

LIGO

An example of a ground-based interferometric gravitational wave detector

David Shoemaker

5 June 2000

LIGO Infrastructure: Two sites, separated by 3000 km

Hanford, Washington

Livingston, Louisiana

Optical Configuration

LIGO-G000153-00-M

Projected Performance

- Seismic low-frequency limit
- •Thermal noise in mid-range
- Photon shot noise at high freq.
- •Possible to detect solar-mass neutron-star inspiral events, but not often
- Surprises...

Hanford Observatory Status Overview

Washington 2 km Interferometer

- » Seismic isolation installation is complete
- » Laser system installed and operational
- » All suspended optics are installed and aligned
- » ~50% of the output optics & sensors installed; balance by 6/00
- » Data Acquisition & Global Diagnostics System installed
- » Most servo-control electronics installed; balance by 7/00
- » Laser locks to the Mode Cleaner routinely & robustly
- » Vertex Michelson has been locked
- » Each 2 km arm cavity has been locked

Washington 4 km Interferometer

- » Seismic isolation installation complete
- Infrastructure in place

Livingston Observatory Status Overview

Louisiana 4 km Interferometer

- » Seismic isolation installation is complete
- » Laser system installed and operational
- » All suspended optics are assembled
 - Input optics installed and aligned
- » Mode Cleaner output optics & sensors installed
- » Data Acquisition & Global Diagnostics System installed
- » Mode Cleaner servo-control electronics installed
- » Balance of installation by 10/00
- » Laser locks to the Mode Cleaner routinely

Test Configuration: 2 km Fabry-Perot Cavity

- Includes all interferometer subsystems
 - » many in definitive form; analog servo on cavity length for test configuration
- Ability to lock cavity improves with understanding

2km Fabry-Perot cavity

models of environment

- » temperature changes on laser frequency
- » tidal strains changing baselines
- » seismometer/tilt correlations with microseismic peak

mirror characterization

- » losses: 1-2% dip in reflected signal intensity --- ~30 ppm/bounce total loss
- » scatter appears to be better than requirements

• 24 hour run

- » long-term characterization
- » robustness, drifts
- » see tidal forces (also freq. ref. Temperature drift...)

2km Fabry-Perot cavity: 1 hr stretch with Unlock-Lock Transient

Cavity Transmitted Signal

Input Test Mass Control Signal

Schedule for LIGO I

- Full 2km Hanford configuration locked Fall '00
- Full 4km Livingston configuration locked Spring '01
- Start of coincidence measurements!
- Triple coincidence observations Spring '02
 - » networked with other detectors (GEO, VIRGO,...)
- Dedicated to a minimum of one year integrated Science Run

...then...

LIGO II

- Next generation interferometer in planning
- Make a significant change in 'Physics Reach'
 - » significantly improved probability of detecting foreseen sources
 - » significantly improved overall sensitivity
- Fully exploit basic configuration
 - » power/signal recycled Fabry-Perot Michelson
 - » transmissive input optics
 - » room-temperature pendulum suspension
- Quantum limited at all useful frequencies
 - » optimize, not maximize, power
 - » Newtonian background, thermal noise lurking below

LIGO II Technologies

- Adopting some improvements, pioneering others:
- Optical configuration
 - » addition of signal recycling optimization of response)
- Quantum-limited sensing
 - » broad-band improvement due to increase in circulating power ~150 W
- Thermal noise
 - » pendulum thermal noise improvement through change to fused silica (factor 6 reduction), design of fibers (~factor 5 reduction):
 - » test mass thermal noise: change to sapphire masses
- Seismic noise
 - » improved filtering to ~10 Hz 'brick wall' (touching Newtonian background) possibly through high-gain servo-controlled platforms

LIGO II Draft Sensitivity

- Significant increase at all frequencies
- Tunable response
- System trades,
 Thermal noise
 still in study

LIGO-G000153-00-M

LIGO II Schedule

- LIGO I science run till late 2004
- ready all designs and components for LIGO II in interim
- Install in one interferometer, shakedown, refine
- Have complete new network in 2007-2008
- (one day of LIGO II equivalent to entire LIGO I run!)

LIGO-G000153-00-M