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GWDs are large interferometers...

LIGO Hanford Observatory

Photo from LHO web site
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with large mirrors...

 ...held by small wires

LIGO-G000103-00-M
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Thermal Noise Sources Relevant to
Interferometric Gravitational

Wave Detection
Noise sources

Thermoelastic damping

Brownian motion

Photothermal noise

Other thermal noise?

Motivation
Limits event rate in GWDs

Hard to measure in the
LIGO spectrum

Models not adequately verified at LIGO levels

Stragety
Isolate and measure noise sources
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Brownian motion

Currently believed to be the
dominant thermal noise source
for LIGO I

Fluctuation � dissipation theorem

µ (f kBT/ w r0)
1/2

Limits LIGO I over a narrow bandwidth
Largest thermal noise contribution for fused silica
Limits LIGO I sensitivity
Broadband measurement needed to characterize noise

Model validation
Maybe f(w) isn�t constant

Non-Gaussian tails in distribution?

Model not adequately verified at LIGO levels
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LIGO Brownian Motion

(Neglects Thermoelastic Damping)
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Thermoelastic Damping

The �Sapphire Killer�
Newly predicted type of thermal noise

Fluctuations arise from thermal expansion dissipation

µ (a2 kBT 2/ w2 r0
3)1/2

(Braginsky et al, 1999)

Bigger in sapphire than in fused silica
Large thermal noise contribution in sapphire

Depends strongly on thermal properties of the material

Model validation
Non-Gaussian tails in distribution?

Model not adequately verified at LIGO levels
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Photothermal Noise

Newly predicted noise source
Laser heats mirror surface, causing thermal expansion

µ (hnP/ w2 r0
4)1/2

 (Braginsky et al, 1999)

Bad for delay line IFOs
Dependent on spot size and coating losses

Photothermal noise is high in materials that
have high conductivity, like Si and GaAs.

Bad for cryogenic IFOs
Chilling a mirror lowers thermal noise,
but not photothermal noise.
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Thermal Noise Interferometer (TNI)

Current: Characterize advanced detectors
Measure noise sources

Measure non-thermal noise

Verify design specifications

Future: Physics of fundamental
noise sources

Reach (and exceed) the SQL

QND experiments

Squeezed light

The TNI uses LIGO-like mir-
rors and suspensions



10LIGO-G010016-00-R

Sensitivity to Thermal Noise

Bandwidth and sensitivity
Short length (~1 cm)
High finesse cavities
No power recycling
No optical recombination
Two independent cavities
Relax laser stability requirements

Common support
Common mode noise rejection
Reduce seismic noise
Reduce suspension recoil thermal noise

Small spot size increases thermal noise
Easier to characterize noise
But not with LIGO�s sensitivity
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12.33 MHz
EOM

Laser

Faraday
Isolator

Faraday
Isolator

14.75 MHz
PC

Broadband
PC

Analyzer cavity

Lowpass

Highpass

Lowpass

Lowpass

Highpass

In
Vacuum

Work in
progress Data

Recorder

A

B

A+B

A-B

Diagnostics

Highpass

Arm cavities

Modecleaner

TNI Equipment
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TNI Expected Spectrum - Fused Silica

10cm x 10cm SiO2
Qmass = 106

Qpend >= 103

M = 1.7 kg
Finesse = 56,000
r0 = 150 m
length = 8.5 mm
Input power = 100 mW

Alignment

Pendulum thermal

Radiation pressure

Physical properties:
a = 0.55 10-6

l* = 1.4 W/m K
r = 2.2 g/cm3

C = 670 J/kg K
E = 72 GPa

Brownian motion

Shot noise

Johnson noise
Seism

ic

OSEM
electronic

Thermoelastic

Photothermal
Laser frequency

Violin thermal
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TNI Expected Spectrum - Sapphire

10cm x 10cm Al3O2
Q >= 106

Qpend >= 103

M = 4 kg
Finesse = 56,000
r0 = 150 m
length = 8.5 mm
Input power = 100 mW

Physical properties:
a = 5 10-6

l* = 40 W/m K
r = 4 g/cm3

C = 790 J/kg K
E = 400 GPa

AlignmentPendulum thermal

Radiation pressure Brownian motion
Violin thermal

Shot noise

Johnson noise
Seism

ic

OSEM
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 Low Frequency Limts

Magnet Sensor/Actuator (OSEM)

