Tuning the LIGO I Suspension Controllers - A Work In Progress - 10/27/00

Contributors

- Mark Barton (LIGO Caltech)
- Gabriela Gonzalez (Penn State)
- Steve Penn (Syracuse)
- Betsy Weaver (LHO)

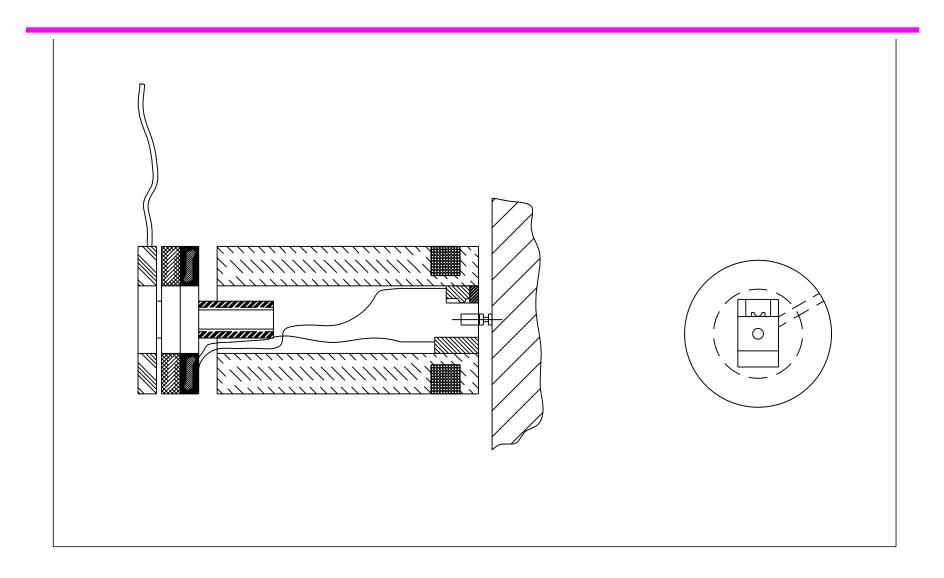
• References

• T000003-A, Suspension Controller Tuning Procedure

Overview

- Need for suspension control
- Controller electronics
- DAQS interface
- The operators' viewpoint
- Tuning the input matrix
 - Normal modes
- Tuning the output matrix
 - OSEM method
 - Optical lever method
- Puzzles

Suspension Structure (LOS)


LIGO-G000328-00-D

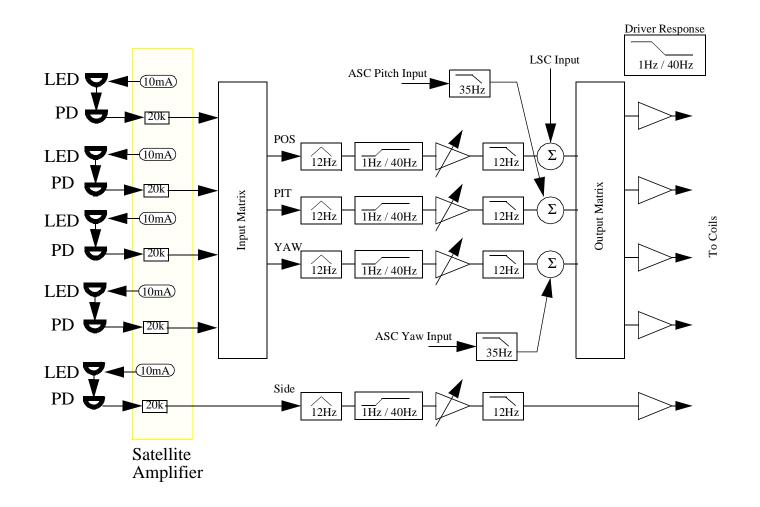
Need for Suspension Control

- Pendulum is a vibration isolator, but only at HF
 - Large resonant motions due to pendulum modes around 0.7-1.0 Hz
 - Other motions due to stack modes up to 10-14 Hz
- Need for local control to reduce amplitude/velocity to enable locking
- Need for inputs from global control system to maintain lock and stay close to correct operating point despite
 - differential tidal elongation of arms
 - residual seismic noise
- Therefore,
 - Sense position of five different points on the optic (4 face points, 1 side)
 - Apply feedback forces via coils acting on magnets glued to the optic

