

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T990097-12 E- 09/07/2000

The wrapper API’s
baseline requirements & implementation

Masha Barnes, Kent Blackburn, Albert Lazzarini,
Patrick Brady, Duncan Brown, Jolien Creighton, Alan Wiseman

Distribution of this document:

LIGO
LSC

California Institute of Technology
LIGO Project - MS 51-33

Pasadena CA 91125
Phone (818) 395-2129
Fax (818) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project - MS 20B-145

Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

This is an internal working document
of the LIGO Project.

Table of Contents

Index

file C:\My Documents\wrapperAPI\wrapperAPIReqCover.fm - printed September 7, 2000

Page 1 of 43

The LDAS wrapper API’s
baseline requirements
and implementation

LIGO Laboratory
California Institute of Technology

LIGO Data Analysis System
September 7, 2000

I. Requirements

A. General Requirements:

1. As with all LDAS APIs, the wrapperAPI is being designed and implemented
to have a life expectancy equal to that of LIGO (20 years).

2. As with all LDAS APIs, the wrapperAPI will be written to run in the 24 by 7
quasi-realtime environment of the interferometers.

3. The wrapperAPI is responsible for executing the search analysis processes
which are based on MPI and executing in the LDAS parallel computing clus-
ter of nodes using an interpreted command language.

4. There will be no limit on the number of searches that can be managed by
instances of the wrapperAPI. However, the number of instances expected is
of order 6 to 8 search algorithms brought into the wrapper through dynami-
cally loaded shared object libraries (see the LSC data analysis white paper)
running on the LDAS parallel computing cluster.

a) The wrapperAPI will support dynamic load balancing. The details of per-
forming load balancing are carried out by the mpiAPI. The wrapperAPI
will support the protocol used by the mpiAPI to make decisions and per-
form load balancing.

b) The primary function of load balancing is to adjust the nodes associated
with the concurrent searches underway in the LDAS Beowulf by reallo-
cating nodes away from searches having the lowest priority level in the
system and giving them to searches having higher priority level strictly
during times of need in the searches which are allocated to run at the
highest priority level.The use of dynamic load balancing will also serve
to make minor “steering” adjustments to searches running on the on-site
LDAS beowulf systems which will differ ever-so-slightly in areas of
clock speed, network interfaces, motherboard design, etc. from the devel-
opment systems at CIT which are have higher availability for studying
performance issues and issues of precise node allocation needs for
searches.

5. The wrapperAPI is written entirely in C++. No TCL/TK is used in this
LDAS API.

The LDAS wrapper API’s baseline requirements and implementation

Page 2 of 43

6. The wrapperAPI will be initiated using the mpirun command. This command
will be started solely by the mpiAPI (see LIGO-T990086-E). The mpiAPI
will determine the appropriate values for the mpirun command, as well as the
appropriate commands for the wrapperAPI and pass these as command line
arguments to mpirun. The wrapperAPI will interpret its own command line
arguments which are automatically passed to the wrapperAPI by the mpirun
command.

7. The wrapperAPI will process a “segment” of data of finite length. For each
new “segment” of data a new wrapperAPI will be started up by the mpiAPI.
This “chunk” of data will nominally be provided to the wrapperAPI by the
LDAS dataConditionAPI (see LIGO-T990002-E).

8. The wrapperAPI is a component of LDAS and therefore must support 24-by-
7 operations at the observatories. The wrapperAPI will be restarted with each
new segment of data from the interferometers (or user specified archived
data) being analyzed. This will decrease the risks associated with very small
overlooked memory management problems (memory leaks) on hardware
with finite resources.

9. All messages and data will pass between the search algorithms and LDAS
through the wrapperAPI. File I/O will direct communications between the
LDAS and search algorithms will not be permitted during normal execution
of the wrapperAPI.

10. The scientific results from running the wrapperAPI will be directed to the
eventMonitorAPI (baseline requirements TBD) using the LDAS ILWD C++
socket communications. Exceptions which involve the use of files for data
exchange shall be supported for limited situations such as during early MDC
when full LDAS functionality is not available.

B. The TCL/TK Script’s Requirements:

1. None applicable to the wrapperAPI since it will not have TCL/TK code. The
wrapperAPI is mated toTCL code using the mpiAPI

2. The wrapperAPI deviates somewhat from the normal LDAS API model. It
does not have the usual integrated TCL process control layer. Instead this
functionality is achieved using through a dedicated socket communication
with the mpiAPI. Only ascii based textural messages and commands can be
passed through this low bandwidth channel.