LED

PD

Coil

Magnet

Photodiode noise limits low frequency sensitivity

Mirror
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TNI Progress

Facility
Cleanroom and workspaces

Vacuum chamber and pumps: pressure £ 10-6 torr

Suspended optics

Photo by Ken Libbrecht
Photo by Ken Libbrecht
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TNI Progress
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Magnets and guide rods are the same as for LIGO
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TNI Progress

Laser & Modecleaner
Pre-Stabilized Laser (PSL): fRMS @ 100 mHz/ÖHz

Modecleaner locked: fRMS £ 30 mHz/ÖHz

Suspension hardware and electronics: xRMS £ 10-8 m/ÖHz at DC

Arm cavities
Fused silica optics

Suspension hardware and
electronics: xRMS £ 10-9 m/ÖHz at
DC

One arm and laser locked to
each other (without MC)

Finesse @ 60,000
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Arm Cavity Model

Mirror response (m/N)
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Thesis

1. Finish construction
Verify laser noise and calibrate instrument

2. Brownian motion measurement
Measure thermal noise in fused silica from 200 Hz to 10 kHz

Look for non-Gaussian noise

3. Thermoelastic noise measurement
Upgrade TNI to sapphire mirrors

Requires minimal changes to TNI equipment
and procedures

Photothermal measurement
Runs in parallel with the TNI
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TNI Timeline

1998 1999 2000 2001 2002 2003

Lock arm cavity Defend
thesis

Build cleanroom

Install vacuum
chamber

Lock suspended
Michelson

Build suspension electronics

Damp one suspended mirror

Lock PSL

1997

Design SOS

Order core optics

Test and characterize
modecleaner OSEMs

Assemble first SOS

Build servo electronics

Brownian
motion
measurement

Lock D modecleaner

Assemble arm cavities

Lock modecleaner and 1 arm
Thermoelastic
measurement
with Sapphire

Test linear mode cleaner

Build arm suspensions

Order Sapphire

Design DAQ
software

Photothermal
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Fused Silica Measurement

Noise similar to LIGO I
1. Lock the modecleaner and laser

2. Lock one arm

Use a broadband Pockel�s Cell (BBPC) at high frequency

Actuate directly on one mirror at low frequency

3. Lock two arms to the laser

4. Measure noise, expect x(w) µ f-1/2

5. Look for non-Gaussian noise
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Sapphire Measurement

Noise similar to LIGO II
1. Replace arm cavity test masses with Sapphire

2. Lock IFOs

3. Measure noise, expect x(w) µ f-1

Minimal equipment changes, and no new procedures
Thicker suspension wires

Boost OSEM gain by 2

Qmin = 106

Glue magnets and guide rods to Sapphire mirrors
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Single point failure modes

Equipment failure � a few weeks
Laser dies

Pump breaks

Seismic noise increases

Shadow sensor LEDs burn out

Major problems � a few months
Beam jitter

The Hanford PSL group has promised to help us reduce

Arm cavity servo

Garry Sanders has promised support from CDS

Use models to design servos

Scattered light

TNI has less of a problem than LIGO

New LIGO sensor-actuators are already in the schedule
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Photothermal Effect

Laser power fluctuations drive thermal expansion
For shot noise µ (h n P)1/2

For direct modulation µ P

Advanced GWDs
Coating losses

Laser power

Laser intensity noise

Depends on material properties
Lowest in Fused Silica

Low in Sapphire

Highest in Aluminum
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Test coatings
Compare phase response

of coated (SiO2, Al2O3)
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Thermal Noise
Limits event rate

Hard to measure with LIGO

Verify model

Thermal Noise Affects Event Rate

We need to understand thermal noise!
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Thermal Noise Sources Relevant to
Interferometric Gravitational

Wave Detection

Measure noise sources
Sapphire (thermoelastic noise) � LIGO II

Fused Silica (Brownian motion) � LIGO I

Photothermal noise � Advanced GWD proposals

Progress report
Prestabilized laser � frequency noise @ 100 mHz/ÖHz

Triangular mode cleaner � finesse @ 5,000, n @ 30 mHz/ÖHz

Test cavity � finesse @ 60,000

Completion in Spring 2002
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Lab Facility

Photo by Ken Libbrecht
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Inside the Vacuum Chamber

Photo by Ken Libbrecht
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Thermal Noise Sources