Sensor/Actuator (OSEM) Schematic

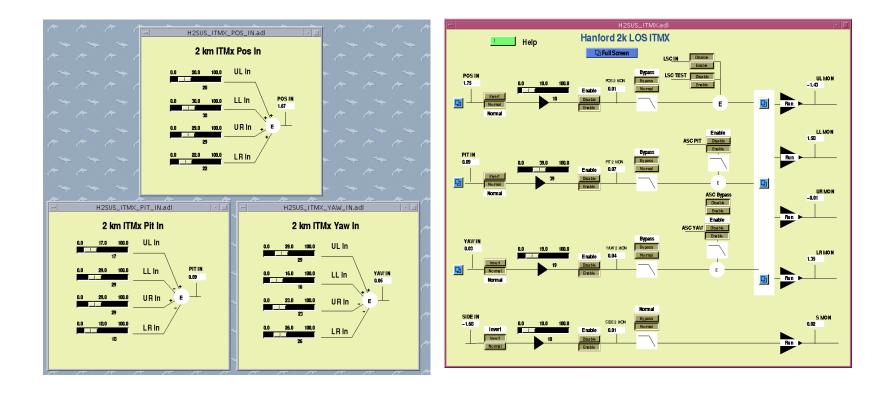
OSEM Design Detail

- Design features:
 - Cylindrical Macor body
 - Molybdenum conductive plating for static discharge
 - IR shadow sensor senses position of tip of optic magnet
 - Coil applies AC and small DC forces to optic magnet
 - Optional pitch adjustment magnet (PAM) applies larger DC forces
- The sensitivity of the sensors and the strength of the coil-magnet pairs varies from unit to unit due to component variations
- Need variable gain stages in the electronics to compensate for this
- Need a procedure for setting the gains in the electronics

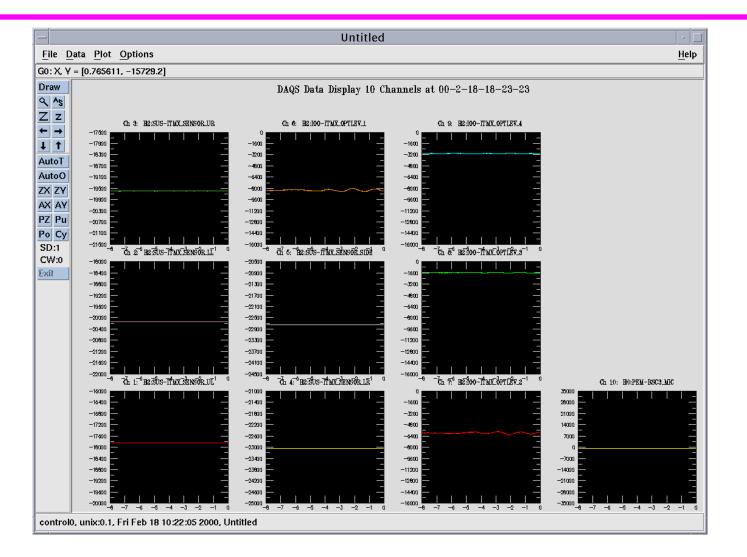


Controller Design

- Inputs from 4 face OSEMS and 1 side OSEM
- Input matrix diagonalizes 4 face OSEM signals to produce POS, PIT and YAW signals
 - gains adjustable in 0.1 % increments from 0 to 100%, nominal 25%
 - signs hardwired
- POS, PIT, YAW signals go to 3 single-input-single-output (SISO) controllers
- Output matrix produces 4 coil driver signals
 - gains adjustable in 0.1 % increments from 0 to 100%, nominal 100%
 - signs hardwired
- Side servo independent of
- Signal outputs to DAQS
- Control inputs from EPICSController Block Diagram

