Suspension Diagonalization in LIGO I

G. González (PSU)

M. Barton, S.Penn

D. Shoemaker, Eric Black, and many others....

Mirror motion is measured with a "local" or a "global" sensor, and then forces are applied to control the motion.

The local sensors are 4 shadow sensors in the back of the optics and one on the side. The coil-magnet actuators are colocated.

Then,

$$\begin{array}{ll} UL = x + D\theta + D\varphi & F = F_{UL} + F_{UR} + F_{LL} + F_{LR} \\ UR = x + D\theta - D\varphi & N_{\theta} = F_{UL} + F_{UR} - F_{LL} - F_{LR} \\ LL = x - D\theta + D\varphi & N_{\phi} = F_{UL} - F_{UR} + F_{LL} - F_{LR} \\ LR = x - D\theta - D\varphi & \end{array}$$

However, shadow sensors have in general different sensitivities, and (in LIGO I OSEM sensors) they are sensitive to transverse motions.

In LIGO I, local damping is done as "modal damping" (not point-to-point), so the "wrong signals' get transformed into "wrong forces" through the local servo.

Solution: "diagonalization"
We use variable digital gains in suspension controllers.

Tuned sensors:

A more critical problem: how to apply forces without introducing angles.

In LIGO I suspensions, there is a non-zero pitch produced by a pure force used to produce a displacement

... for example, when locking an optical cavity

We solve this by using the actuation matrix to introduce a compensating torque for every force, making it "non-diagonal" in a specific way.

However, we then introduce spurious angular noise at higher frequencies.

⇒Mode-dependent matrix (lock acq. vs detection)

....or freq. dependent actuation matrix

For these and other reasons, LIGO I is building a 2^{nd} generation of suspension controllers.

Conclusions: Questions for LIGO II

Are these issues important in LIGO II, with multiple pendulum modes strongly coupled by design?

Can we anticipate alignment problems and angular noise?