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SAS ConceptSAS Concept

1. Ultra Low Frequency pre-attenuation stage
– Filters out micro seismic peak
– Platform for inertial damping and controls
– Gain height for passive seismic chains

2. Active Inertial Damping / Position Control
– Drains energy from chain resonances
– Positions the mirror

3. Passive attenuation chain
– Provides all in-band seismic attenuation.

4. Mirror Suspensions and Controls



SAS Key PointsSAS Key Points

• Entirely passive attenuation
– For reliability and excess noise reduction

• Relocation of maximum fraction of controls above 
the passive attenuation stages
– Minimize noise/excess noise re-injection risk
– Ease of controls

• Do not burden main attenuation chain with 
ancillary optics
– Ancillary optics separately dealt with
– Optical table possible (even easy) see Ham design



SAS Key Advantages

• Reliability:  
• passive components always work

• Resilience
• Loss of power and/or controls => system stays put

• Loss of active component => system survives

• Low frequency, low residual motion
• Low residual speed for lock acquisition

• Softness
• Low actuation power  (mW), no damage potential



SAS Design Flexibility

• Modular assembly
• Scalability
• Application examples

– LIGO
– TAMA
– 40 m
– 2-in-1

• HAM and BSC topologically similar













Development Advancement

• Built, tested and debugged 1:1 prototype of all 
components (GASFs, IP, LVDTs,2D voice coils, 
Accelerometers)
– Perfectly viable systems Designed with tested

components

• Advanced components prototyped (MGASFs) and 
being tested
– Will lead to better performances

and    further simplifications
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Sensitivity Curve
(Preliminary Results)
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SAS Development Advancements

• Full Interferometer Test in Vacuum 

in Japan,  Fall 2000

• Attenuation and control performance under 
test at Virgo

->  Achieved 50 nm r.m.s. (integrated  >100 mHz)
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SAS-SUS Inertial Damping
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Inertial Damping of Mode Cleaner Tower Version : Draft
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Figure 9: Spectra of the virtual accelerometers X and � with the damping ON and OFF.
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Figure 10: RMS motion of the IP top table, calculated from the spectra of �g. 9. The translational RMS

motion at 100 mHz is reduced from � 70 �m (damping OFF) to � 50 nm (damping ON).



GAS Filter : Measurements 

- Double GASF Chain

Vertical Isolation Performance

- GASF Chain + Payload 

- Filter Zero is connected to a shaker.

- Standard Filters are tuned to about 450mHz.

Shaker

Filter Zero

Filter 1
(Standard Filter)

Filter 2
(Standard Filter)

Payload
(Lead Block)

Accelerometer



Test Tower
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Filter Prototype
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2 Standard Filter Chain,

Vertical Transfer Function
(Good �lters balance)
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Experimental Setup
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�High Isolation Ratio �Internal Mode

�~ -60dB @10Hz �Small Contribution?
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IP Assembly
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Inverted Pendulum: Radial Frequency vs. Load
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Q vs. Frequency
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Comparison of High and Low Q Waveforms (Time Domain)
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Comparison of High and Low Q Waveforms (Time Domain)
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Leg + C.W. Simulation
(First Mode)
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Leg + C.W. Simulation
(Second Mode)
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IP Leg + C.W Resonances
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Mechanics

The folded pendulum

The folded pendulum dynamics:
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Features:

– low resonant frequency: 0.01–1 Hz
– compactness: arm length less than 10 cm
– low dissipation: gravitational anti-spring effect



Electronics

Resonant phase shift capacitance sensor
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Electronics

The capacitance actuator
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– capacitance gap: 250 µm
– gain: 10 µN/Volt
– non–linearity ~ 1% with V0 = 100 V

the actuator driver:
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low voltage
oscillator
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x 30
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output
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Force vs. Coil Position    (Actuator #1)
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1. Overview
- Working Process

- Simulation Tools

- Example

2. Mechanical Simulation Engine (MSE)
    and SAS Simulation

- Features

- Status

- Demonstration

3. Control
- Features

- Example

SAS Simulation for LIGO II



SSAASS1. Overview

1.1. Working Process
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Mechanical Performance Estimation Mechanics Design / Fabrication

Mechanical Performance Measurement

Modification
(if necessary)

Control Performance Measurement

Improvement of Control Topology
(if necessary)

Design of Control Strategy

Final Product

Validation of Simulation Model

Other Studies
Vacuum Compatibility
Creep Measurement
etc.

Total Performance Estimation

- Close Interaction between Simulations and Measurements

- Performance extrapolation for LIGO II will be done
   in both simulations and measurements.

Improvement of Simulation Model
(if necessary)

Simulation Prototype Test
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1.2. Simulation Tools

MSE - Mechanical Simulation Engine

- Mechanics Design

- Performance Study

Mechanical Transfer Function/ Admittance

Control Study: Interface to Other Program (MatLab)

Matlab
- Control Study

Design and Validation of Control

IDEAS, ANSYS Finite Element Analysis

- Design of Components

Stress Distribution

Internal Mode

- Component Design

GAS Blade

Other Software

- Auxiliary Use 

Cross Check of Results from Other Programs



SSAASS1. Overview

1.2. Example
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- Finite Element Analysis
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SSAASS1. Overview

1.2. Example
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- Design of GAS Blade
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2.1. Features

- Provided as C++ Libraries

- Physical Object = C++ Object

Rigid Body, Spring, Wire, etc.

