Presentation Overview

- Riccardo SAS Concept Overview
- Szabolcs Prototypes & Results
- Alessandro Sensors and Actuators
- Akiteru Simulations & Controls
- Riccardo Final Important Remarks

SAS Concept

- 1. Ultra Low Frequency pre-attenuation stage
 - Filters out micro seismic peak
 - Platform for inertial damping and controls
 - Gain height for passive seismic chains
- 2. Active Inertial Damping / Position Control
 - Drains energy from chain resonances
 - Positions the mirror
- 3. Passive attenuation chain
 - Provides all in-band seismic attenuation.
- 4. Mirror Suspensions and Controls

SAS Key Points

- Entirely passive attenuation
 - For reliability and excess noise reduction
- Relocation of maximum fraction of controls above the passive attenuation stages
 - Minimize noise/excess noise re-injection risk
 - Ease of controls
- Do not burden main attenuation chain with ancillary optics
 - Ancillary optics separately dealt with
 - Optical table possible (even easy) see Ham design

SAS Key Advantages

• Reliability:

- passive components always work
- Resilience
 - Loss of power and/or controls => system stays put
 - Loss of active component => system survives
- Low frequency, low residual motion
 - Low residual speed for lock acquisition
- Softness
 - Low actuation power (mW), no damage potential

SAS Design Flexibility

- Modular assembly
- Scalability
- Application examples
 - LIGO
 - TAMA
 - 40 m
 - 2-in-1
- HAM and BSC topologically similar

NOTE:preassembly sub assemblies with SS screws: deliver assembled do not tighten screws

ref.	draw.	ref.	draw.	added legend		ref.	draw.	added legend
small filter	007	1	009	stiffener		11	013	support tuning nut
small top filter	008	2	009	flex joint base		12	012	tuning stud
accelerometer		3	010	main flex joint		13	012	rotation flange
TAMA double pendulum		4	015	inteface disk		14	011	leg head
		5	010	counterweight		15	013	load nut
		6	010	c.weight bell		16	012	top disk
		7	011	leg		17	011	'∕₂ cup retainer
		8	014	safety strut		18	012	^I ∕₂ cups
		9	016	top reference ring		19	012	small flex joint
		10	013	reteiner nut				

Development Advancement

- Built, tested and debugged 1:1 prototype of all components (GASFs, IP, LVDTs,2D voice coils, Accelerometers)
 - Perfectly viable systems Designed with tested components
- Advanced components prototyped (MGASFs) and being tested
 - Will lead to better performances

and further simplifications

Sensitivity Curve (Preliminary Results)

SAS Development Advancements

- Full Interferometer Test in Vacuum in Japan, Fall 2000
- Attenuation and control performance under test at Virgo
- -> Achieved 50 nm r.m.s. (integrated >100 mHz)

SAS-SUS Inertial Damping

Horizontal Seismic Noise Spectral Densities

Horizontal Seismic RMS Residual Displacement

Figure 9: Spectra of the virtual accelerometers X and Θ with the damping ON and OFF.

Figure 10: RMS motion of the IP top table, calculated from the spectra of fig. 9. The translational RMS motion at 100 mHz is reduced from $\sim 70 \ \mu m$ (damping OFF) to $\sim 50 \ nm$ (damping ON).

GAS Filter : Measurements

Filter Zero

Filter 1

Filter 2

Payload

(Lead Block)

(Standard Filter)

(Standard Filter)

Test Tower

Filter Prototype

2 Standard Filter Chain, Vertical Transfer Function (Good filters balance)

LSC Metting at LLO

www.ligo.caltech.edu/~citsas

Hareem Tariq Chenyang Wang

 $www.ligo.caltech.edu/\!\!\sim\!\!cits as$

Resonant Frequency vs Working Point

Transfer Function

scale 1:2

٨

IP Assembly

mass to falloff [g]

Comparison of High and Low Q Waveforms (Time Domain)

www.ligo.caltech.edu/~citsas

Leg + C.W. Simulation (First Mode)