3. LDAS parallel job queues and dynamic load balancing will be supervised
through the mpiAPI using communications that share the textural message
and command interface protocol outlined in the implementation section of
this document.

C. The wrapperAPI executable Requirements:

1. The wrapperAPI must be written to LDAS standards.

The LDAS wrapper API’s baseline requirements and implementation

Page 3 of 43

2. The wrapperAPI must be written in C++ in order to properly use existing
LDAS C++ class libraries and data communications standards (ILWDs).

3. The LDAS ILWD data types used for communicating data between the wrap-
perAPI and the rest of LDAS must be translated into fundamental MPI data
types in order to use the MPI send and receive functions by the wrapperAPI.
To facilitate this translation, a standard set of C data structures based strictly
on the ANSI C standard (and shared by the C++ ANSI/ISO standard) will be
used internal to the wrapperAPI to facilitate MPI communications.

4. The wrapperAPI will be written to use the MPI 2.0 C++ API, thereby allow-
ing direct interaction with MPI 2.0 exception handling. This API currently
support MPICH and LAM. LDAS will only support MPI 1.2 or later from
MPICH.
NOTE: This MPI 2.0 C++ API is currently under rapid development and
provides the first sojourn into the full MPI 2.0 standard. Future versions of
the wrapperAPI will migrate towards a full MPI 2.0 design once implemen-
tations become available.

5. The wrapperAPI will be written as an MPI executable, not as an LDAS
shared object library. However, the wrapperAPI will make extensive use of
other LDAS shared object libraries (e.g., objectspace, ilwd, general, etc.).

6. The wrapperAPI will dynamically load a shared object containing the
indexed1 search filter algorithms used for parallel LIGO data analysis. The
wrapperAPI will load the dynamically loaded library using the Unix dopen
and related Unix functions.

7. The wrapperAPI will be a parallel program based on MPICH version 1.2 or
later, designed to operate strictly within the LDAS system. Distributed pro-
gram flow can be supported for the purpose of prototype and when load bal-
ancing and progress reporting are not important to LDAS system integrity.
(However, this will result in failure to fully satisfy requirements 6, 9 and 10.)

8. The wrapperAPI must support dynamic load balancing (see general require-
ments above).

9. Control of the wrapperAPI will be managed through the mpiAPI. This
includes load balancing and the possibility of notification to terminate pre-
maturely. In the event of a termination command from the mpiAPI, the wrap-
perAPI will notify the search algorithms using the standard dynamically
loaded shared object function interface (see applyFilters() in implementation
section for details).

1. The term index here means any mapping between an ordinal series {1,2,3,...} and the metric that is used
internally to the search engine to quantify the fraction of the analysis task. In other words index is a metric
that indicates “fraction of job completed” when renormalized by its maximum value. Each search has inter-
nal freedom in for the definition of this map. The wrapperAPI will progress through the index from 1 to its
maximum value.

The LDAS wrapper API’s baseline requirements and implementation

Page 4 of 43

10. The wrapperAPI must systematically report progress, status, and health of
the running wrapperAPI to the LDAS in a timely manner which provides ide-
ally order 10 to 100 communications per execution. This frequency of com-
munications will be tunable from start up parameters. These reports will
include progress (both percent completion and data chunk size in seconds to
compute time ratios), errors & warnings, node usage, and requests for load
balancing.

11. The target platform for running the wrapperAPI will be any LDAS Beowulf
Cluster. Current design plans for this cluster are based on Intel Pentium PCs
using the Redhat 6.2 or higher operating systems. However, this choice for
cluster technology may evolve as the commodity PC market changes. No
choices for the wrapperAPI should strictly assume this cluster technology.

12. The wrapperAPI will divide parallel processing into two general categories:

a) A single master process that is responsible for communicating commands
with mpiAPI and communicating with other LDAS APIs which send and
receive data in the form of ILWD objects through LDAS API data sock-
ets. The master process will also act as the central parallel node used by
all slave processes in the MPI environment. The master process is also
responsible for translating the ILWD data objects into MPI data types
necessary for parallel communications.
NOTE: All master wrapperAPI processes will run on a single node of the
LDAS Beowulf. LDAS will provide a high end SMP master node capable
of running all master wrapperAPIs on a common node allowing for bet-
ter isolation of the Beowulf hardware.

b) A collection of slave processes responsible for carrying out the indexed
filtering in a parallel manner. Each slave process must dynamically load
the indexed analysis algorithm library as part of its initialization. The
slaves will communicate analysis results back to the master using MPI
data types. The schedule by which results are reported back shall be tun-
able using mpirun command line options, enabling search codes to better
optimize communications cost which local caching of results on the
slaves is affordable to the search strategy.