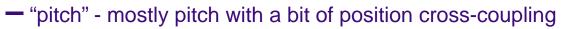


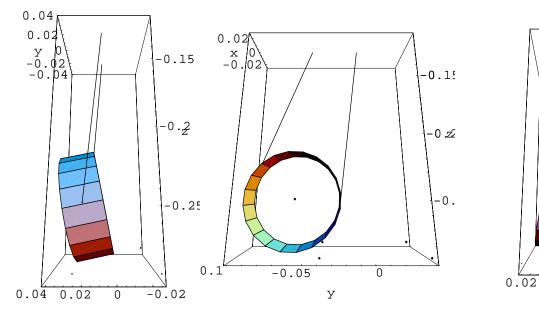
Controller Block Diagram

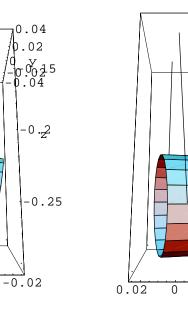


Operator's Viewpoint (i) Controller Screen

Operator's Viewpoint (ii) DataViewer


Input Matrix Tuning Overview


- Current strategy uses measurements of normal modes of the optic with the servos disabled:
 - Calculate mode shapes and frequencies analytically using nominal parameters
 - Record sensor signals with optic dangling freely
 - FFT sensor signals and identify mode peaks
 - Use pitch mode frequency to calculate exact value of d_{PITCH} parameter (actual value commonly differs from nominal due to manufacturing/assembly tolerances)
 - Use measured d_{PITCH} and nominal values of other parameters to recalculate mode shapes with more accurate position-pitch cross-coupling
 - Identify sensor amplitudes at the mode frequencies
 - Assume physical input to the sensors conforms to the mode model
 - Choose gains such that <sensor output>*<gain> conforms to the mode model



Normal Mode Calculation

- Four modes are of interest:
 - "pendulum" axial position with a bit of pitch cross-coupling
 - "side"/"transverse" at right angles to "pendulum"
 - "yaw" a fairly pure yaw mode