•	VALUE OPTION ACTUAL	7,856-01	6.89E-01	5.38E-01	4.63E-01	3 . 886-01	3.12E—01 <mark>—</mark>	2.37E-01	1,81E-01	8,57E-02	1,036-02	
- I-DEAS Master Series 5m3: Simulation	RESULTS: 4- B.C. 1, Normal mode 4, Displace/inv-pend-leg-free-free-update.mf1 MODE: 4 FREQ: 56.0157 DISPLACEMENT - MAG MIN: 1.035-02 MAX: 7.855-01 (25 DEFORMATION: 4- B.C. 1, NORMAL_MODE 4, DISPLACEMENT 4 MODE: 4 FREQ: 56.0157 MODE: 4 FREQ: 56.0157 DISPLACEMENT - MAG MIN: 1.035-02 MAX: 7.055-01 (25 DISPLACEMENT											

Leg + C.W. Simulation (Second Mode)

LIGO

IP Leg + C.W Resonances

IP Leg with Counterweight

272Hz

Mechanics

The folded pendulum

The folded pendulum dynamics:

$$\omega_0^2 = \frac{\frac{L}{2l_p} (m_{a_1} - m_{a_2}) + (m_{p_1} - m_{p_2})}{\frac{L^2}{3l_p^2} (m_{a_1} + m_{a_2}) + (m_{p_1} + m_{p_2})} \cdot \frac{g}{l_p} + \gamma$$

Features:

- low resonant frequency: 0.01–1 Hz
- compactness: arm length less than 10 cm
- low dissipation: gravitational anti-spring effect

Electronics

Resonant phase shift capacitance sensor

- low losses toroidal inductor: $Q \sim 110$
- high efficiency passive phase detector
- dynamic range ~ 4 μ m
- output gain: $300 \text{ mV}/\mu\text{m}$

Sensor calibration

Electronics

The capacitance actuator

$$F(V_s) = \frac{\varepsilon S}{2d^2} V_0^2 + \frac{\varepsilon S V_0^2}{d^3} \Delta x + \frac{\varepsilon S}{d^2} V_0 V_s$$

- capacitance gap: 250 μm
- gain: $10 \,\mu N/Volt$
- non-linearity ~ 1% with $V_0 = 100$ V the actuator driver:

- noise: $5 \mu V_{p-p}$ between 0.1 and 1 Hz.

Active control of a 3 Hz resonant inverted pendulum

Hareem Tariq Chenyang Wang

LSC Metting at LLO

Noise Spectra for LVDT #2

 $www.ligo.caltech.edu/\!\!\sim\!\!cits as$

Hareem Tariq Chenyang Wang

www.ligo.caltech.edu/~citsas

Coil Position Relative to Magnet [mm]

Force vs. Coil Position (Actuator #1)

SAS Simulation for LIGO II

1. Overview

- Working Process
- Simulation Tools
- Example

2. Mechanical Simulation Engine (MSE) and SAS Simulation

- Features
- Status
- Demonstration

3. Control

- Features
- Example

1. Overview

1.1. Working Process

- Close Interaction between Simulations and Measurements
- Performance extrapolation for LIGO II will be done in both simulations and measurements.

1. Overview

1.2. Simulation Tools

MSE - Mechanical Simulation Engine

- Mechanics Design
- Performance Study

Mechanical Transfer Function/ Admittance

Control Study: Interface to Other Program (MatLab)

Matlab

- Control Study

Design and Validation of Control

IDEAS, ANSYS Finite Element Analysis

- Design of Components

Stress Distribution Internal Mode

Other Software

- Component Design

GAS Blade

- Auxiliary Use

Cross Check of Results from Other Programs

1.2. Example

- Finite Element Analysis

IP Leg with Counterweight

1.2. Example

- Design of GAS Blade

Vertical Transfer Function of a single GASF

LIGO SAS

2.1. Features

Functionality

- Handle Fully 3D Model

Asymmetry in Mechanics

- Numerical Approach
- Frequency / Time Domain Simulation
- Computation of Transfer Function / Mechanical Admittance
- Control Study