- High Flexibility

Modification of Object Classes

Simple Subsystem >> Complex System Study

- Study of Interaction with Interferometers

- Handle Fully 3D Model

Asymmetry in Mechanics

- Numerical Approach

- Frequency / Time Domain Simulation

- Computation of Transfer Function / Mechanical Admittance

- Control Study

Interface to Matlab

- Internal Resonance

Distributed Mass and Elasticity

Functionality

Object Oriented Architecture

Subsystem of LIGO e2e Model



Working Position (Equilibrium) Acquisition

Linearization of Equation of Motion
(Computation of Mass, Stiffness,  Damping Matrices)

Preparation

SSAASS2. MSE and SAS Simulation
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2.2. Working Procedure

Declaration of Mechanical Objects

Connection of Objects

Construction of Mechanical System

Computation of System Response

Specification of Analysis

Declaration of System
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2.3. Example

Simple Suspension

Class: RigidBody

Class: Wire

Class: RigidBody

Class: PositionActuator

Class: PositionSensor
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2.3. Status

- Validation

By Other Simulations / Measurements

- Debug of Some Objects

GAS Blade, Beam, etc. are in debugging phase.

But these objects can be emulated by validated objects.

- Study of Some Systems with Validated Objects

Quadrupole Suspension for BSCs

Triple Suspension for HAMs

Inverted Pendulum

Entire SAS, etc.

Current Work



SSAASS2. MSE and SAS Simulation

LSC Meeting at LLO 16/03/00 10

2.4. Results

- Example of Validation

Comparison with Point-Mass Model

Each mass in MSE model is suspended at the level

of its center of mass. >> No coupling with pitching.

Horizontal Transfer Function of the SAS for BSCs
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2.4. Results
- Example of Emulation

IP <=> Simple Pendulum with Distributed Mass

IP without Counter Weight to Compensate Center of Percussion

Effect
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3.1. SAS Control

- Sensing

LVDTs in Locking Acquisition Phase

IFO signal in Operation Phase

- Actuation

Stepping Motors

Coil-Magnet Actuators

Positioning (Local / Global) ~ 10 mHz

- Sensing

Accelerometers

- Actuation

Coil-Magnet Actuators

Inertial Damping ~ a few Hz

Mirror Control
- Sensing

IFO signal

- Actuation

Electro-Static Actuators (Small Range)
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3.2. Example
Study of Local Control for TAMA SAS

1. IP top table:
X, Y, Yaw

2. Filter zero:
Z

3. Suspension point:
Yaw, Pitch

4. Mirror:
X, Yaw, Pitch

LVDT
Accelerometer

LVDT
Accelerometer

Optical Lever

Stepping Motor
Coil-Magnet Actuator

Stepping Motor
Coil-Magnet Actuator

Coil-Magnet Actuator
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Inertial Damping for TAMA SAS

Open Loop Transfer Function
for Horizontal Inertial Damping
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Inertial Damping for TAMA SAS



SAS Active Components
• Simple and modular
• Passive in vacuum (External electronics, except accelerometer)

• Safe, Redundant design (duplication)

• Custom made Well understood, tested and characterized; 
controlled materials, traceable.

• UHV compatible (by construction)
– Fully Bakeable
– No gas bladders
– No volatile compounds

• Low power milli-Watts



SAS passive components

• Simple and modular

• Passive

• UHV compatible (all metal)

• Note:  low frequency from clever shapes 

not higher stress.



Reliability

Stiff
• Active components in 

vacuum
• Watts/sensor in 

vacuum
• Gas bladders
• Strong actuators
• Dynamic equilibrium 

(hydraulic) positioning

SAS
• All passive comp.s in 

vacuum
• mWatts sensors in 

vacuum
• No enclosed gases
• Soft actuators
• Static equilibrium(soft 

springs) positioning



Reliability (2)

Stiff: active attenuation

• 3 nested layers

• 6 d.o.f. each

Sensors/actuators

Active, in vacuum

Critical for attenuation!

SAS: inertial damping

• Single layer

• 3 + 1 d.o.f.

Sensors/actuators

Passive in vacuum

Non critical!



Effect of failures

Stiff:  Loss of one active component 
⇒ Loss of attenuation stage, 
⇒ IFO stopped
⇒ Require replacement
⇒ Easy replacement but vacuum break required

�Significantly replacements are foreseen!  �
⇒Possible collateral damage



Effect of Failures

SAS:  Loss of one active component:

• Attenuation is intact ! !
• Actuator: Use redundant coil.

• LVDT: redundant during lock, lower level of 
position control  in lock acquisition

• Accelerometer: Use LVDTs in lock acquisition, 
lower level of damping during lock, chase with 
other towers.



Effect of Failures

• Stiff:  internal Gas leak

=>  IFO stopped or mirror damaged

• SAS:  no Gas enclosures