0

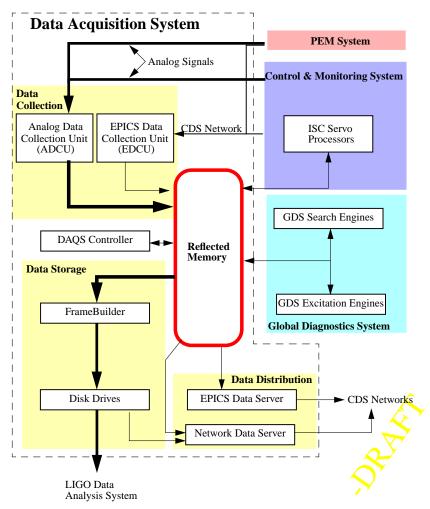
х

LIGO-G000328-00-D

-0.02

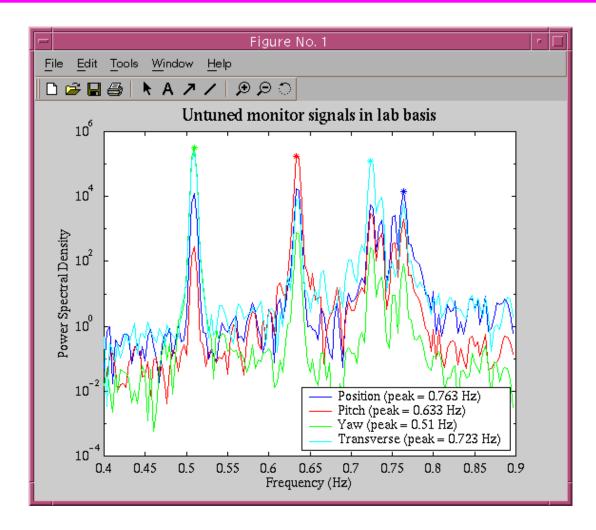
0.04

.02

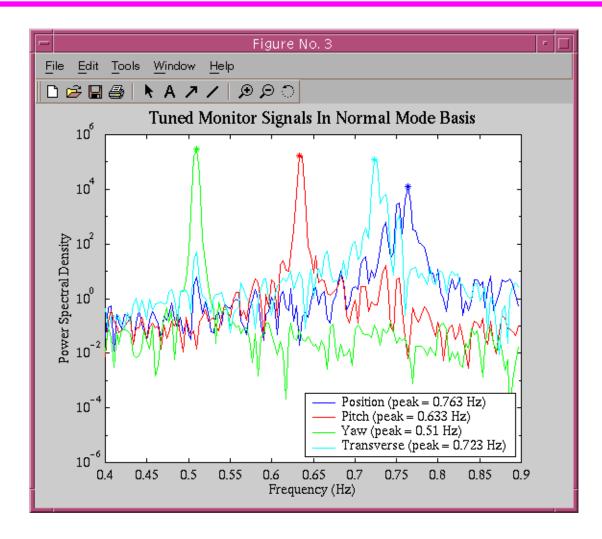

9 y -0-.00.215 0.04

-0.22

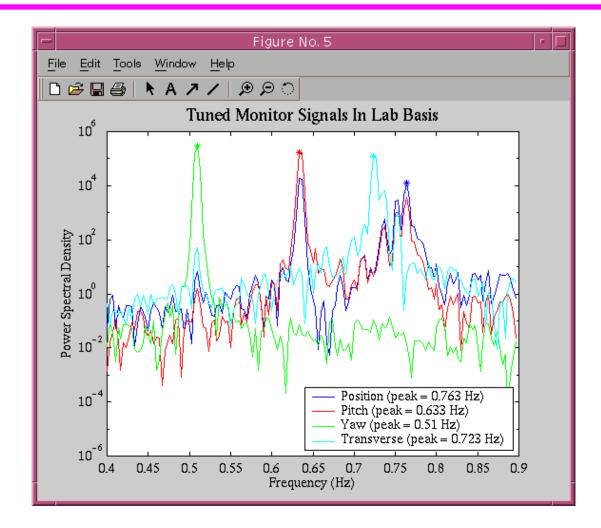
-0.25


Data Taking

- The outputs of the controller are acquired by and ADCU in the DAQS system.
- The digitized data go to the Network Data Server, either directly (real time data) or via the Frame Builder and disk drive (old data).
- A Matlab utility running on a CDS workstation in the control room downloads the output of the appropriate channels for the desired time interval.



Peak Identification



Allowance For Cross-Coupling

Effect of Tuning

Status

- Consistency is good
 - across data sets taken at different times ($\approx 1\%$)
 - across data sets of different lengths (provided position and side peaks are well resolved)
- However a discrepancy is suspected between OSEM and optical lever measurements of pitch and yaw
 - noticed through effect on output matrix tuning (see later)
 - corresponding to \approx 5% imbalance in sensors for SOS, 10% for LOS
- The discrepancy is being investigated. Suspects include
 - PAM magnets (LOS only)
 - improper FFT windowing
 - insufficient data record length -> insufficient position/side mode separation

Output Matrix Tuning

• Two methods:

- Using optical levers as a reference
 - requires an optical lever (special setup for most SOS, not possible for some SOS)
 - only suitable for position component of output matrix
- Using tuned input matrix as a reference
 - requires accurately tuned input matrix
 - suitable for all optics
 - suitable for whole output matrix

Output Matrix Tuning Procedure

- Repeat for each of POS, PIT, YAW component:
 - Choose measurement frequency ("low": 0.2 Hz, "high": 1.85 Hz)
 - Hookup GDS output to appropriate controller test input
 - Apply excitation using GDS Tools software
 - Measure response with 100% gain to each actuator
 - Measure response with perturbations to gain of particular actuators
 - Calculate cross-couplings
 - use either input matrix or optical levers
 - Interpolate to find improved gain settings
 - custom software does this automatically
 - Repeat using perturbations about the improved gain settings

GDS Tools Software

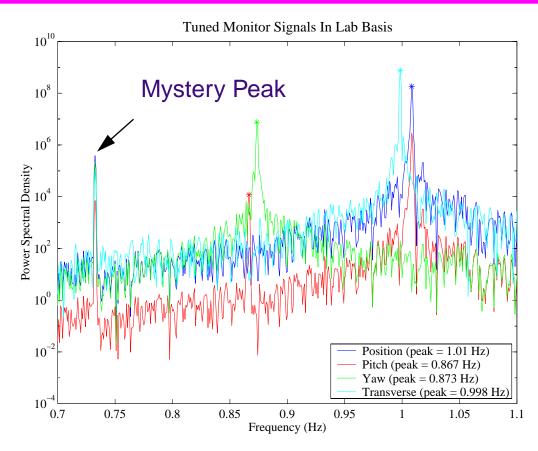
 Diagnostics test tools – /opt/CDS/d/ops/gaby/OptLev. 	xml		•					
<u>File Edit M</u> easurement <u>U</u> tilities			<u>H</u> elp					
Measurement Excitation Result Iterator Synchronization Environment Defaults								
Measurement Selection								
C Fourier Tools C Swept Sine Response C Sine Response C Triggered Time Response								
Channels 0 to 19 C Channels 20 to 39 C Channels 40 to 59 C Channels 60 to 79 C Channels 80 to 99								
─ ┌─Measurement Channels──────								
0 🔽 H2:IOO-ITMX_OPTLEV_1 💽 5 🗖 💽 💽 10 🗖	▼ 15 🗖		-					
1 🔽 H2:IOO-ITMX_OPTLEV_2 💽 6 🗌 💽 💽 11 🗖	▼ 16 🗆		-					
2 🔽 H2:100-ITMX_OPTLEV_3 💌 7 🗆 💌 12 🗖	▼ 17 🗆		-					
3 🔽 H2:IOO-ITMX_OPTLEV_4 💌 8 🗖 💽 🔽 13 🗖	▼ 18 🗆		-					
4 🗆 H2:SUS-ITMX_SENSOR_LL 💌 9 🗖 💽 💌 14 🗖	▼ 19 □		-					
CSine Response								
Measurement Time: 🔽 10 🗲 cycles 🗖 0 🗲 sec Settling Time: 100.0 🗬 %								
Window: Hanning Power Spectrum Harmonic Order: 5								
Averages: 5 🚔 Average Type: 🕫 Fixed C Running C Exponential								
Start Time								
© Now								
C In the furture: 0:00:00 🚔 hh:mm:ss								
C In the past: 0:00:00 € hh:mm:ss								
C GPS: 634865416 ★ sec 0 ★ nsec								
C Date/time: 17/2/2000								
Measurement Information								
Measurement Time: 18/02/2000 00:10:12 UTC								
Comment / Description:								
	1							
Start Pause Resume		Abort						
Test done (Measurements 1 / Averages 5)	Repeat	Sine response	done					

