A

Wavelet Analysis of Transients and
Unmodeled GW signals

Presented by S.Klimenko
University of Florida

® Outline
>What are wavelets?

>Detection of transients & unmodeled sources
with wavelets.

>Wavelet Analysis Tool
>Current status

>Plans & Conclusion

S.Klimenko LIGO-G000045-00-D



A LIGO Data Analysis at UF

® LSC White Paper - plan of work on
> detector characterization
> development of detection algorithms

> provision of reduced data sets

® One of the UF group commitments is:

> Development of Wavelet Analysis Tool for
> data compression/reduction

> transient signal characterization

> unmodeled GW sources detection

> WAT will be part of LIGO/LSC Algorithm Library

® “"Wavelet” people at UF:
S.Klimenko, G.Mitselmakher, A.Sazonov, B.Whiting
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A Wavelets

® What are wavelets?
> set of basis functions Y, = a/? Y y(alx-k); Y ; -mother wavelet
> used in a way similar to Fourier Transform:
wi = S1(x;) Yi(x) - digital wavelet transformation of f (x;)
> ]ocal in time & frequency domains (in contrast to Fourier Transform)
real signals are finite in time!

® Why wavelets?
> wavelets are convenient for pattern recognition
>widely used in image and signal processing.
>can be used for GW signal and non-gaussian noise identification.

> allow simple description of signal with minimal number of
waveforms

> mathematics of wavelets is well developed, algorithms are flexible
and fast.

® Very promising technique for LIGO data analysis
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A Example of wavelet use (db6 wavelet)

® Chirp u + Gaussian noise n: (SNR= <u?>/<n?> = 0.25)
chirp “signature’
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® GW signal or transient can be identified by it’s signature
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A Transient analysis

® Transient is characterized by it’s
signature in wavelet domain

® transient identification:
identify transients by statistical analysis of
data in wavelet domain. All types of
wavelets can be used. Optimal wavelets
retain maximum of transient energy with
minimal number of coefficients. Transient’s
signature may be unknown in advance

® transient reconstruction:
If identity transient with orthogonal (bi-
orthogonal) wavelet, it can be rebuilt in
time domain using reconstructed signature
and subtracted from the original data.
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A Filtering with Wavelets

® Optimal (Wiener) filter - ; in wavelet domain
S,(s'(nD) - s(nD))* = Sy (u’y - uy)”
/= . = 172 2 2
uyp=wyFa;  Fa=um/(ufyt ny)
s,u - uncorrupted signal, s’,u" - filtered signal, n - noise, w - data
s’ s - time domain, u’,u, n,w - wavelet domain
> F ;. requires detail information about signal © and noise 7.
® Practical filter
> limited information about signal and noise

> signal signature may be unknown (e.g. unmodeled GW signals)

> example: wavelet threshold filter (WTF)
> get threshold on wjkz /s?,; s2 -noise variance.
> n,” /s? - has c2 distribution in case of Gaussian noise.
>no a priory information about signal is used
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A Example of chirp reconstruction

® reconstructed chirp signal: blue- optimal filter (OF), red - wavelet
threshold filter (WTF), green -original chirp. SNR=0.25

ariginal & reconstructed chimp, SHR=0.25
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A Comparison of optimal & threshold filters

® deteCtable SNR 0035 (db6 OF) VS 008 (db6 WTF) (preliminary result)

® no information about signal is used by WTF!

filter output power: signal+noise & noise optimal filter wavelet threshold filter
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A Unmodeled GW signals detection

® UGW signal detection is “looking for things that aren’t noise”
(LSC White Paper, Unmodeled Sources)
> detection of non-Gaussian (nG) noise
> sorting out nG noise using environmental monitor data

> analysis of residual nG noise trying to find “things that aren’t noise”

® UGW signals selection with wavelets

> We can consider a UGW signal as a “transient” (or nG noise) with
unknown signature.

> Wavelet algorithms for transients detection can be used to select
UGW signals. More specific algorithms can be developed if needed.

> Bank of unidentified “transients” (residual nG-noise) is a good data
sample to search for UGW sources.

> Analysis of signals from multiple detectors:
looking for correlation of wavelet signatures.
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A Comparison with other UGW methods

® Power monitoring:

> wavelets work in a similar way measurin
. o 5 | c2=-2InL=Sw,2/s?2
excess of nG noise over G noise with rms s;: ik ] J

> different types of wavelets can be used to get better SNR.

® Time-frequency method:
> wavelets give time-frequency representation of data
> signal signature recognition is used to identify events
> different wavelets can be used for different signals to get better SNR

> wavelet algorithms can be very fast

® Pulse matching:
> wavelet is a “bank of profiles”. Using Gaussian wavelets we can get a bank
of Gaussian profiles.
> Wavelets offer general pulse matching technique that can be optimized to
search for different types of the UGW sources.

