground excitation.
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Model results summary

displacement pitch yaw

ASD at 10 Hz 2 × 10−13 m/
√

Hz 4 × 10−13 rad/
√

Hz 4 × 10−13 rad/
√

Hz

RMS deviation 1 × 10−11 m 3 × 10−11 rad 2 × 10−11 rad

RMS velocity 1 × 10−10 m/s

Key noise levels calculated for the two-stage active isolation platform,
without the beneficial effects of the hydraulic stage and feedforward. The
RMS noise is calculated by integrating the amplitude spectral density down
to 1 Hz; See graphs in other figures for additional values.

January 24, 2001 SEI DRR 18
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Prototype hydraulic actuator

BTL, Oct 2000, page 1810
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Hydraulic Actuator Motion

Test frame for hydraulic actuators, along with a plot
of the maximum-force, open-loop noise.
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Active isolation stage with pendulums
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The Stanford single-stage active isolation platform
and dual triple GEO600-like pendulum. of the design.
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Two-stage pre-prototype
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The two-stage active isolation experiment. Vertical
ground noise (purple) and payload noise (red).
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Operational modes

Normal Operation: Lowest noise, with or without global control or
reallocation input

High-damping, minimum step/inpulse response: Used when
environmental noise is high and low-noise operation not possible.

SEI Diagnostics: SEI commissioning or periodic sys ID.

SEI acquire lock: closes open servo loops in SEI.

January 24, 2001 SEI DRR 22
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Development plan

• UHV prep research.

• Electronics/DSP dSpace → LIGO-brand?

• Prototype HAM two-stage active isolation platform to be tested in ETF
at Stanford, to be completed 2Q02 (preliminary results earlier).

• Pathfinder HAM and BSC to be installed in MIT LASTI, 2Q02.
Hydraulic stage to provide extra attenuation for noisy MIT site.

• Final design. . .

January 24, 2001 SEI DRR 23
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Conclusions

• Requirements can be met or nearly met using only the two-stage active
platform.

• Modelled isolation performance nearly meets goal, exceeding it slightly
in horizontal microseism due to transmitted ground motion.

• Tilt-horizontal coupling may be an operational concern, but there are
several promising techniques to be explored.

• Hydraulic stage pre-isolation and tilt stabilization needs study.

January 24, 2001 SEI DRR 24
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