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LIGO Data Analysis at UF

l LSC White Paper - plan of work on
ã detector characterization

ã development of detection algorithms

ã provision of reduced data sets

l One of the UF group commitments is:
ã Development of Wavelet Analysis Tool for

ädata compression/reduction

ätransient signal characterization

äunmodeled GW sources detection

ã WAT will be part of LIGO/LSC Algorithm Library

l “Wavelet” people at UF:
S.Klimenko, G.Mitselmakher, A.Sazonov, B.Whiting
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Wavelets

l What are wavelets?
ã set of basis functions Ψjk = aj/2 Ψ0(ajx-k); Ψ0 -mother wavelet
ã used in a way similar to Fourier Transform:

wjk = Σi f(xi) Ψjk(xi) - digital wavelet transformation of f (xi)
ã local in time & frequency domains (in contrast to Fourier Transform)

real signals are finite in time!
l Why wavelets?

ã wavelets are convenient for pattern recognition
äwidely used in image and signal processing.
äcan be used for GW signal and non-gaussian noise identification.

ã allow simple description of  signal with minimal number of
waveforms

ã mathematics of wavelets is well developed, algorithms are flexible
and fast.

l Very promising technique for LIGO data analysis
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Example of wavelet use (db6 wavelet)

l Chirp u + Gaussian noise n: (SNR= <u2>/<n2> = 0.25)

l GW signal or transient can be identified by it’s signature

fft

signal
chirp ‘signature’

          wavelet domain        

time

red -chirp, blue - chirp+noise
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Transient analysis

l Transient is characterized by it’s
signature in wavelet domain

l transient identification:
identify transients by statistical analysis of
data in wavelet domain. All types of
wavelets can be used. Optimal wavelets
retain maximum of transient energy with
minimal number of coefficients. Transient’s
signature may be unknown in advance

l transient reconstruction:
If identify transient with orthogonal (bi-
orthogonal) wavelet, it can be rebuilt in
time domain using reconstructed signature
and subtracted from the original data.

reconstructed
transient’s
 signature 

data - transient

reconstructed transient

data-transient

FT of data

time

frequency

time
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Filtering with Wavelets

l Optimal (Wiener) filter Φjk in wavelet domain
 Σn(s’(n∆) - s(n∆))2  = Σjk(u’jk - ujk)2

u’jk = wjk Φjk ;     Φjk = u2
jk/(u2

jk+ n2
jk)

s,u - uncorrupted signal, s’,u’ - filtered signal, n - noise, w - data
s’,s - time domain, u’,u, n,w - wavelet domain
ã Φjk  requires detail information about signal u and noise n.

l Practical filter
ã limited information about signal and noise
ã signal signature may be unknown (e.g. unmodeled GW signals)
ã example: wavelet threshold filter (WTF)

äset threshold on wjk
2 /σ2

 ;   σ2   - noise variance.
änjk

2 /σ2 - has χ2  distribution in case of Gaussian noise.
äno a priory  information about signal is used
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Example of chirp reconstruction

l reconstructed chirp signal: blue- optimal filter (OF), red - wavelet
threshold filter (WTF),  green -original chirp.   SNR=0.25
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Comparison of optimal & threshold filters

l detectable SNR:  0.035 (db6 OF) vs  0.08 (db6 WTF) (preliminary result)

l no information about signal is used by WTF!
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Unmodeled GW signals detection

l UGW signal detection is “looking for things that aren’t noise”
(LSC White Paper, Unmodeled Sources)
ã detection of non-Gaussian (nG) noise
ã sorting out nG noise using environmental monitor data
ã analysis of residual nG noise trying to find “things that aren’t noise”

l UGW signals selection with wavelets
ã We can consider a UGW signal as a “transient” (or nG noise) with

unknown signature.
ã Wavelet algorithms for transients detection can be used to select

UGW signals. More specific algorithms  can be developed if needed.
ã Bank of unidentified “transients” (residual nG-noise) is a good data

sample to search for UGW sources.
ã Analysis of signals from multiple detectors:

looking for correlation of wavelet signatures.
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Comparison with other UGW methods

l Power monitoring:
ã wavelets work in a similar way measuring

excess of nG noise over G noise with rms σj:
ã different types of wavelets can be used to get better SNR.

