

State of the LIGO Project

Gary Sanders

Caltech

LSC Meeting

LLO, March 16, 2000

l de la companya de

LIGO Schedule at Very Top Level

1996	Construction Underway » mostly civil	
1997	Facility Construction » beam pipe and enclosure	Last Year LSC
1998	Construct Detectors » completion of vacuum systems	Florida
1999	Install Detectors » interferometers in vacuum	
2000	Commission Detectors » first light in arms; subsystem testing	
2001	Engineering Tests » sensitivity: engineering run	
2002	LIGO I Run Begins » h ~ 10 ⁻²¹	
LIGO-G000018-00-M		2

Future Scenario

YEAR	LIGO I	LIGO II
2000	Installation and commissioning	R&D
2001	Installation and commissioning	R&D
2002	Science run starts	MRE/R&D funds start, R&D, design, long lead items
2003	Science run	R&D, design, fabrication
2004	Science run	Fabrication, on-site assembly
2005	LIGO I interferometers removed	Fabrication, on-site assembly, installation into vacuum system
2006		Installation and commissioning

Construction Project Status

- 97.5% complete
- construction will finish on the budget
- Hanford buildings complete, including staging building
- Livingston complete except for erosion control and staging building construction
- 7 of the 8 beam tube modules (2 km each) baked

LIGO No more bullet holes in Livingston, but in Hanford...

Hanford Observatory Installation Status Overview

• Washington 2 km Interferometer

- » Laser installed; frequency and intensity stabilization operational
- » Seismic Isolation installation essentially complete
- » All suspended optics (input & core) installed and aligned; suspension electronics are functioning, but need tuning
- » ~Half of the output optics & sensors are installed
- » Laser locked to Modecleaner & performance testing in progress
- » Both 2 km arm cavities have been locked; characterization to be complete 4/00
 - Earth tides observed, wavefront sensing in, 2 hour arm lock!
- » Data Acquisition & an initial Global Diagnostics System installed

Washington 4 km Interferometer

- » Seismic isolation installation ~75% complete
 - Racks, trays, feedthroughs, viewports & PSL enclosure in place

LHO 2 km Arm Cavity Lock With Wavefront Sensing

LHO Detects Utah Earthquake

Progress...

Date	Duration of lock
1 Dec 99	Flashes of light
9 Dec 99	0.2 sec
14 January 00	2 minutes
19 January 00	60 seconds
21 January 00	5 minutes (other arm!!)
12 February 00	18 minutes
7 March 00	2 hours +

Software tools for Diagnostics

- Data acquisition system
 - » site-wide, synchronized, flexible
 - » reduced data sets for later study
- time series viewing tools
 - » multiple time series, trends
- diagnostic analysis tools
 - » Fourier transforms, coherence, etc.
- Change of paradigm:

research performed in the control room

LIGO-G000018-00-M

Livingston Observatory Installation Status Overview

Louisiana 4 km Interferometer Laser installed on optical table; frequency and intensity stabilization loops being tested and debugged **Seismic isolation installation complete** Input Optics installation is ~ 90% complete All core optics have been suspended; two are installed **Mode Cleaner locking achieved last week!**

Coyne, Shoemaker

LLO End Test Mass Installation

12

Readonly Access to Log Books is Public!

- Livingston
 - » http://abundance.ligo-la.caltech.edu/ilog/
- Hanford
 - » http://blue.ligo-wa.caltech.edu/ilog/

13

Progress Against Schedule?

- Installation and commissioning of the interferometers have been progressing and preliminary results are encouraging
- However, there have been delays and problems:
 - » production start problems in seismic isolation and a slow early production pace
 - » process control problems for the magnet/standoff assembly adhesion to the optics
 - » handling and fixture problems associated with the transport and alignment of completed suspension assemblies
 - » re-manufacture of much of our flourel component stock as a result of losses from a tornado which destroyed the manufacturing facility
 - » re-baking of the flourel spring seats (and associated seismic stack rebuild) to mitigate water load on the vacuum system
 - water load is now an operational constraint

Strategy Evolving: Look Over the Original Planning Horizon

- Slow the installation into 3rd interferometer (LHO 4km) to permit use of reworked components
- Move to coincidence running as soon as 2 interferometers are at useful sensitivity
 - » makes coincidence data stream available earlier than waiting for triple coincidence
- Path to Science Run should be smoother with this approach
 - » 3 interferometer Science Run begins mid-2002
 - » First search papers by mid-2002 based upon engineering running?!
 - Engineering run guided by engineering needs, but...
 - We are scientists, not just instrument builders.

Top Level Schedule

LIGO I Science Run

- Begins with reliable and calibrated coincidence data on three interferometers and stable configuration
 - » Formally recognized by LIGO Laboratory
 - » "Ownership" of running then guided by science
- Improvements to reach final design goals in sensitivity and reliability will be alternated with data running
 - » Scientific running experience informs detector development
- Goal is to obtain at least one year of integrated sensitivity at $h \sim 10^{-21}$ before initiating LIGO II

Future Scenario: The Next 5 Year Plan

YEAR	LIGO I	LIGO II
2000	Installation and commissioning	R&D
2001	Installation and commissioning	R&D
2002	Science run starts	MRE/R&D funds start, R&D, design, long lead items
2003	Science run	R&D, design, fabrication
2004	Science run	Fabrication, on-site assembly
2005	LIGO I interferometers removed	Fabrication, on-site assembly, installation into vacuum system
2006		Installation and commissioning

LIGO II Scope?

Last Year LSC Florida

- When are we ready to document a strawman LIGO II configuration, with well-defined options?
- LIGO Laboratory is ready to support the LSC in laying out a schedule and cost baseline
- NSF is already engaged in long term planning for construction of upgrades
- This meeting might consider this as we work towards revisions in White Paper

This Meeting

- R&D for LIGO II
 - » Consolidate planning for R&D and LIGO II proposal
 - » Cope with thermal noise bombshell
 - » advisory groups meet on 40 Meter, LASTI, selection of LIGO II seismic isolation approach
- 3 "software" working groups
 - » Advance the White Paper
- 6 month Attachments