Brownian motion

SB(w) = 4 kB T H1 - s2L fmass

w Sqrt@2 pD YoungM SpotSize

Fused Silica x(w) = 2.4 10-18 (f/100 Hz)-1/2 m/ÖHz
Sapphire x(w) = 3.2 10-19 (f/100 Hz)-1/2 m/ÖHz

Thermoelastic damping

STE(w) = 
8 a2 H1 + sL2

Sqrt@2 pD
 

kB T2

r HeatCap
 

a2

SpotSize3
 
1

w2

Fused Silica x(w) = 9.0 10-19 (f/100 Hz)-1 m/ÖHz
Sapphire x(w) = 2.4 10-17 (f/100 Hz)-1 m/ÖHz

Photothermal noise

SPT(w) = 2 a2 H1 + sL2 
hbar 2 p c Absorption Finesse LaserP

l Hr HeatCap p SpotSize2L2

Fused Silica x(w) = 4.6 10-19 (f/100 Hz)-1 m/ÖHz
Sapphire x(w) = 2.2 10-18 (f/100 Hz)-1 m/ÖHz
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Fundamental Noise Sources

Pendulum thermal noise
fwire > 103

Violin modes
Wires at 20% of breaking strength

n0 @ 3 kHz

Radiation pressure

Shot noise
Much lower than necessary

Seismic noise
Estimated at 1 nm at DC
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Technical Noise Sources

Johnson Noise
Most of the TNI electronics has 50 W impedance

SQL
Shot noise � 3 10-22 m/ÖHz for 1kHz bandwidth

Radiation pressure � equal to shot noise at 100 Hz

Laser Frequency
Specified to be less than 30 mHz/ÖHz

OSEM
Shadow sensor dark current length noise is 10-9 m/rHz at DC

Aggressively filtered above 20 Hz

Alignment
OSEM electronics cross-couple 10% of photodiode length noise
to alignment length noise
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Cutting corners: magnet assembly jig
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Arm cavity mirrors
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(Approximate Sizes)
SideBack

A B

C D

E

Modecleaner mirrors
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Mirror response (m/N)

For time-domain analysis, maximum timesteps are 1e-4 seconds. Noise generator bandwidth is 10 kHz.
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SOS Model

4

Pitch open Loop
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X open loop
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0.0022
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POS Controller
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January 2001

Write a LIGO document describing the north arm
cavity lock

February 2001

Fully characterize north arm lock, and write a LIGO
document

Test the BBPC

Take laser from photothermal experiment and align
optics

March 2001

Lock mode cleaner using mode cleaner servo
electronics

Upgrade vacuum optics

Model the final servo electronics for the arm cavities
and the BBPC

New laser arrives!

PCG meeting in Santa Barbara.

 April 2001

Design arm cavity servo electronics

Analyze and repair arm cavity suspension controllers

 Test BBPC servo

 LSC meeting in LLO

 Get quotes for grinding, polishing, and coating
Sapphire

 New Pockel�s cells delivered � can now rebuild
photothermal experiment

 May 2001

 Design arm cavity servo electronics

 Analyze laser frequency noise with reference cavity

 Repair arm cavity suspension controllers

 Run photothermal experiment on Aluminum

 June 2001

Test arm suspension controllers

Build and test arm cavity servo electronics

Sapphire blanks delivered � ship for grinding and
polishing

July 2001

Test arm cavity servo (should result in fringe
dragging)

Fix arm cavity servo electronics

Lock mode cleaner, and align transmitted beam to
one arm

Design data acquisition software

August 2001

Photothermal experiment on sapphire

Sapphire optics ground � ship for coating

Design data acquisition software

Lock one arm cavity, modecleaner, and laser

Vacation

September 2001

Commission South arm cavity

Lock South arm cavity

If necessary, upgrade arm cavity sensor/actuators to
new LEDs and photodiodes

Write data acquisition software

October - December 2001

Reduce noise and take data

Write a LIGO document before Christmas

January 2002

Repeat December�s miracle, write a paper

Look for non-gaussian noise (continuous operation
and data acquisition)

Order wire, standoffs, and guide rods for sapphire

Repeat photothermal measurement with Al, SiO2,
Al2O3

February 2002

Rebuild arm cavities

Glue magnets and standoffs to sapphire mirrors

Inspect test cavity OSEMs

Install one sapphire arm cavity

Write a paper for the photothermal experiment

March - April 2002

Thermoelastic measurement with Sapphire

May 2002

Start writing thesis

Look for a job

September 2002

Defend thesis