13. The wrapperAPI must provide the following flow control into the dynami-
cally loaded search libraries which:

a) Initialization ofsearch parameters used in the specific algorithms being
carried out.

b) Generatation of the index map which corresponds to the order in which
the wrapperAPI allocates the job across the slaves with the associated
portion of the search being carried out on the slaves.

c) Provision for any pre-processing of data not performed earlier in the data
flow but that is to be used in the search algorithms. This includes a mech-

The LDAS wrapper API’s baseline requirements and implementation

Page 5 of 43

anism for allowing the search algorithm to handle the distribution of
input data to the slaves as well as the ability to perform data conditioning
on the input data.

d) Looping through the “apply” method of the search over specified indices
until the search task is either completed or terminated prematurely.

e) This looping feature also includes a call to memory management tools
needed in the dynamically loaded library once per loop.

f) Provision for a single call to clean up after either completionor termina-
tion of the search.

D. WrapperAPI Dynamically Loaded Library Requirements

1. Each type of search will have its own unique dynamically loaded library.

2. Each dynamically loaded library must contain the LDAS specified interface
functions that the wrapperAPI resolves through the dynamically loaded
library and systematically calls during execution. All calls to interface func-
tions will as specified by the wrapperAPI implementation. These functions
will be defined within an extern “C” {} construct from the wrapperAPI’s
C++ code (and if necessary by the dynamically loaded library) in order to
allow C naming rules to be properly resolved by the C++ compiler name
mangling found in the wrapperAPI.

3. Each function exposed to the wrapperAPI by the dynamically loaded library
will use an error or warning message string variable. This message string will
be nulled out before each call to the any and all interface functions. Any non-
null value returned by one of the interface messages will be transmitted by
the wrapperAPI using command message communications with the mpiAPI
at systematic times (once per loop iteration). These messages will be logged
into the LDAS logging system by the mpiAPI, posted on the web, and dis-
played by the controlMonitorAPI (see LIGO-T000026-E).

4. The dynamically loaded libraries must support the functional requirements
on the wrapperAPI for systematically reporting progress, status, and health
of the search to the wrapperAPI in a manner which provides ideally order 10
to 100 communications per execution. This frequency of communications
will be tunable from start up parameters.

5. The LDAS system (through the mpiAPI) has the authority to terminate a run-
ning wrapperAPI. The wrapperAPI will notify the search when this has
occurred allowing the search algorithm to act appropriately. The search algo-
rithm must respond quickly to these notices.

6. Dynamically loaded libraries must support the functional requirement on the
wrapperAPI to perform dynamic load balancing.

7. Dynamically loaded libraries must support parallel computation models. Dis-
tributed computational models can be supported for prototyping and excep-

The LDAS wrapper API’s baseline requirements and implementation

Page 6 of 43

tional cases where load balancing and reporting progress are not critical to
LDAS system performance.

8. For any dynamically loaded library in which the search algorithm includes
MPI communications, these communications must be compatible with
MPICH 1.2 or higher. In addition, these libraries must link to the MPI library
as a shared object.

9. Each dynamically loaded library will support the LDAS requirements to
monitor progress and carry out load balancing of the search algorithm with
efficient use of computer performance.

10. Each search algorithm provided by dynamically loaded shared objects for
use in the wrapperAPI must be fully validated and verified to the satisfaction
of the LIGO Laboratory, the LSC and its software committee. This shall not
only include V&V of its scientific and algorithmic implementation but also
its capacity to operate within the context of the wrapperAPI and LDAS as a
whole.

The LDAS wrapper API’s baseline requirements and implementation

Page 7 of 43

II. Component Layer Requirements for the wrapperAPI

A. LDAS wrapperAPI:

1. The LDAS wrapperAPI is made up of a single C/C++ layer.

a) C/C++ Package Layer - this layer is the data engine layer and deals pri-
marily with the binary data and the algorithms and methods needed to
manipulate LIGO’s data

2. The C/C++ package layer consists of three internal components, developed
in C++ and C to take advantage of the higher performance associated with
compiled languages which is needed for the types of activities that are being
carried out in this layer.

a) The genericAPI.so - this shared object contains the C++ classes and C
interface functions needed to communicate LDAS ilwd data as C++
objects through sockets. It will be linked to the wrapperAPI executable.

b) The MPI library - this is the Message Passing Interface library used to

C/C++ Package Layer

wrapperAPI “main()”

LDAS wrapperAPI

dynamically loaded
indexed algorithm

genericAPI.so

libraries (filters)

MPI library

The LDAS wrapper API’s baseline requirements and implementation

Page 8 of 43

communicate MPI based messages and data types between nodes of the
parallel process.

c) The dynamically loaded indexed filter algorithm library - this is the
library that contains the algorithms and functions necessary to carry out
index based parallel filtering (searches) of LIGO’s data. It will be loaded
as a shared object using the Unix dlopen interface calls.