® Wavelets are intrinsically different or supplement existing methods
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A Wavelet Analysis Tool

® Toolbox to construct data triggers/ filters and process LIGO data.
® WAT components:

> wavelet class library (C++):
> wavelet domain data structure and functions

> wavelet transformations (Doubechie’s, Mayer’s, Fast Wavelet

Transforms)
> interfaces to LDAS (Frame format) and GUI (ROOT)

> build in set of wavelet algorithms for data analysis

® Why we need WAT?

> can be used to process large amount of data
> provides class library for development of new wavelet algorithms

> will agree with LLAL requirements
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Wavelet Class Library

/Wavelet\

WaveData
e data vector

e virtual resize function
e ROOT interface

N

WaveDataTD

* read Frames
* U&B operations
¢ statistics

WaveDataWD

e WD data members
* access functions
* resize function
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* U&B operations
* basic algorithms
* ROOT interface
* statistics

WaveTool

* access functions

e virtual td2wd
e virtual wd2td

e WaveDataWD WD

e virtual wavelet function

4%\

WaveSpecial

* algorithms

Wavellifting || WaveStandard
* td2wd * td2wd

* wd2td * wd2td

* algorithms * algorithms

4

WaveDaub

e data members

WaveGauss
e data members

e wavelet function
e td2wd

WaveBiort * wavelet function
e data members e td2wd
e wavelet function||® wd2td

e wd2td




A Current Status

® Wavelet Analysis Tool development
>WAT structure is determined
>can read Frame data (need switch from Fcl to FrameCpp)
>Fast Wavelet Transforms (lifting wavelets) (implemented)
>Gaussian wavelets (in progress)
>data reduction algorithms (in progress)
>transients identification (investigating)

>interface to ROOT (investigating)
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A Plans

® Short term plan (Aug 2000):

> develop first version of WAT

>wavelet class library

>interfaces to LIGO data and ROOT

>set of Fast Wavelet Transforms and Gaussian wavelets
> preliminary algorithms for transient analysis and data reduction
> consider specific wavelet software for UGW analysis

® Long term plans (2000-2002)
>2000 - initial WAT

> develop simple and fast wavelets & wavelet algorithms to process
large amount of data at earlier stage of analysis, including UGW
signals detection

> 2001 & 2002 - final WAT

> develop more sophisticated and hence less time efficient
wavelets and wavelet packets for final stage of data analysis.

>use wavelets to analyze LIGO data
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A Conclusion

® Wavelets can be used to construct data triggers and
filters to sort out GW and noise pulses and produce
reduced data sets.

® Flexible Wavelet Analysis Tool is needed

> Ditferent wavelets and algorithms need to be used for
different tasks

> Different wavelets and algorithms will be used at initial and

final stages of analysis.

® UF group is working on wavelet algorithms and

wavelet software development
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A Optimal filters in wavelet and frequency domains

® Optimal 3" order lifting wavelet filter

® Optimal filter in frequency domain
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A Wavelet Analysis & Line Removal

Presented by S.Klimenko
University of Florida
® Outline
>Wavelets
> Wavelet Analysis Tool

> Current status

> Plans & Conclusion

>Line removal
> Algorithm
> Results

> Conclusion
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A LIGO Data Analysis at UF

® LSC White Paper - plan of work on
> detector characterization
> development of detection algorithms

> provision of reduced data sets

® One of the UF group commitments is:

> Development of Wavelet Analysis Tool for
> data compression/reduction

> transient signal characterization

> un-modeled GW sources detection

> WAT will be part of LIGO/LSC Algorithm Library

® “"Wavelet” people at UF:
S.Klimenko, G.Mitselmakher, A.Sazonov, B.Whiting
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A Current Status

® Wavelet Analysis Tool development
>WAT structure is determined
>can read Frame data (need switch from Fcl to FrameCpp)
>Fast Wavelet Transforms (lifting wavelets) (implemented)
>Gaussian wavelets (in progress)
>data reduction algorithms (in progress)
>transients identification (investigating)

>interface to ROOT (investigating)
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A Plans

® Short term plan (Aug 2000):

> develop first version of WAT

>wavelet class library

>interfaces to LIGO data and ROOT

>set of Fast Wavelet Transforms and Gaussian wavelets
> preliminary algorithms for transient analysis and data reduction
> consider specific wavelet software for UGW analysis

® Long term plans (2000-2002)
>2000 - initial WAT

> develop simple and fast wavelets & wavelet algorithms to process
large amount of data at earlier stage of analysis, including UGW
signals detection

> 2001 & 2002 - final WAT

> develop more sophisticated and hence less time efficient
wavelets and wavelet packets for final stage of data analysis.

>use wavelets to analyze LIGO data
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A Conclusion

® Wavelets can be used to construct data triggers and
filters to sort out GW and noise pulses and produce
reduced data sets.

