Julien Sylvestre LIGO-MIT julien@ligo.mit.edu

> LSC Meeting 16 March 2000

LIGO-G000104-00-D

Pipeline for the extraction of bursts

Time-frequency representation

An example, T=5s, 2.5s overlap, triangular window:

Candidate Events

- A constant frequency slice of the spectrogram has a known distribution, if no transients are present.
- "Robust" against non-gaussian noise by the central limit theorem.

Distribution of power P at some frequency, assuming a true steady signal power Q:

$$p(P|Q) = \frac{1}{P_0} I_0 \left(\frac{2\sqrt{PQ}}{P_0} \right) \exp\left(-\frac{(P+Q)}{P_0} \right)$$

So that

$$\mu_P = Q + P_0$$

and

$$\sigma_P^2 = P_0^2$$

Candidate Events

- H0: The noise is distributed according to p(PIQ).
- The parameters are estimated from the sample mean and variance
- For P the maximum value of power, H0 is rejected if the cumulative probability distribution up to P is larger than the confidence of the test.
- The time for which H0 was rejected is recorded and marked as a candidate event.
 That particular value of time is excised from the frequency slice under consideration, and the test is rerun until H0 is accepted.

The result is the time-frequency location of candidate events:

Coincidences List

Given N channels of particular interest, a coincidence is recorded whenever an event
is present in all N channels within a rectangular window of a pre-defined size in the
time-frequency domain.

The results is a "cleaner" list of possible locations for transients:

Events in the time-domain

 Interesting events are identified, and the proper regions of the time-frequency domain are extracted.

Models

Linear, no delays	Principal Component Analysis Independant Component Analysis
	$y_1(t) = a_{11}x_1(t-T_{11}) + + e_1(t)$
	$y_2(t) = a_{21}x_1(t-T_{21}) + \dots + e_2(t)$
Linear, delays	Box-Jenkins
	$y(t) = \frac{A_1(q)}{B_1(q)}x_1(t) + + \frac{C(q)}{D(q)}e(t)$
Non-linear	Variable weighting of large (q>1) / small (q<1) peaks
	$y(t) \rightarrow y^q(t)$
	$\hat{y}(f) ightarrow \hat{y}(f) ^q e^{i \operatorname{arg} \hat{y}(f)}$

Time Scale

- There are no reasons, a priori, to expect the statistics of the transients to be dominated by a single time scale. Bursts of different scales may have very different amplitude distributions.
- Identifying properly the relevant scales is crucial in devising a time-frequency analysis technique.
- One approach: Statistics of the excursions above a threshold for (whitened) time series at various resolutions.

Note 1, Linda Turner, 05/09/00 10:15:44 AM LIGO-G000104-00-D