l Time-frequency method:
ã wavelets give time-frequency representation of data
ã signal signature recognition is used to identify events
ã different wavelets can be used for different signals to get better SNR
ã wavelet algorithms can be very fast

l Pulse matching:
ã wavelet is a “bank of profiles”. Using Gaussian wavelets we can get a bank

of Gaussian profiles.
ã Wavelets offer general pulse matching technique that can be optimized to

search for different types of the UGW sources.

l Wavelets are intrinsically different or supplement existing methods

χ2 = -2 lnL=Σwjk
2/σj

2
jk
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Wavelet Analysis Tool

l Toolbox to construct data triggers/filters and process LIGO data.

l WAT components:
ã wavelet class library (C++):

äwavelet domain data structure and functions

äwavelet transformations (Doubechie’s, Mayer’s, Fast Wavelet
Transforms)

ã interfaces to LDAS (Frame format) and GUI (ROOT)

ã build in set of wavelet algorithms for data analysis

l Why we need WAT?
ã can be used to process large amount of data

ã provides class library for development of new wavelet algorithms

ã will agree with LLAL requirements
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Wavelet Class Library

WaveletWavelet

WaveData
• data vector
• virtual resize function
• ROOT interface

WaveDataTD
• read Frames
• U&B operations
• statistics

WaveDataWD
• WD data members
• access functions
• resize function 
• U&B operations
• basic algorithms
• ROOT interface
• statistics

WaveTool
• WaveDataWD WD 
• access functions
• virtual wavelet function 
• virtual td2wd
• virtual wd2td

WaveLifting
• td2wd
• wd2td
• algorithms

WaveStandard
• td2wd
• wd2td
• algorithms

WaveSpecial
• algorithms

WaveBiort
• data members
• wavelet function

WaveDaub
• data members
• wavelet function
• td2wd
• wd2td

WaveGauss
• data members
• wavelet function
• td2wd
• wd2td
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Current Status

l Wavelet Analysis Tool development
ãWAT structure is determined

ãcan read Frame data (need switch from Fcl to FrameCpp)

ãFast Wavelet Transforms (lifting wavelets) (implemented)

ãGaussian wavelets (in progress)

ãdata reduction algorithms (in progress)

ãtransients identification (investigating)

ãinterface to ROOT (investigating)
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Plans
l Short term plan (Aug 2000):

ã develop first version of WAT
äwavelet class library
äinterfaces to LIGO data and ROOT
äset of Fast Wavelet Transforms and Gaussian wavelets

ã preliminary algorithms for transient analysis and data reduction
ã consider specific wavelet software for UGW analysis

l  Long term plans (2000-2002)
ã 2000 - initial WAT

ädevelop simple and fast wavelets & wavelet algorithms to process
large amount of data at earlier stage of analysis, including UGW
signals detection

ã 2001 & 2002 - final WAT
ädevelop more sophisticated and hence less time efficient

wavelets and wavelet packets for final stage of data analysis.
äuse wavelets to analyze LIGO data
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Conclusion

l Wavelets can be used to construct data triggers and

filters to sort out GW and noise pulses and produce

reduced data sets.

l Flexible Wavelet Analysis Tool is needed
ã Different wavelets and algorithms need to be used for

different tasks

ã Different wavelets  and algorithms will be used at initial and
final stages of analysis.

l UF group is working on wavelet algorithms and

wavelet software development
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Optimal  filters in wavelet and frequency domains

l Optimal 3rd order lifting wavelet filter
l Optimal filter in frequency domain
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Wavelet Analysis & Line Removal
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LIGO Data Analysis at UF

l LSC White Paper - plan of work on
ã detector characterization

ã development of detection algorithms

ã provision of reduced data sets

l One of the UF group commitments is:
ã Development of Wavelet Analysis Tool for

ädata compression/reduction

ätransient signal characterization

äun-modeled GW sources detection

ã WAT will be part of LIGO/LSC Algorithm Library

l “Wavelet” people at UF:
S.Klimenko, G.Mitselmakher, A.Sazonov, B.Whiting
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Current Status

l Wavelet Analysis Tool development
ãWAT structure is determined

ãcan read Frame data (need switch from Fcl to FrameCpp)

ãFast Wavelet Transforms (lifting wavelets) (implemented)

ãGaussian wavelets (in progress)

ãdata reduction algorithms (in progress)

ãtransients identification (investigating)

ãinterface to ROOT (investigating)



S.Klimenko

Plans
l Short term plan (Aug 2000):

ã develop first version of WAT
äwavelet class library
äinterfaces to LIGO data and ROOT
äset of Fast Wavelet Transforms and Gaussian wavelets