III. LDAS interface requirements to the wrapperAPI

A. Initialization

1. The LDAS mpiAPI will initiate the wrapperAPI as a stand-alone executable
using the mpirun command script. The mpiAPI will be responsible for con-
structing all command line arguments to the wrapperAPI, this includes
options for mpirun as well as options for wrapperAPI.

B. Commands

1. The wrapperAPI will open a Unix socket connection with the mpiAPI’s job-
state port for the purpose of sending and receiving text commands used to
load balance and report status.

C. LDAS Data

1. The wrapperAPI will use the LDAS data sockets for communicating ILWD
data with the LDAS system. The functionality to create and manage these
data sockets will be derived from the genericAPI’s shared object library.

D. MPI

1. The wrapperAPI is a parallel process running on many different nodes of a
clustered topology of computers. The software for communicating data and
messages between these distinct processes will be the Message Passing Inter-
face (MPI) library. The wrapperAPI will support simplistic parallel process-
ing based on a large set of filter algorithms (indices or templates) being
applied in parallel to a single segment of data. The master process will be
responsible for sending the data and receiving results of the analysis. The
slave processes will carry out the algorithms on the data.

E. Dynamically Loaded Indexed Filter Algorithm DSO Requirements

1. The wrapperAPI will dynamically load all shared object that conforms to the
design standard for indexed filter algorithms outlined in this document. The
algorithms found in this shared object will be performed within the slave pro-

The LDAS wrapper API’s baseline requirements and implementation

Page 9 of 43

cess of the parallel process.

wrapperAPI
(C++ code using MPI 1.2 library)

Templated Algorithms
(Dynamically Loaded Library)

mpiAPI
(tcl code only)

{spawns
mpirun...}

dataCondition
API

eventManager
API

lightWeight
API

wrapperAPI
(Slave Process)

wrapperAPI
(Slave Process)

wrapperAPI
(Slave Process)

wrapperAPI
(Slave Process)

wrapperAPI
(Slave Process)

wrapperAPI
(Slave Process)

wrapperAPI
(Slave Process)

wrapperAPI
(Slave Process)

wrapperAPI
(Master Process)

The LDAS wrapper API’s baseline requirements and implementation

Page 10 of 43

IV. Communications Requirements in wrapperAPI

A. Socket Based Communications in wrapperAPI:

1. The wrapperAPI will establish a Unix socket for communicating jobstate
commands and messages between the mpAPI and itself. This socket will be
managed by the master process of the wrapperAPI.

2. The genericAPI will provide the wrapperAPI with dynamically allocated
TCP/IP sockets within the C/C++ layer that is used to communicate LDAS
data (typically binary data) in the form of streamed binary data or distributed
ILWD C++ class objects using the ObjectSpace C++ Component Series
Socket Library. This port is commonly referred to as the Data Socket to
reflect its primary duty in communicating LDAS data sets. Requirements on
these sockets are defined by the genericAPI.

3. The MPI library will provide the communications interface (typically the
ch_p4 device for clusters) used to share MPI data types and messages
between nodes of the parallel process.

V. Required Software Development Tools

A. TCL/TK:

1. TCL is a string based command language. The language has only a few fun-
damental constructs and relatively little syntax making it easy to learn. TCL
is designed to be the glue that assembles software building blocks into appli-
cations. It is an interpreted language, but provides run-time tokenization of
commands to achieve near to compiled performance in some cases. TK is an
TCL integrated (as of release 8.x) tool-kit for building graphical user inter-
faces. Using the TCL command interface to TK, it is quick and easy to build
powerful user interfaces which are portable between Unix, Windows and

C/C++
 Layer

wrapperAPI

wrapperAPI - mpiAPI

C++ Socket Class object

JobState Socket

Data Socket(s)
Binary Data:
ILWD Objects

Normal Priority:
Commands & Messages

MPI Communications

ch_p4 device
Message Passing Interface:
Data & Messages

The LDAS wrapper API’s baseline requirements and implementation

Page 11 of 43

Macintosh computers. As of release 8.x of TCL/TK, the language has native
support for binary data. The wrapperAPI will not include TCL.

