Entry of LIGO into <u>SuperNova Early Warning</u> <u>System (SNEWS)</u>

Szabolcs Márka (Caltech),

Kenneth Ganezer (UCSDH)

LIGO-SNEWS Project Goals

- Send and receive real time SN alarms
 - Prompt, automatic analysis upon alarm
 - Continuous, hierarchical search for SN
- Distribute supernova (SN) alarms to LSC
- Point of contact (SNEWS, Astronomers...)
- Measure GW, SN and v properties
 - Analyze capabilities
 - Develop strategies to extract information

Supernova signals

- Near immediate emission of
 - Neutrinos
 - Gravity waves
 - Probably GRBs
- Delayed emission of
 - Light (visible, UV, etc.)
 - Radio waves

Advanced warning is necessary!

What is SNEWS?

The Super-Kamiokande Detector

- International collaboration of SN sensitive neutrino detectors
- Provides near-real time SN alarm
- Based on inter-experiment coincidence
 - Timing and pointing information
 - Very high confidence
 - Less than 1 false alarm/100y!
- Coordinates detector downtime
- Centralized timing verification
- Privacy is ensured
 - Input data is strictly secured

SNEWS Project Organization with LIGO

SNEWS Benefits and Requirements

- Top Benefits
 - High confidence alarm
 - Less than 1 false alarm per century
 - Real time cooperation among fields
 - Absolutely the best science!
 - Motivates early work on SN at LIGO
 - v + GW together promise top physics
 - Accelerates LIGO SN learning curve
- Major requirements
 - MUST have < 1 false alarm/week!</p>
 - We must understand our noise!

SNEWS Collaboration Members

Pietro Antonioli ¹, Hans-Gerd Berns ², Adam Bouchta ³, Peter Doe ², R. J. Douglas ⁴, Walter Fulgione ⁵, Yoshiyuki Fukuda ⁶, AlecHabig⁷, J. Heise ⁸, Edward T. Kearns ⁷, Lutz Koepke ⁹, Art McDonald ¹⁰, Alexander Murphy ¹¹, Hakki Ogelman ¹², Leif J. Robinson ¹³, **Kate Scholberg** ⁷, Michael H. Schwendener ¹⁴, Yoichiro Suzuki ⁶, R. Svoboda ¹⁵, Reda Tarout ¹⁴, Mark R. Vagins ¹⁶, Carlo Vigorito ⁵, Clarence J. Virtue ¹⁴, Ralf Wischnewski ³

¹INFN-Bologna, Italy; ²University of Washington, Seattle, WA; ³DESY, Zeuthen, Germany; ⁴Frequency and Time Standards, Institute for National Measurement Standards, National Research Council, Ottawa, Ontario, Canada; ⁵Institute of Cosmo-Geophysics, CNR, INFN-Torino, Italy; ⁶Kamioka Observatory, ICRR, University of Tokyo, Japan; ⁷Boston University, Boston, MA; ⁸University of British Columbia, Vancouver, Canada; ⁹Mainz University, Mainz, Germany; ¹⁰Queen's University, Kingston, Ontario, Canada; ¹¹Ohio State University, Columbus, OH; ¹²University of Wisconsin, Madison, WI; ¹³Sky & Telescope magazine, Cambridge, MA; ¹⁴Laurentian University, Sudbury, Ontario, Canada; ¹⁵Louisiana State University, Baton Rouge, LA; ¹⁶University of California, Irvine, CA

Large Volume Detector (LVD), Super-Kamiokande (Super-K), Antarctic Muon and Neutrino Detector Array (AMANDA), Sudbury Neutrino Observatory (SNO), Monopole, Astrophysics and Cosmic-Ray Observatory (MACRO), Observatory for Multi flavor Neutrinos from Supernovae (OMNIS), Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND)

SNEWS advisory board: B. Barish (MACRO), S. Barwick (AMANDA), W. Fulgione (LVD), A. McDonald (SNO), Y. Suzuki (Super-K)

GW from supernova core collapse

- Candidates: Type II, Ib(?)
- Three major mechanisms
 - Asymmetric core collapse
 - Models, simulations exist
 - Level of asymmetry is not clear
 - Some related observations exist
 - Boiling of neutron star
 - Probably visible if close by
 - Hang-up processes
 - Rapidly rotating "bar-like" cores
 - Fraction of SN is unknown

Asymmetric Core Collapse

- Significant results exist
 - Some GW is expected
 - Models, simulations exist
 - Observed high NS recoil speeds
- Sensitive LIGO range
 - Weak radiation expected
 - LIGO I reach somewhere between:
 - ~50kpc (galactic) (Arnaud)
 - Based on simulation
 - ~3-4Mpc (M81) (Nagin)
 - Based on observed recoils
- The rate is very low
 - We need luck but have a chance
 - Observation = Significant science

Non-spherical Boiling of Neutron Star

- Newborn NS is convectively unstable
 - Almost certainly asymmetric process
 - Models exist (Burrows)
- Weak waves are predicted
 - LIGO I will only have galactic reach
 - Comparable to the range of Neutrino detectors
- Probably very common NS behavior
 - Rate might be relatively high
 - Low but finite chance!
 - Expected high scientific payoff!

