Signal Extraction for Frontal Modulation in RSE

James Mason

California Institute of Technology

LSC-LLO meeting

March 16-18, 2000

LIGO-G000055-00-D

Resonant Sideband Extraction

- Assumptions I'll make
 - >>3 PD's
 - Transmission pd's have bad snr?
 - >> Modecleaner after modulation
 - Is this needed or not? Modulating after MC frees up alot of constraints
 - >> Entirely optically heterodyned signal extraction
 - Regarding offset locking, where is the beamsplitter signal?

What these assumptions mean

• Extra dof + same pd's in use would imply the need for an additional modulation frequency on the input light.

>> Exist signals using higher order sidebands, but these are typically small.

 Modecleaner implies that all these frequencies need to be integer multiples of MC's fsr

>> Base frequency can be tunable, but this implies not only a change in length of the MC, but possibly also of the power recycling cavity.

What else?

Broadband signal extraction

- In broadband mode, high transmission for both sidebands
 - >> Symmetry of sidebands about carrier matches symmetry of FSR

>> Set up GW LO frequency to resonate in both PRC and SEC

Length control: SSB

- Need an independent LO to measure RF sideband phase variation in SEC
 - >> Add subcarrier at fmod/3 or some integral odd fraction of fmod
 - Taken as a constraint that all frequencies are integer multiples, in order to pass through a mode cleaner

- Using AM modulated sidebands at fmod/3 would probably be better for only broadband operation
- >>Use [fmod-fmod/3] beatnote at existing signal ports (PRC pickoff, for example) for control of SEC
 - >> All other signals could be the same as initial LIGO
 - More cross-couplings
- This breaks down when...

Detuning

• Detuning introduces a problem

>>Both GW LO sidebands no longer resonant in coupled-cavity system

Option: SSB transmission

• Macroscopically detune length of SEC

- >>Only one RF sideband gets out
- >>SEC length changes on the order of centimeters
- >>Once a macroscopic length change is made, there exists a range of microscopic detuning for which there is still significant RF sideband power transmitted to the dark port

— This can encompass the entire range of interest

• What about change in fmod?

>> Would have to change both fmod and fmod/3, plus the modecleaner length, plus the power recycling cavity length in order to maintain resonance of fmod/3, which in turn iterates the desired change in fmod.

- Chosen for good transmission of GW LO sideband.
 - >> Typically quite small.. 1-4 cm for ~80 MHz.

>> Pick an asymmetry with strong transmission a 0 detuning, but consider the range of "microscopic detuning" desired.

Detuning control

 GW LO sidebands are now unequal in magnitude and phase inside the interferometer

>>This means that for other signals which use those sidebands, there exists only one demodulation phase which has no offset, per photodiode

- Both give independent signals with 0 offset

— Only one demodulation phase has zero offset!

>> What did we lose here? The "independence" of the Michelson ϕ_{-} signal

Implications (with some assumptions)

- The GW signal Φ₋ is just fine at the dark port
 - >> No carrier means no offset, regardless of demod phase.
- The other 4 d.o.f.'s come out of 2 pd's
 - >>If you use the GW LO sidebands to detect the other signals, then in order to get 4 signals, you must have 2 different demodulation frequencies at both pd's.
 - >>If you don't use the GW LO frequency, then you must look at how the additional sideband frequency is affected by the off-resonant signal cavity
 - Can be a small effect, but is it negligible? How much DC offset is ok? "Safer" to assume one demodulation phase per photodiode per demodulation frequency.
 - >>6 signals (2 pd's x 3 demod frequencies), 4 d.o.f.'s.
 - Dark port photodiode doesn't get good signals for anything but $\boldsymbol{\Phi}$
 - Carrier-AM modulation beatnote exists for detuned operation, but is non-existent for broadband.
 - Pretty fully cross-coupled

RSE detuned matrix

```
% \mathbf{DOF} 1 = \mathbf{F} + \mathbf{DOF} 3 = \mathbf{f} + \mathbf{DOF} 4 = \mathbf{f} - \mathbf{DOF} 5 = \mathbf{f} \mathbf{s}
In(95):= dof = 88m4, 1, m6, 1<, 8m1, 1<, 8m3, 1, m5, -1, m4, 1, m6, -1<, 8m7, 1<<;
    outindex = 8index@m1, 1, 2D, index@m1, 2, 1D, index@bb1, 1, 1D<;</pre>
           DCMatrix@dof, outindex, 0.14, 3 mfreq, .1D
           DCMatrix@dof, outindex, - .01, 2 mfreq, .1D
           DCMatrix@dof, outindex, 1.002, mfreqD
          0.219911 demodulation at 81. MHz
                          DOF 2 DOF 3 DOF 4
                 DOF 1
          PD 1 - 871-789 36.1086 - 0.81204 0.712219
          PD 2 - 657354 - 3840.6 243.758 - 213.794
PD 3 0 0 0.470631 0
          -0.015708 demodulation at 54. MHz
          1.57394 demodulation at 27. MHz
                 DOF 1 DOF 2
                                       DOF 3
          PD 1 2128.4 - 45.5014 0.156322 0.000604216

PD 2 504917. 4948.48 - 46.9246 -0.181373

PD 3 0 0 -0.000262508 0
```

• Issues (unresolved)

- >> Is it stable? Probably. Signals aren't linearly dependent.
- >>How would the cross-coupling degrade system performance? Is there a gain hierarchy which can be established that works?
 - >> Alternatively, is there a robust diagonalization matrix?
- Might be difficult, due to the several orders of magnitude between signals
- >>By the way, it doesn't look that bad.. (same matrix works for broadband as well)

RSE - SSB design

 $L_{PRC \text{ avg}} = (L1 + L2)/2 = 2.776 \text{ m}.$ Lsec avg = (L3 + L4)/2 = 1.851 m. $\delta = L2 - L1 = 0.03 \text{ m}.$ $f_{mod} = 81 \text{ MHz}$ $f_{sub} = 27 \text{ MHz}$ M_6 81 MHz 54 MHz L2 L3 M_1 T = 1% M_4 M_3 M_7 T=10% 54 MHz 81 MHz 81 MHz

>> Cavity lengths can be some multiples of lengths spec'd

Other issues

- AM sidebands vs. subcarrier
 - >> Subcarrier actually gives better signal separation of Michelson and signal cavities
 - >> Signal cavity signal has 2 zero crossings with AM sidebands due to sensitivity to the "other" GW LO sideband.
 - >> Demodulation at AM sideband frequency (carrier-AM sideband) doesn't give any signal unless the relative phase of the AM sidebands are messed up (e.g., in detuning).
 - >> Sub-carrier demodulation always requires precision demod control (even in broadband operation)
 - >> Generation of input spectrum
 - Subcarrier: I use a Mach-Zender, which implies another control loop to maintain good fixed phase relationship, and this would also require alignment control. Is there a better way?
 - AM sidebands: Can probably be done in series (sideband on sideband issues, perhaps).
- Modecleaner, arm finesse limitations, does the ideal signal extraction method change with different signal mirrors, will broadband ever be used....?
- Noise couplings...

Experimental results (so far)

• Locked full RSE, broadband

>>Somewhat simplified optics - 60% PRM, 37% SEM. Arm cavity finesse of 300 (cavity pole roughly 200 kHz).

Experimental Work (in progress)

• Goals:

- >>Implement more aggressive signal extraction (SEM of 10%).
 - Better phase shifters, have to modify RF electronics

>> Lock and measure detuned transfer functions.

Page 1

Note 1, Linda Turner, 05/09/00 02:05:40 PM LIGO-G000055-00-D