B. C and C++:

1. The C and C++ languages are ANSI standard compiled languages. C has
been in use since 1972 and has become one of the most popular and powerful
compiled languages in use today. C++ is an object oriented super-set of C
which only just became an ANSI/ISO standard in November of 1997. It pro-
vided facilities for greater code reuse, software reliability and maintainability
than is possible in traditional procedural languages like C and FORTRAN.
LDAS software development will be dominated by C++ source code.

C. MPI:

1. The parallel software components of the LDAS will use the public domain
version of MPI from MPICH, release 1.2 or greater.

2. The use of MPI code within LDAS will be restricted to the C++ interface
bindings and the use of object oriented design technologies whenever possi-
ble. The indexed analysis filters and associated functions are not required to
be developed using C++ and object oriented design techniques. However,
they must support bindings to the core C++ slave processes.

D. SWIG:

1. SWIG is a utility to automate the process of building wrappers to C and C++
declarations found in C and C++ source files or a special interface file for
API’s to such languages as TCL, PERL, PYTHON and GUIDE. LDAS will
use the TCL interface wrappers to the TCL extension API’s.

E. Make:

1. Make is a standard Unix utility for customizing the build process for execut-
ables, objects, shared objects, libraries, etc. in an efficient manor which
detects the files that have changed and only rebuilds components that depend
on the changed files. The Make facility has been extended using AutoConfig,
AutoMake and LibTools, all from the public domain.

F. CVS:

1. CVS is the Concurrent Version System. It is based on the public domain (and
is public domain itself) software version management utility RSC. CVS is
based on the concept of a software source code repository from which multi-
ple software developers can check in and out components of a software from
any point in the development history.

G. Documentation:

1. PERCEPS is a documentation system for C/C++. It generates HTML docu-
ments, providing for sophisticated online browsing. The documents are

The LDAS wrapper API’s baseline requirements and implementation

Page 12 of 43

extracted directly from the source code files. Documents are hierarchical and
structured with formatting and references.

2. TclDOC is a documentation system for TCL/TK. It generates structured
HTML documents directly from the source code, providing for a similar
online browsing system to the LDAS help files. Documents include a hyper-
text linked table of contents and a hierarchical structured format.

VI. Implementation

A. The mpirun command Implementation:

The basic format of the mpirun command as it will be used by LDAS is the
following:
mpirun {mpirun options} wrapperAPI {wrapperAPI options}
where mpirun is a command script distributed with MPICH and wrapperAPI
is the name of the MPI executable developed by LDAS for parallel computa-
tion of index based algorithms.

1. The mpirun options requirements are:

a) -np N which is used to specify the number of processors N to used in the
parallel computation. The value of N is always an integer less than or
equal to the total number of processors in the LDAS Beowulf Cluster and
is set by mpiAPI and its queue management facilities. If N exceeds the
number of processors in the Beowulf Cluster, it will automatically be set
to the corresponding value.

b) -machinefile /path/file which is used to identify the list of machine host
names used to select our the first N processors required in the previous
-np N option. The full path and filename for this option must be speci-
fied. It is also possible that different instances of the mpirun could use
different machinefiles (at the discretion of the mpiAPI). The format of
the machinefile is simple:
hostname1[:n]
hostname2[:n]
...
where the hostname most be of the form return by the unix “hostname”
command. This hostname may be followed by an optional “:” and an
integer number representing the number of CPUs on that particular host
for SMP nodes.

c) -nolocal is an option which specifies to mpirun that the local host is not
to be used in the configuration of the parallel processing job. This option
may be necessary when the mpiAPI starts a parallel processing job from
a host that is not in the core of the Beowulf Cluster (as will be the case in
general).

d) other mpirun options used to test and debug MPI processing will likely

The LDAS wrapper API’s baseline requirements and implementation

Page 13 of 43

be used during commissioning of the mpiAPI and the wrapperAPI. How-
ever, they will not be used in general. Their use must not conflict with the
operation of the wrapperAPI and its own set of command line arguments.
For more detail on these testing and debugging mpirun command line
arguments see the MPICH Users’ Guide and Installation Guide.

