Thermal lensing in

IO-components

Guido Müller, Ramsey Lundock, Adam Arbree, Chris Neilson Sany Yoshida, David Tanner, David Reitze

> Department of Physics University of Florida

> > LSC-meeting Hanford, WA August 2000

LIGO-G000239-00-D

To provide LIGO II with active optical crystals that

- can handle 150 W
- have a well known thermal lens
- do not degrade the spatial TEM00-mode by more than 2%.
- have a small spatial birefringence.

That are

- Faraday Isolators that
 - have an isolation of around 40dB
- electro optical modulators
 - can modulate the phase with a modulation index of 0.5 with reasonable drive voltage.
 - have a small RFAM (it's not as essential as in LIGO I)
 - with an amplitude stability of $< 10^{-9}/\sqrt{Hz^a}$

Started a program at UF to test different designs/components.

Present program and first results.

^{*a*}all specs are subject to change without notice

Lasers:

- 55W-1053nm Nd:Ylf, arc lamp pumped (Photonics Industries)
- 10W-1064nm Nd:YAG, diode pumped (Light wave)
- 700mW NPRO, diode pumped (Light wave)
- 15mW HeNe

Ways to measure the beam shape:

- Chopper
- Galvos+Pinhole (MIT-Phase camera)
- Shack-Hartmann Detector
- beam scan (not yet)
- Interferometry

Goal is to measure the:

- thermal lens
- thermal degradation of the beam
 - in shape
 - in polarization
 - phase (RFAM-in EOM)
- thermal time constant
- degradation of the crystal (if any).

Profile measurement with Galvo

both profiles show the potential of the lasers and of the diagnostics.

Unfortunatly, the 55W is not long term stable yet.

THERMAL LENS IN TGG

Results in 20mm TGG:

P = 50 W	w = 1 mm	$\Rightarrow f = 5 m (+/-2m)$
P = 150 W	w = 1 mm	$\Rightarrow f = 1.5m$

Can be included in mode matching calculation.

2 Problems: Get a non Gaussian beam shape ? Only mode match with full power ?

$$f = R/2(n-1) \approx R$$
 $n_{TGG} = 1.55$ $ds = w^2/2R$
 $P = 50 W \Rightarrow ds \approx 100 nm \Rightarrow TEM_{00} \approx 99\%^a$

 $P = 150 W \implies ds \approx 300 nm \implies TEM_{00} \approx 95\%$

Compensation: Use of material with dn/dT < 0, for example: FK 51, BBO, NaCI, ...

Optical Path length difference:

 $\Delta n_1(r)t_1 + \Delta n_2(r)t_2 = OPD(r)$ $\Delta n_i(r) = T_i(r)dn_i/dT$

is a function of material, absorbed power and length.

^{*a*}D. Reitze, priv.comm.

Scan over crystal and compared location of max/min

Optical Path Length Difference (OPD):

Sagitta of 100nm at 1mm.

Similar to thermal lensing results.

High Power testing program started with:

- Characterization and optimization of the lasers, especially the 55W-YLF.
- Testing and comparing various detection methods.
- first experiments show: f=5m at 50W in 20mm TGG.
- more results in additional talks...
- started modelling the propagation

It's on its way.