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Estimation of Parameters for Coalescing Binary Signals

Likelihood * A Priori Distributions

Generate Probability Distribution Functions for each parameter in
problem

Use Markov Chain Monte Carlo (MCMC) Methods for this
computational exercise



Bayes Theorem

Given a measurement y(z) = n(¢)+ s(z) (signal and noise) and prior belief p(§ )
about the parameters 8 = (6,,0,,...,6, ), the researcher’s opinion as to the state of nature

is summarized by the posterior distribution of 8 given by the Bayes theorem
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m(y)= Ip(g Joly|6)i6

1s the marginal density of y, which can be regarded as a normalizing constant as it is

where

independent of 8 .

(CANIETERMINE THE PROBABILITY FOR HAVING CERTAIN

PARAMETER VALUES GIVEN THE DATA.
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The Likelihood:

2(6)= plyp)

In the gravity wave interferometer world

y{t)=nlt)+ s(t,é ), for n(t) noise, and signal s(t,§ ) defined by parameters 8,

L(é )= K explZ( ¥, s(g )> - <s(§ ) s(é )>an:h normalization constant X,

0)= L L), 50)= [ ytora,

and S, G ﬂ) 1s the one-sided power spectral density of the detector’s noise.

Templates estimate the signal = s(t, 6 )

With information on the a priori probabilities for the parameters p(6,)
- posterior density of pé;ameters p(é | y)oc L(y |6 )I—[ p(&i).

Hence, when one desires the PDF for the parameter 8, one must normalize the posterior
density and integrate over the remaining parameters, namely
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- This normalization and multiple parameter integration procedure is prohibitive for a
large number of parameters (say greater than ~5) except when one uses MCMC methods.

Coalescing binary parameters:
Template matching M, M,,4.,t,,¢€, 3,,§2,Z oreven Ty,7,,7,s,... as a test of GR

and also the “amplitude affecting parameters”
D,cos,0,p,v



Gravity wave researchers have recognized the importance of the statistically correct
posterior density p(§ | y)cc L(y |16 )I_I p6)

but neglected to use it due to complexity of integrations over numerous parameter
dimensions. -

A revolution in computational statistics in last few years

Markov Chain Monte Carlo (MCMC) Methods

The Gibbs sampler is a specific MCMC method where in a cycle we sample from each of
the full conditional posterior distributions

p(@i |y,91,...,9,._1,9,.+1,..., 9;;)
Given an arbitrary set of starting values §{°),...,6%" the algorithm proceeds as follows:

: .ﬂ( .’he simulate 91(1) - p(el ly’gz(o)’m,ejo))
. l"l :( Jf: ;ou 9L simulate 69 ~ pl6, 1v,6,60...,69) 63;5 7 ;7’1’ ¥
W - ) o
‘spabe " . for €ocy

Spacel | y
P simulate ~-»9,?) ~ p(@, | y,t91(1),...,9,51,).) ‘ Pa/amd(/

yields 6™ = (6’1(”'),..., 0,5"')) after m cycles. Defines a Markov chain with transition kernel

K,6)=TT P 1y,60....6,6....6%)

=l

that converges to the joint posterior as itg cquilibgum distributiop.  (“

The problem of sampling from an n-variate PDF is reduced to sampling from » univariate
PDFs.

~>’ Cross correlation matrix of components another result of MCMC calculation. ‘f"ﬂ g

Mmeses .,
[jThe MCMC computational time scales linearly with parameter number.
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Maximum of the Likelihood is not necessarily the peak value of the parameter’s marginal
distribution (its PDF) or its mean.

(See Cutler and Flanagan, Phys Rev D 49, 2658 (1994), or Christensen and Meyer, Phys
Rev D 58, 082001, (1998)) ‘

Maximum Likelihood is not good for parameter estimation; for a given parameter, the
maximization depends on whether or not other pararmeters have been integrated out.

The posterior density p(§ | y)oc L(y | ] )1_[ p(B,.) is the correct statistical tool, and
MCMC will provide the PDF for each individual parameter.



If PDF is NOT sharply peaked, then the 97% fitting-factor is certainly overkill.
Cross-correlation between parameters will broaden distributions.

Instead of a serial walk through parameters in template generation, MCMC will conduct a
Brownian or random-walk through parameter space.

It is yet to be determined if this MCMC approach will be more efficient in parameter
determination, HOWEVER, the MCMC process will also provide the valuable PDF for
each parameter. Can determine confidence intervals, statistics, cross correlation between
parameters.

As parameter number of increases, computational time for a MCMC march through the
templates scales linearly.



Previous work: MCMC Example based on problem posed in Cutler and Flanagan
Phys Rev D 49, 2658 (1994)

Uncertainty in distance to coalescing binary. Assumed signal dctected by templat& and
sky location known.