2. The wrapperAPI options requirements are:

a) -nodelist={i-j,k,l,m-n,...} which is used to specify the subset of nodes to
be used by the MPI slave processes in actual calculation of the indexed
filters. This list of nodes contains comma delimited node numbers and/or
ranges of nodes. All node numbers appearing in this list must be from 0
to N-1, where N is the number of nodes in the commworld specified in
the mpirun option -np described above. Any integer values in the list
greater than N will be ignored.

b) -dynlib=/path/libname.a is used to specify the full (absolute) path and
file name of the dynamically loaded shared object library containing the
indexed filter algorithms. Note: This library must be a shared object
library.

c) -mpiAPIport={hostname, socketport} is used to specify the port on the
mpiAPI to connect with in order to communicate state information,
warnings, errors, job progress, and make requests to balance the load by
increasing or decreasing the number of processes associated with the
nodelist. The hostname parameter specifies the name of the host the
mpiAPI is running on and the socketport parameter specifies the port the
mpiAPI is listening at for the purpose of communications with the wrap-
perAPI.

d) -dataAPI={hostname, socketport} is used to specify the LDAS API
used to provide (serve) data in the ILWD format to the wrapperAPI. Typ-
ically this will be the dataConditioningAPI, but others are possible
through this argument. Again, the hostname specifies the name of the
host at with the LDAS API to serve data is running on and the socketport
parameter specifies the port the data serving LDAS API will be listening
at for the purpose of transmitting ILWD formatted data.

e) -resultAPI={hostname, socketport} is used to specify the LDAS API
which will receive data products that result from the parallel computa-
tion. Again, this data will be shared using the ILWD format. Typically the
resultAPI will be the eventManagerAPI, however other LDAS APIs
may be specified to receive the data products using this argument. The
hostname parameter specifies the name of the host the receiving API is
running on and the socketport parameter specifies the port the receiving
API is listening at for the purpose of receiving data products from the
wrapperAPI.

The LDAS wrapper API’s baseline requirements and implementation

Page 14 of 43

f) -dataDistributor={W|WRAPPER || C|CONDITIONDATA} is used to
define the method for distributing input data from the master to the
slaves. If the method is W or WRAPPER then all the input data will be
sent to all the slaves from the master by the wrapperAPI prior to calling
any functions in the dynamically loaded shared object library. If the
method is C or CONDITIONDATA then the input data must be distrib-
uted to the slaves from the master by the conditionData() function in the
dynamically loaded shared object library. The conditionData() function
on the master will have full control of how the data is distributed, includ-
ing the option to send unique subsets of data to unique slaves. The
pointer to input data returned by conditionData() on the slaves will be
directly passed into the filter algorithm applyFilters() and must be freed
by the call to freeFilters(). NOTE: It is recommended that doLoadBal-
ancing be set to False when the method is C or CONDITIONDATA.

g) -nodeDutyCycle=N is the number of indices to be evaluated at each
node (in each slave process) per call to the filter algorithm. N must be an
integer lager than or equal to 1. The wrapperAPI will not allow this num-
ber to exceed the total number of indices divided by the number of pro-
cessors in the comm world. Smaller values of this number allow for more
accurate measurements of progress and shorter time intervals for com-
mand exchanges between the wrapperAPI and the mpiAPI. Larger values
can marginally increase the parallel computation performance by reduc-
ing the number of messages passed between master and slave processes.

h) -slaveReportCycle=N is the number of calls to the filter algorithm func-
tion before sending the results of each index calculated on each slave
back to the master process. The default value of N will be 1, meaning that
after each call the filter algorithm, the results will immediately be
returned to the slave, requiring no local caching of results on the slave.
This of course will minimize usage of local memory for storing results
but at the same time will maximize the expense of communications over-
head. A value of N which is 0 (zero) or larger than the maximum number
of indices to be run on the slave will result in all results being cached
until completion of the slave’s filtering analysis. This of course will pro-
vide the most efficient use of communications bandwidth, with a single
sending of the results to the master, but will require the most local cach-
ing of results data sets. Values of N should be tuned based on the size of
result sets and the expense of communications on the provided MPI plat-
form the wrapperAPI is running on.

i) -communicateOutput={A|ALWAYS || O|ONCE} is to specify the
model of the output structure data object used by the filter algorithm. If
the filter algorithm, applyFilters(), can be written such that the content of
the output structure returned by the algorithm is unique in content for all
calls on all slaves in a particular dynamically loaded shared object, the