ã preliminary algorithms for transient analysis and data reduction
ã consider specific wavelet software for UGW analysis

l  Long term plans (2000-2002)
ã 2000 - initial WAT

ädevelop simple and fast wavelets & wavelet algorithms to process
large amount of data at earlier stage of analysis, including UGW
signals detection

ã 2001 & 2002 - final WAT
ädevelop more sophisticated and hence less time efficient

wavelets and wavelet packets for final stage of data analysis.
äuse wavelets to analyze LIGO data
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Conclusion

l Wavelets can be used to construct data triggers and

filters to sort out GW and noise pulses and produce

reduced data sets.

l Flexible Wavelet Analysis Tool is needed
ã Different wavelets and algorithms need to be used for

different tasks

ã Different wavelets  and algorithms will be used at initial and
final stages of analysis.

l UF group is working on wavelet algorithms and

wavelet software development
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Coherent Lines Removal

l Wavelets algorithms can be used for time-frequency analysis of

transients and/or short bursts of GW.

l Strong line interference produces a significant non-Gaussian

noise masking  other non-Gaussian components.

l Effective, simple and fast line removal algorithm is necessary for

wavelet analysis.
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Line Removal Algorithm

l DFT of data of N samples:
ã basis of orthogonal Fourier functions:

Fk(n)=e-2πι n k/N,    k,n = 0,..,N-1;       δij=Σn Fi(n) Fj(n)
ã sampled harmonic signal:        L(n)=a e-2πι n f/fo,

äf - harmonic signal frequency

äfo - sampling rate

ã if   f /fo=k/N,  L(n) = akFk(n) - one of the basis Fourier functions.

l Removing of line and its harmonics {Lk(n)} .
ã resample data with sampling rate  fs:          fs /f  = int(fo /f)+1

ã select data sample length:                           N = k fs /f ,  k=1,2…
ã extract interference signal:                        I(n) = Σk Lk(n)= Σk akFk(n)
ã re-sample I(n) back & subtract from original data
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Data re-sampling

l Sample rate converting
ã reconstruction: s(n∆)      s(t) ;    ∆=1/f0

ST: s(t) perfectly represents frequencies that are  less then f0/2
ã sample data at new sampling rate: s(t)      s’(n∆’);   ∆’=1/fs

l Data interpolation filter
ã wavelets
ã other interpolating techniques
ã currently nth order polynomial interpolation filter is used

(lifting wavelets use the same filter)

l Up-sampled (fs >f0) data used to find interference due to
harmonic lines



S.Klimenko

Line Interference Signal

l line extraction

I’(n) = Σk akFk
*(n) φk

ãak = Σn s’(n) Fk(n)  - Fourier coefficient for kth harmonic

ãφk - optimal filter; φk = 1, if neglect noise for kth harmonic

l fast line extraction in T domain (φk =1) :
ã T - period of fundamental harmonic

ã I’T - one period of I’(n) for all harmonics
ã save I’T along with filtered signal to recover

original signal

ã signals  s’(n)-I’(n)  and I’(n) are orthogonal by definition

ã for optimal filtering ak  can be found by Fourier transform of  I’T

S’

T

I’T = Σ
T
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Power Lines Interference
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Power Lines Removal

l Blue - Fourier spectra with power lines, red - Fourier
spectra with power lines removed. (T=5sec)

--- original    
--- lines removed 

40m data
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Power Lines Removal

l blue - Fourier spectra with power lines, red - Fourier
spectra with power lines removed. (T=5sec)

--- original    
--- lines removed 

40m data
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Power Lines Removal

l Sample of 10000 points, (1sec), blue - data with lines, red - lines removed

40m data



S.Klimenko

Power Lines

      #       frequency          A            A/N

     1        60.00190        0.191         0.24

     2       120.0038         0.096         9.45
     3       180.0057         4.074       40.71
     4       240.0076         0.261       14.82
     5       300.0095         7.223     107.37
     6       360.0114         0.078         0.37
     7       420.0133         2.344       23.78
     8       480.0152         0.299         7.33
     9       540.0171         1.663       58.76
    10      600.0190         1.033         0.86
    11      660.0209         0.989       13.61
    12      720.0228         0.619         5.87
    13      780.0247         0.159         2.22
    14      840.0266         1.045         9.55
    15      900.0285         0.472       12.66
    16      960.0304         0.673         9.64
    17      1020.032         0.472         5.79
    18      1080.034         1.343       11.26
    19      1140.036         0.591         4.33
    20      1200.038         0.427         2.58
    21      1260.039         0.111         1.36
    22      1320.041         1.667       16.98
    23      1380.043         0.322         1.80
    24      1440.045         0.381         3.95
    25      1500.047         0.445         4.08