Four Parameters: Distance D
Cosine of angle of inclination of orbital plane v = cos:
Polarization angle of gravity wave y
Phase of waveform at “collision time” ¢,

Given “maximum likelihood” values (D, v,,¥,, d.)
Determine PDFs for each parameter

See : Markov Chain Monte Carlo Methods for Bayesian Gravitation Radiation Data
Analysis, Christensen and Meyer, Phys Rev D 58, 082001, (1998))




FIG. 1. Kernel density estimates of the marginal posteriors of the variables D,v,, and ¢, as-

suming the initial “best-fit” parameters of Do = 432 Mpc, v = 0.31, 1o = 11.5°, and ¢ = 114.6°.
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TABLES

TABLE I. The posterior mean, standard deviation (SD), and time series standard error (SE),

lower quartile, median, and upper quartile of the parameters D,v,, and ¢, (cf. Fig. 77).

Parameter Mean SD SE 25% Median 75%
D (Mpc) 689 168 5.34 546 704 820
v 0.709 0.234 0.0077 0.537 0.774 0.908
¥ 0.456 0.329 0.0125 0.171 0.366 0.725

1.39 0.675 0.0259 0.817 1.58 1.97

e

TABLE II. The cross-correlation matrix of the parameters D, v, ¥, and ¢, (cf. Fig. 77).

Variable D v ) de
D 1.0

v 0.91 . 1.0

Y 0.416 0.48 1.0

¢c -0.458 -0.528 -0.989 1.0
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In order to sample parameter 6,

during the mth loop of the Gibb’s sampler

o ~ p(o, 1y,6/, 60 __ glm)
pl6,1y.6,6%...6% ) p(6,)L{)5)
where L(y,§ ) is formed with parameters

6, =6, 6,=6"".,6, =6"" fixed and 6, a variable.

Sample from p(é?2 Iy,01(“‘),93("'")...,6,5"’"))& p(@z)L(y[éJ

via a Metropolized version of adaptive rejection sampling (ARMS)
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Projects in the Immediate Future

(1) Data Analysis, Statistics and Parameter Estimation for Binary Inspiral Searches

it.

1il.

v.

vi.

Derive and develop optimized code for applying Markov Chain Monte Carlo
(MCMC) techniques to the parameter estimation problem for coalescing binary
observations.

Simulate (noisy) LIGO data containing (post-Newtonian) coalescing binary
events.

Generate post-Newtonian templates, again using with existing software.
Construct a likelihood function with the simulated data and templates.

Generate a priori distributions for the signal parameters via basic astrophysical
assumptions.

Incorporate the data, template generation, likelihood function and a priori
distributions into a Gibb’s sampler MCMC, and thereby generate the probability
distribution functions for each parameter of the model.

Determine the computational cost of implementing these MCMC procedures for
use in the LIGO environment.

Work in collaboration with Dr. R. Meyer, Department of Statistics, University of
Auckland, New Zealand, and Prof. L.S. Finn, Department of Physics, Penn State.



(2) Maximum likelihood analysis versus integrated likelihood analysis

Investigate the relative efficiency of a maximum likelihood analysis as compared to
an integrated likelihood (e.g., a Bayesian approach with a uniform prior) analysis of
the same significance.

This would be explored in the context of the binary inspiral problem.

Need to more efficiently process the outputs from the parallel Wiener-filter (i.e.
template) analysis in a way that uses present inherent information rather than simply
identifying the "loudest" (i.e. maximum likelihood) event.

Quantify whether the integrated likelihood search is more powerful than a maximum
likelihood analysis, and identify the computational costs of implementation.

a. Simulate LIGO data with and without (post-Newtonian) coalescing binary events.
b. Generate post-Newtonian templates.
c. Construct a likelihood function with the simulated data and templates.

d. Use uniform a priori distributions for the signal parameters and incorporate the data,
template generation, likelihood function and @ priori distributions into a Gibb’s
sampler MCMC.

e. Search sets of data (with and without embedded signal) over some time window and
region of parameter space using both the maximum likelihood and integrated
likelihood techniques. Compare the maximum likelihood and integrated likelihood
techniques by examining the generated probability distribution functions.

f. For the maximum likelihood and integrated likelihood techniques determine the
fraction of the time that an “actual” event is detected, and compare it to false alarm
rates. Pick an acceptable false alarm rate for given signal rates and strengths find the
associated false dismissal rate.

g. Study the computational requirements for these maximum likelihood and integrated
likelihood techniques.

Work in collaboration with Dr. R. Meyer, Department of Statistics, University of
Auckland, New Zealand, and Prof. L.S. Finn, Department of Physics, Penn State.
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