

Gravitational Waves:

A Challenge to Theoretical Astrophysics

Trieste, 5-9 June 2000

LIGO Status and Plans

Barry Barish 5 June 2000

LIGO-G000174-00-M

Seismic Isolation Systems

Progress

- » production and delivery of components almost complete
- » early quality problems have mostly disappeared
- * the coarse actuation system for the BSC seismic isolation systems has been installed and tested successfully in the LVEA at both Observatories
- » Hanford 2km & Livingston seismic isolation system installation has been completed, with the exception of the tidal compensation (fine actuation) system
- » Hanford 4km seismic isolation installation is complete

HAM Door Removal (Hanford 4km)

2km Fabry-Perot cavity

- Includes all interferometer subsystems
 - » many in definitive form; analog servo on cavity length for test configuration
- confirmation of initial alignment
 - » ~100 microrad errors; beams easily found in both arms
- ability to lock cavity improves with understanding

```
» 0 sec 12/1 flashes of light
```

- » 0.2 sec 12/9
- » 2 min 1/14
- » 60 sec 1/19
- » 5 min 1/21 (and on a different arm)
- » 18 min 2/12
- » 1.5 hrs 3/4 (temperature stabilize pre modecleaner)

LIGO II incremental improvements

Parameter	Curve I	Curve 2	Curve 3, 4	Curve 5, 6, 7
Parameter	Initial LIGO I value	Double suspension, 100 W laser, thermal de-lensing	Signal tuned configuration	Alternative test mass material
Input power to recycling mirror	6w	62w	140w	
Mirror loss (transmission+scatter)	50 ppm	20 ppm		
Effective power recycling	30	93		
Substrate absorption	5ppm/cm	0.4 ppm/cm		17 ppm/ cm
Thermal lensing correction	(none)	factor 10		
Suspension fiber	steel wire, $Q = 1.6 \times 10^{5}$	fused silica $Q = 3 \times 10^{T}$		
Test mass	fused silien. 10.8 kg. Q = 1×10 ^h	fused silicn. 10.8 kg, Q = 3×10 ⁷		sapphire, 30 kg, Q = 2×10 ⁸
Signal recycling mirror transmission	(none)		T=0.6 (curve 3) T=0.15 (curve 4)	Curve 5: none T=0.3 (curve 6) T=0.09 (curve 7)
Tuning phase			0.7 rnd (curve 3) 0.45 rnd (curve 4)	1.3 rad (curve 6) 0.45 rad (curve 7)

LIGO astrophysical s

Sensitivity of LIGO to coalescing binaries

LIGO astrophysical s

Sensitivity of LIGO to continuous wave sources

Pulsars in our galaxy

- »non axisymmetric: $10-4 < \varepsilon < 10-6$
- »science: neutron star precession; interiors
- »narrow band searches best

Supernovae

our galax

Supernovae

Grav

1

Non axisymmetric collapse

Rate 1/50 *y*

'burst' signal

LIGO astrophysical sources

SN1987A

Sensitivity of LIGO to burst sources

Conclusions

- LIGO I construction complete
- LIGO I commissioning and testing 'on track'
- Interferometer characterization underway
- Data analysis schemes are being developed, including tests with 40 m data
- First Science Run will begin in 2002
- Significant improvements in sensitivity anticipated to begin about 2006