Rotation-Induced Hang-up Processes

- Rotation strongly flattens core
 - "Bar-like" core spins rapidly
 - Might even break up
 - Very strong GW radiation is expected
 - Similar to NS-NS coalescence signal
 - Substantial LSC knowledge base
 - Unknown fraction of SN displays this behavior
- Possible huge reach = Finite rate!
 - LIGO I might reach the Virgo Cluster
 - We have significant chance for detection

Possible Scientific Benefits of SN Detection and Collaboration between LIGO and Neutrino Observatories

- Upper limit or measurement of neutrino mass
- Improved understanding of SN core collapse
- Limits or measurements of GW properties
- SN direction
- Extended SN range for neutrino detectors
- Upper limit on the total energy emitted in the GW channel during SN core collapse
- The far reach of LIGO II will dramatically increase early SN warning frequency for astronomers
- Increased confidence in SN alarms

... and dozens of great things not thought of yet!

Interaction between LIGO & SNEWS

- What does LIGO get?
 - Initially we will get the same warning as any other field
 - Later we might get LIGO specific warning
 - Expertise in neutrino physics
 - Motivation and ways to share data
- What should LIGO provide?
 - Possibly participate in SNEWS code and infrastructure development
 - Ultimately provide real time automatic SN alarm towards SNEWS and the LSC community
 - NOTE: This warning is automatic and in real time; it will initiate the detailed SN search by LSC!

SNEWS Warning Requirements

- False alarm rate requirement
 - 1/week or less for contributors
 - Extremely low final false alarm rate
 - Less than 1/century!
 - Maintains high confidence in SNEWS
 - Ensures significant attention in case a SNEWS alarm is released
- Data quality
 - We MUST understand our noise
 - We have to provide significant and accurate information with confidence levels
 - Privacy

Project Organization (incoming warning)

1. Promptly distribute warning to interested LSC members

- 2. Initiate the scan of recent data at the observatories
 - Strengthen the search by
 - use of timing (if available pointing, distance, etc.) information contained by the SNEWS datagram.
 - utilizing more sensitive (slower) algorithms, which require more computing power than available for the real time search
- 3. Depending on the result of this strong search, various preliminary measurements and upper limits will be computed, based on the assumption that the SNEWS warning is real.
 - It will require the immediate transfer of ~2 hours of data from the detectors to the CIT LDAS facility
 - The estimates will be secured and will not be communicated to outside of the LSC
 - The results will serve as preliminary information for LSC scientists, who will
 continue the high level very detailed analysis of the data off line
- 4. Accurate record of the warning and the results of automatic search will be archived in the LIGO database for future reference

Project Organization (outgoing alarm)

- Loose (fast) filters on LDAS clusters at LHO and LLO will scan the incoming data real time looking for a SN signature
 - To strengthen the search different algorithm banks might be used at different observatories
- 2. The properties of a candidate event are passed to the SNEWS server at CIT if no environmental veto is issued by the GDS system
- 3. The server checks for loose coincidence between the detectors
- 4. In case of positive result a strong search is initiated by the server
 - Prompt transfer of ~30 minutes of data to CIT LDAS facilities
 - Detailed (slower than real time) search will be initiated
 - Coincidence and lack of environmental veto will be required
- 5. If all the requirements are satisfied a LIGO-SNEWS warning is issued
 - Three phase development:
 - Construction phase: Warning will be sent only to developers
 - Testing phase: Warning will be sent to interested LSC members
 - Release phase: Warning will be released to SNEWS
 - This phase will happen only after full LSC approval
- 6. Alarm parameters will be archived and referenced to the corresponding SNEWS coincidence record (if issued)

Coincidence Requirements

- SNEWS uses simple time-windowed coincidence
- LIGO will require triple internal coincidence before issuing an alarm
- Initially we will use the similar basic method, but
 - environmental veto will be considered from the beginning
 - coincidence window will be set according to event type
 - in case of incoming SNEWS warning we will use the SNEWS timing and pointing information
- Later we plan to use advanced coincidence requirements, which take event and detector characteristics into account

Resources

- Optimal use of existing LSC resources
 - Integrate into LDAS infrastructure
 - Utilization existing analysis systems
 - Full compatibility with standardized LIGO data structures
 - Complement ongoing LSC work on burst sources
 - Build on existing results, expertise and allocation
 - Use all appropriate existing search methods
 - Implement new/not yet used but promising algorithms
- Optimized load on computer systems
 - Hierarchical use of machines
 - Require high load only in case of high confidence
 - Off-line post-alarm analysis using reserves

Hardware and Human Resources

- A dedicated SUN workstation at CIT as
 - alarm distribution center and SNEW client
 - coincidence evaluation & post-alarm coordination hub
 - supernova online document library server
- Personnel
 - LSC, CIT personnel
 - UCSDH Graduate and Undergraduate students
 - Estimated effort: 2 years <u>Full Time Equivalent</u>
- LSC and LIGO-wide distributed analysis
- LDAS, GDS and theory support

Related Documents

- LIGO-SNEWS web-page
 - http://www.ligo.caltech.edu/~smarka/SN/snews-LIGO.htm
 - Comprehensive SN related reference list!
- General document (draft LIGO note)
 - http://www.ligo.caltech.edu/~smarka/SN/Document.pdf
- 4 page LSC proposal (draft)
 - http://www.ligo.caltech.edu/~smarka/SN/Prop.pdf
- E-mail questions:
 - smarka@ligo.caltech.edu

Conclusion

- It makes sense for LIGO to join SNEWS
- This is the right time
- Development of a real time, automatic LIGO SN warning is a challenge..., but
- it is possible to develop a useful warning!
- ◆ Takes luck to observe a SN with LIGO, but
- the possible scientific payoff is huge!
- It takes the LSC to do so...

Let's do it!