® Flexible Wavelet Analysis Tool is needed

> Ditferent wavelets and algorithms need to be used for
different tasks

> Different wavelets and algorithms will be used at initial and

final stages of analysis.

® UF group is working on wavelet algorithms and

wavelet software development
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Coherent Lines Removal

® Wavelets algorithms can be used for time-frequency analysis of

transients and / or short bursts of GW.

® Strong line interference produces a significant non-Gaussian

noise masking other non-Gaussian components.

® FEffective, simple and fast line removal algorithm is necessary for

wavelet analysis.
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A Line Removal Algorithm

® DFT of data of N samples:
> basis of orthogonal Fourier functions:
F (n)=e?P' "WN  Jn=0,.N-1; d,=S, Fi(n) F(n)
> sampled harmonic signal: L(n)=a 2P nip,
> f - harmonic signal frequency
> fo - sampling rate
> if f/f,=k/N, L(n) = a,F;(n) - one of the basis Fourier functions.
® Removing of line and its harmonics {L,(n)} .
> resample data with sampling rate f.: fo/f =int(f, /H+1
> select data sample length: N=kf./f, k=12...
> extract interference signal: I(n) = S, Ly(n)= S, a,F(n)

> re-sample I(n) back & subtract from original data
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A Data re-sampling

® Sample rate converting

> reconstruction: s(nD) ¥ s(t); D=1/f,
ST: s(t) perfectly represents frequencies that are less then f,/2

> sample data at new sampling rate: s(t) % s’ (nD’); D'=1/f,
® Data interpolation filter

> wavelets

> other interpolating techniques

> currently nth order polynomial interpolation filter is used
(liftting wavelets use the same filter)

® Up-sampled (f, >f,) data used to find interference due to
harmonic lines
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A Line Interference Signal

® line extraction
I'm)=S,aF (n)f,
>q,=S5 s’(n) F,(n) - Fourier coefficient for k" harmonic

>, - optimal filter; f | = 1, if neglect noise for k' harmonic

@ fast line extraction in T domain (f , =1) : u =2
> T - period of fundamental harmonic noet
> ], - one period of I’(n) for all harmonics I,T =S g
> save I’; along with filtered signal to recover T ] Je—

original signal
>signals s’(n)-1'(n) and I’(n) are orthogonal by definition

> for optimal filtering 4, can be found by Fourier transform of I’;
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Power Lines Interference
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A Power Lines Removal

® Blue - Fourier spectra with power lines, red - Fourier
spectra with power lines removed. (T=5sec)
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A Power Lines Removal

® blue - Fourier spectra with power lines, red - Fourier
spectra with power lines removed. (T=5sec)
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A Power Lines Removal

® Sample of 10000 points, (1sec), blue - data with lines, red - lines removed
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Power Lines
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A Signal Amplitude

® blue - original data, red - 60Hz lines removed, green - 582.4Hz
lines removed. Signal energy: 23.4°:17.5%: 10.8°

® Energy balance: dE = <s?> - <[?> - <(s-1)*>, dE/<s*> ~ 10
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A Fundamental Line Frequency

® To use line removal algorithm, an accurate prediction of line
fundamental frequency f is required.

® [ estimation:
> DFT of data gives rough estimate of f: df~f/N=1/T
> re-sample data for given f and find harmonic amplitudes a,
> tune f to maximize S4,4, for all (or group of) harmonics

Spectral leakage function 40m data 40m data

. T=lsec
/ "'a,\ — T=0.5sec

- 180Hz /| \\
o /| |\ 300Hz

normalized Sia,a, for single harmonic
normalized S a,a; for 60Hz harmonics
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A Phase of Harmonics

® 3,5,18 harmonic’s phase (df:t term) for 32 samples of data
(0.132 sec each) for different fundamental frequencies.
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A Line Removal Software

® s.resample(s’, f,)
> re-sample data s” with sampling rate f, .
> uses polynomial interpolation
® s.extract(f, n, m, E)
> extract n-m harmonics of frequency f from data s.
> E - total energy of harmonics n-m
> uses constant weight function

® s.tune(f, n, m)

> tune fundamental frequency f maximizing E=S a,a, for
harmonics n-m and data set s

> seed value of f can be taken from previous data set.
® LRS can be used for E, f monitoring & fast lines removal.
® LRS could be included into the Data Monitoring Tool (?)
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A

Monitoring of harmonic lines

® 100 sec stretch of 40m data (20 frames)
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A Conclusion

® Fast and simple algorithm for coherent lines removal is
presented

® Single harmonic, group of harmonics or all harmonics of
fundamental frequency f can be removed in one shot.

® Relatively small amount of information need to be saved to
recover original data.

® Coherent line removal software has been developed
(C++ class-library). It can be used

> to reduce non-Gaussian noise in data

> to monitor harmonic lines.
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A Re-sampling artifacts
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