

EtherCAT (Beckhoff) for advanced LIGO

January 25, 2011 CDS Meeting, LHO

ISC Implementation

G1100098-v1

LIGO

Why?

□ Need to replace VME based EPICS system

Used in the aLIGO PSL

- Don't want to maintain more systems than necessary
- Used in the squeezer for slow controls

Good enough

- 100base Ethernet (no expensive backbone)
- Low latency: Datagrams processed on the fly
- Fast: 1-10 ms readout standard; 100us possible
- Software: Windows based with EPICS interface
- > Modern
- □ Cost effective for large number of slow channels
 - Stackable, DIN-rail mounted units with 1-4 channels typical
 - > 16 bit analog channel: ~\$50-\$100
 - Binary channel: ~\$10-\$20

What is EtherCAT?

LIGO

What is EtherCAT?

□ Protocol: (Raw) Ethernet frames

- Memory mapped access (4GB)
- UDP/IP encapsulation possible

Performance

- Real-time kernel on PC
- 1000 distributed I/Os in only 30 µs

Topology

- Line, star or tree; hot connect of branches possible
- > up to 65,535 devices
- E-bus (LVDS) for DIN mounted modules
- Stand-alone modules (IP67)
- Distributed Clock
- Special Safety Terminal
- Useful information video

EtherCAT Coupler

E-Bus:

- Ethernet OUT (LVDS)
- Ethernet IN (LVDS)
- 5V Power

Power:

- Positive (24V/5V)
- Ground
- Shield

Coupler requires +24V to power E-Bus Separate power for terminals

G1100098-v1

4-channel binary TTL output

2-channel 16-bit analog input

LIGO

3U Chassis Design

G1100098-v1

LIGO

LIGO

3U Chassis Features

EtherCAT connections

- 2 front panel 100baseFX (fiber) input/output connections
- 2 auxiliary rear panel 100baseT connections (optional)

Power

- > 24 VDC/5 A max (digital); 3-pin power D-sub
- On-Off Switch/thermal breaker
- Internal DC-DC converters for 5 VDC
- □ 9 rear adapter slots
 - > 1x 37pin/25pin D-sub
 - > 2x 15pin/9pin D-sub
 - ➢ Others...
- □ 3 internal DIN rails (20")

Ethernet Configuration

LIGO

Power and Grounding (1)

□ Analog terminals 1

- Differential 16 bit analog inputs: EL3101 (1 chn), EL3102 (2 chn)
- Differential 16 bit analog outputs: EL4132 (2 chn)
- No connection to power bus
- Common needs to be connected to
 - Signal ground of controlled chassis (preferred), or
 - Local power ground

□ Analog terminals 2

- ➤ 4 channel terminals: EL3104 and EL4134
- Common connected to power bus ground
- Connect power bus ground to signal or local power ground
- May require feed terminal EL9190 to break power bus

Power and Grounding (2)

Binary terminals

- TTL input : EL1124 (4 chn)
- TTL output: EL2124 (4 chn)
- TTL ground connected to power bus ground
 - Connect power bus ground to digital ground of controlled chassis
- Powered from power bus: 5 VDC
 - ✤ Requires isolated DC-DC converter 24V in/5V out
- Typically requires feed terminal EL9190 to break power bus and supply 5 VDC
- Other terminals
 - EL9400: Power supply for E-Bus
 - EK1110/EL9011: Extension end terminal/End cap
 - EL6002/EL6022: Dual RS232/RS422 interface

Programmable Logic Controller (PLC)

Computer room:

LIGO

1 Computer per station and interferometer

Outlook

- □ Easy to expand; easy to add a few more channels
- Simple logic controllers and slow servos can be directly implemented in the Beckhoff PLC
- □ TwinCAT 3 will support 64bit OS and C++/Matlab
- □ We can support RS232/RS422/RS485 devices
- Infrastructure to support legacy and "odd-ball" devices (picomotors, dust monitors, rotating waveplates, weather stations, etc.)
- □ Future of the vacuum controls?

LIGO