#         frequency             A           A/N
26      1560.0494         0.776       16.16
27      1620.0513         0.203         1.15
28      1680.0532         0.453         2.87
29      1740.0551         0.164         1.00
30      1800.0570         0.706       15.49
31      1860.0589         0.204         2.20
32      1920.0608         0.684         6.87
33      1980.0627         0.116         1.07
34      2040.0646         0.667         5.39
35      2100.0665         0.210         0.85
36      2160.0684         0.264         1.54
37      2220.0703         0.230         0.69
38      2280.0722         0.123         0.50
39      2340.0741         0.069         0.60
40      2400.0760         0.253         2.69
41      2460.0779         0.087         0.53
42      2520.0798         0.366         1.92
43      2580.0817         0.037         0.45
44      2640.0836         0.049         0.52
45      2700.0855         0.081         0.60
46      2760.0874         0.163         0.29
47      2820.0893         0.469         0.49
48      2880.0912         0.215         3.06
49      2940.0931         0.034         0.17
50      3000.0950         0.123         1.45

#         frequency             A             A/N
 51      3060.0969        0.0109         0.278
 52      3120.0988        0.0858         2.285
 53      3180.1007        0.0172         1.007
 54      3240.1026        0.1175         5.884
 55      3300.1045        0.0393         2.658
 56      3360.1064        0.0138         0.276
 57      3420.1083        0.0148         0.717
 58      3480.1102        0.0836         2.740
 59      3540.1121        0.0150         0.637
 60      3600.1140        0.0702         0.549
 61      3660.1159        0.0124         1.204
 62      3720.1178        0.0299         2.684
 63      3780.1197        0.0066         0.535
 64      3840.1216        0.0244         1.617
 65      3900.1235        0.0307         2.129
 66      3960.1254        0.0297         2.271
 67      4020.1273        0.0044         0.846
 68      4080.1292        0.0252         3.508
 69      4140.1311        0.0053         0.675
 70      4200.1330        0.0225         1.975
 71      4260.1349        0.0072         1.042
 72      4320.1368        0.0056         0.690
 73      4380.1387        0.0087         2.579
 74      4440.1406        0.0078         1.653
 75      4500.1425        0.0016         0.272
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Signal Amplitude

l blue - original data, red - 60Hz lines removed,  green - 582.4Hz
lines removed. Signal energy: 23.42 : 17.52 : 10.82

l Energy balance: δE = <s2> - <I2> - <(s-I)2>, δE/<s2> ~ 10-4
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 Fundamental Line Frequency

l To use line removal algorithm, an accurate prediction of line
fundamental frequency f is required.

l f estimation:
ã DFT of data gives rough estimate of  f :   δ f~f0/N=1/T
ã re-sample data for given  f  and find harmonic amplitudes  ak
ã tune f to maximize Σkakak

* for all (or group of) harmonics

Spectral leakage function    40m data
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Phase of Harmonics

l 3,5,18 harmonic’s phase (δf*t term) for  32 samples of data
(0.132 sec each) for different fundamental frequencies.
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Line Removal Software

l s.resample( s’, fs )
ã re-sample data s’ with sampling rate fs .
ã uses polynomial interpolation

l s.extract( f, n, m, E )
ã extract n-m harmonics of frequency f from data s.
ã E - total energy of harmonics n-m
ã uses constant weight function

l s.tune( f, n, m )
ã tune fundamental frequency f  maximizing  E=Σn ak ak

*    for
harmonics n-m  and data set s

ã seed value of f can be taken from previous data set.
l LRS can be used for E, f monitoring & fast lines removal.
l LRS could be included into the Data Monitoring Tool (?)
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Monitoring of harmonic lines

l 100 sec stretch of 40m data (20 frames)
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Conclusion

l Fast and simple algorithm for coherent lines removal is
presented

l Single harmonic, group of harmonics or all harmonics of
fundamental frequency f can be removed in one shot.

l Relatively small amount of information need to be saved to
recover original data.

l Coherent line removal software has been developed
(C++ class-library).  It can be used
ã to reduce non-Gaussian noise in data

ã to monitor harmonic lines.
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Re-sampling artifacts
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