The LDAS wrapper API’s baseline requirements and implementation

Page 15 of 43

the O or ONCE value should be specified, causing the dynamically gen-
erated data type used to communicate results data between the slaves and
the master to be negotiated only one time in the process. This will tre-
mendously enhance performance and efficiency of communicating
results to the master. If the filter algorithm, applyFilters(), can not define
a unique results data object between calls, then the A or ALWAYS value
should be used. NOTE: In both cases the structure will be analyzed upon
return from the filter algorithm call. If O or ONCE is used and the struc-
ture has changed, an exception will be generated and the parallel process
will terminate to avoid a memory corruption.

j) -filterparams={a,(b,c,...),d,...} is used to specify the list of parameters
used to control (customize) the parallel filter algorithm. Any parameters
within () will be grouped as a single parameter and passed as such. If the
designated dynamically loaded library is recognized by the mpiAPI, the
values in this list will be validated as being consistent with the expected
type, range, and total number for that particular filter library. This will
always be the case for LDAS developed dynamically loaded filter librar-
ies. Other libraries which wish to use this mechanism must provide the
parameter checks internal to the dynamically loaded library. Numeric
parameters a,b,c,d,... without decimal places will represent integers. All
other numeric parameters will be interpreted as doubles. Everything else
will be C strings(char[]).

k) -realTimeRatio=n.mmmmm is used to specify the desired ratio of the
time required to process the data to the time contained within the data
segment. As an example, a value of 0.90 would request that 54 second be
used to analyze 60 seconds worth of data.

l) -doLoadBalance={T|TRUE || F|FALSE} is to enable or disable load
balancing of the parallel process. If the value is T or TRUE then load bal-
ancing will be performed as scheduled by the nodeDutyCycle command
line option. If the value is F or FALSE then no load balancing will be per-
formed. However, the wrapperAPI will still report to the mpiAPI as
scheduled by the nodeDutyCycle command line option.

B. The wrapperAPI executable implementation:

1. The format of ILWD (Internal Light Weight Data) being received by the
wrapperAPI (typically from the dataConditioningAPI) will be of the form of
a collection of adc channel data sequences in either the time domain or the
frequency domain. A short ASCII ILWD example is given below:

<ilwd name=’dataConditioningAPI:container’ size=’2’>
<ilwd name=’XYZ:channel:sequence:primary’ size=’9’>

<lstring name=’real:domain’ dims=’4’>TIME</lstring>
<int_8u name=’gps_sec:start_time’ units=’sec’> 62348734 </int_4u>
<int_8u name=’gps_nan:start_time’ units=’nanosec’> 0 </int_4u>

The LDAS wrapper API’s baseline requirements and implementation

Page 16 of 43

<int_8u name=’gps_sec:stop_time’ units=’sec’> 62348735 </int_4u>
<int_8u name=’gps_nan:stop_time’ units=’nanosec’> 0 </int_4u>
<real_8 name=’time:step_size’ units=’sec’> 0.0625 </real_8>
<real_4 name=’filterX:decimation’ dims=’1’>1024.000</real_4>
<real_4 name=’methodII:line_removal’ dims=’3’ units=’HZ’> 60.0,
180.0, 360.0 </real_4>
...(other filter history)...
<real_4 name=’real:data’ dims=’16’ units=’volts’> -0.01, -0.05,
-0.02, -0.00, 0.01, 0.04, 0.08, 0.11, 0.03, -0.04, -0.07, -0.03,
0.01, 0.04, 0.06, 0.06 </real_4>

</ilwd>
<ilwd name=’XYZ:calibration:sequence’ size=’12’>

<lstring name=’complex:domain’ dims=’4’>FREQ</lstring>
<int_8u name=’gps_sec:start_time’ units=’sec’> 62348734 </int_4u>
<int_8u name=’gps_nan:start_time’ units=’nanosec’> 0 </int_4u>
<int_8u name=’gps_sec:stop_time’ units=’sec’> 62348738 </int_4u>
<int_8u name=’gps_nan:stop_time’ units=’nanosec’> 0 </int_4u>
<real_8 name=’start_freq’ units=’hz’> -2048.0 </real_8>
<real_8 name=’stop_freq’ units=’hz’> 2048.0 </real_8>
<real_8 name=’freq:step_size’ units=’hz’> 256.0 </real_8>
<lstring name=’hann:window’ size=’11’>overlap=15%</lstring>
...(other filter history)...
<real_4 name=’real:data’ dims=’17’ units=’strain/volt’> -0.31,
-0.55, -0.12, -0.40, 0.61, 0.24, 0.58, 0.11, 0.13, -0.64, -0.87,
-0.53, 0.71, 0.84, 0.26, 0.56, 0.91 </real_4>
<real_4 name=’imag:data’ dims=’17’ units=’strain/volt’> -0.01,
-0.05, -0.02, -0.00, 0.01, 0.04, 0.08, 0.11, 0.03, -0.04, -0.07,
-0.03, 0.01, 0.04, 0.06, 0.06, 0.00 </real_4>