Interface to Matlab

- Internal Resonance

Distributed Mass and Elasticity

Object Oriented Architecture

- Provided as C++ Libraries
- Physical Object = C++ Object
 - Rigid Body, Spring, Wire, etc.
- High Flexibility

Modification of Object Classes

Simple Subsystem >> Complex System Study

Subsystem of LIGO e2e Model

- Study of Interaction with Interferometers

2.2. Working Procedure

Construction of Mechanical System

Declaration of System

Declaration of Mechanical Objects

Connection of Objects

Preparation

Working Position (Equilibrium) Acquisition

Linearization of Equation of Motion (Computation of Mass, Stiffness, Damping Matrices)

Specification of Analysis

Computation of System Response

2.3. Example

Simple Suspension

2.3. Status

Current Work

- Validation

By Other Simulations / Measurements

- Debug of Some Objects

GAS Blade, Beam, etc. are in debugging phase.

But these objects can be emulated by validated objects.

- Study of Some Systems with Validated Objects

Quadrupole Suspension for BSCs Triple Suspension for HAMs Inverted Pendulum Entire SAS, etc.

2.4. Results

- Example of Validation

Comparison with Point-Mass Model

Each mass in MSE model is suspended at the level

of its center of mass. >> No coupling with pitching.

Horizontal Transfer Function of the SAS for BSCs

2.4. Results

- Example of Emulation
 - IP <=> Simple Pendulum with Distributed Mass

IP without Counter Weight to Compensate Center of Percussion Effect

3.1. SAS Control

Positioning (Local / Global) ~ 10 mHz

- Sensing

LVDTs in Locking Acquisition Phase

IFO signal in Operation Phase

- Actuation

Stepping Motors

Coil-Magnet Actuators

Inertial Damping ~ a few Hz

- Sensing

Accelerometers

- Actuation

Coil-Magnet Actuators

Mirror Control

- Sensing

IFO signal

- Actuation

Electro-Static Actuators (Small Range)

3.2. Example

Study of Local Control for TAMA SAS

Inertial Damping for TAMA SAS

SAS Active Components

- Simple and modular
- Passive in vacuum (External electronics, except accelerometer)
- Safe, Redundant design (duplication)
- Custom made Well understood, tested and characterized; controlled materials, traceable.
- UHV compatible (by construction)
 - Fully Bakeable
 - No gas bladders
 - No volatile compounds
- Low power milli-Watts

SAS passive components

- Simple and modular
- Passive
- UHV compatible (all metal)
- Note: low frequency from clever shapes not higher stress.

Reliability

Stiff

- Active components in vacuum
- Watts/sensor in vacuum
- Gas bladders
- Strong actuators
- Dynamic equilibrium (hydraulic) positioning

SAS

- All passive comp.s in vacuum
- mWatts sensors in vacuum
- No enclosed gases
- Soft actuators
- Static equilibrium(soft springs) positioning

Reliability (2)

Stiff: active attenuation

- 3 nested layers
- 6 d.o.f. each

SAS: inertial damping

- Single layer
- 3 + 1 d.o.f.

Sensors/actuators Active, in vacuum Critical for attenuation! Sensors/actuators Passive in vacuum Non critical!
Effect of failures

- Stiff: Loss of one active component
- \Rightarrow Loss of attenuation stage,
- \Rightarrow IFO stopped
- \Rightarrow Require replacement
- \Rightarrow Easy replacement but vacuum break required
- →Significantly replacements are foreseen! ←
 ⇒Possible collateral damage

Effect of Failures

SAS: Loss of one active component:

- Attenuation is intact ! !
- Actuator: Use redundant coil.
- LVDT: redundant during lock, lower level of position control in lock acquisition
- Accelerometer: Use LVDTs in lock acquisition, lower level of damping during lock, chase with other towers.

Effect of Failures

- Stiff: internal Gas leak
 => IFO stopped or mirror damaged
- SAS: no Gas enclosures