The Thermal Noise Interferometer

Measuring Displacement Noise in Advanced Suspended Interferometers

Ken Libbrecht, Eric Black, Luca Matone, Shanti Rao LIGO/Caltech

Objectives:

- Characterize Advanced Detectors
 Verify Design Specifications
 Measure Noise Spectrum
 Measure Non-thermal Noise Properties
- ► Examine Physics

Noise Physics, Statistics Reach (and Exceed) the SQL

LIGO-G000127-00-D

TNI Design Elements

The many advantages of using a short cavity length (L \approx 1cm)

- ► Short Cavity Storage Time
 - \Rightarrow Use High Finesse Cavities
 - \Rightarrow No Power Recycling
- ► Independent Cavities
 - \Rightarrow No Recombination
 - \Rightarrow Independent Controls
- ► Reduced Optical Pointing Requirements no WFS
- Reduced Laser Stability Requirements
- ► Common Support for Test Masses
 - \Rightarrow Reduced Seismic Noise
 - \Rightarrow Lower Suspension Recoil Thermal Noise
- But...Smaller laser spot size \Rightarrow Higher Internal Thermal Noise

Test Cavities

TNI Outside View

...before clean-room cover around vacuum chamber

TNI View inside vacuum chamber

TNI Phase I Expected Spectrum

TNI Phase II Expected Spectrum

TNI Phase III (?) Expected Spectrum

PhotoThermal Noise Measurement