Measurement Program

 Table 1: Measurement program for Round 1 of tuning for the position, pitch and yaw components of the output matrix using the sensors as reference

Position		Pitch		Yaw	
UL UR LL LR	Filename	UL UR LL LR	Filename	UL UR LL LR	Filename
100 100 100 100	SensorPosInit.xml	100 100 100 100	SensorPitInit.xml	100 100 100 100	SensorYawInit.xml
90 90 100 100	SensorPosUp.xml	90 90 100 100	SensorPitUp.xml	90 100 100 90	SensorYawMain.xml
100 100 90 90	SensorPosDown.xml	100 100 90 90	SensorPitDown.xml	100 90 90 100	SensorYawOff.xml
90 100 90 100	SensorPosLeft.xml	90 100 100 90	SensorPitMain.xml	90 100 90 100	SensorYawLeft.xml
100 90 100 90	SensorPosRight.xml	100 90 90 100	SensorPitOff.xml	100 90 100 90	SensorYawRight.xml

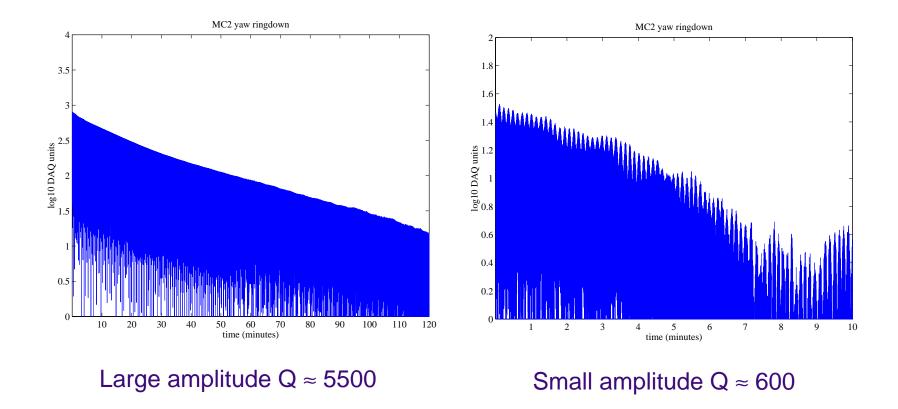
Typical Results



Status

- Software for all combinations written
 - Position component, optical lever method
 - Position, pitch yaw components, OSEM method
- Consistent results across runs for each method separately
- Discrepancy between optical lever and OSEM methods
 - corresponding to \approx 5% imbalance in sensors for SOS, 10% for LOS
- The discrepancy is being investigated. Probably in input matrix tuning procedure. Suspects include
 - PAM magnets (LOS only)
 - improper FFT windowing
 - improper modelling

Puzzles (i)



- Mysterious peak in LLO electronics
 - Very well-defined frequency (0.77345 Hz) -> electronic

Puzzles (ii)

• Poor, somewhat amplitude dependent Q on some optics

Conclusions

- More debugging of existing procedure required
 - some data taken last week but not yet fully analysed
- Some debugging of LLO electronics and optic installation required
 - Sany Yoshida, Warren Johnson investigating Q issue
- LHO status check required
- Forthcoming digital suspension controller will be a major improvement
 - arbitrary signs in I/O matrices (useful for extreme cases, e.g., dead sensor or actuator)
 - side signal can be included in the diagonalization
 - frequency dependent I/O matrices possible