</ilwd>
<ilwd name=’Wavelet:time-frequency:sequence’ size=’12’>

<lstring name=’complex:domain’ dims=’4’>BOTH</lstring>
<int_8u name=’gps_sec:start_time’ units=’sec’> 62348734 </int_4u>
<int_8u name=’gps_nan:start_time’ units=’nanosec’> 0 </int_4u>
<int_8u name=’gps_sec:stop_time’ units=’sec’> 62348735 </int_4u>
<int_8u name=’gps_nan:stop_time’ units=’nanosec’> 0 </int_4u>
<real_8 name=’time:step_size’ units=’sec’> 0.0625 </real_8>
<real_8 name=’start_freq’ units=’hz’> -2048.0 </real_8>
<real_8 name=’stop_freq’ units=’hz’> 2048.0 </real_8>
<real_8 name=’freq:step_size’ units=’hz’> 256.0 </real_8>
<lstring name=’uwm-method:wavelet’ dims=’2’ size=’14’>
a=0.30\, b=1.50</lstring>
...(other filter history)...
<real_4 name=’real:data’ dims=’17’ units=’strain/volt’> -0.31,
-0.55, -0.12, -0.40, 0.61, 0.24, 0.58, 0.11, 0.13, -0.64, -0.87,
-0.53, 0.71, 0.84, 0.26, 0.56, 0.91 </real_4>
<real_4 name=’imag:data’ dims=’17’ units=’strain/volt’> -0.01,
-0.05, -0.02, -0.00, 0.01, 0.04, 0.08, 0.11, 0.03, -0.04, -0.07,
-0.03, 0.01, 0.04, 0.06, 0.06, 0.00 </real_4>

</ilwd>
...(other channels of data)...

</ilwd>

In this example two “sequences” of data are sent from the dataConditionin-
gAPI to the wrapperAPI. The first represents channel XYZ in the single pre-
cision time domain for a given start time and stop time in GPS seconds and
nanoseconds (along with the time interval between time stamps). The chan-
nel was decimated by a factor of 1024 using the filter named filterX. The next
filter applied according to this sequence container is that of line removal

The LDAS wrapper API’s baseline requirements and implementation

Page 17 of 43

using filter methodII. This filter requires an array of real_4 frequencies corre-
sponding to the lines which were removed (here it is the 60hz, 180hz, and
360hz lines). Other data conditioning filters may have been applied and they
would come here in the container. Next comes the actual sequence of data. It
is identified by the name=”xxxx:data”, where xxxx could be real or imag
depending on the domain.

The second sequence container is for a calibration of the adc XYZ. It is data
in the frequency domain and is represented by complex data. The frequency
range is specified, as well as any filters (here a hann window function with an
overlap of 15%), followed by the actual data in two distinct ilwd arrays, one
for the real component and the other for the imaginary component.

2. It will be the responsibility of the master process to open a ilwd class object
socket connection to the LDAS API (typically the dataConditioningAPI)
server socket specified by the -dataAPI command line option and receive
the ilwd data object. The master process will interpret (parse) this ilwd data
object and reconstruct it as a structured MPI::Datatype for use in MPI com-
munications with the slave processors.

3. It will be the responsibility of the master process to establish ilwd class
object socket connections to the LDAS API (typically the eventManagerAPI)
server socket specified by the -resultAPI command line option and send
ilwd table data objects (along with any optional ilwd sequence data in con-
tainers of the type outlined in item 4 above) when data is ready to be trans-
ferred. The master will construct these ilwd objects out of the results
received from the slaves as MPI data types.

4. The master process will also be responsible for communicating all state
information, warnings, errors, job progress, and make requests to balance the
load by increasing or decreasing the number of processes associated with the
nodelist. This informations will be communicated using simple text strings
sent to the mpiAPI’s listening socket designated by the -mpiAPIport com-
mand line option using just a simple unix socket connection. In general, mul-
tiple commands may be sent at a time in a set to the mpiAPI, each separated
by a newline ‘\n’ character and each set using the same request ID #. Sup-
ported command syntax which the wrapperAPI sends to the mpiAPI is as fol-
lows:

a) “#:request add N” where # is the request ID (an incremental counter
starting at 1) and N is the number of nodes the wrapperAPI would like to
add to the process space associated with the current comm world. The
mpiAPI will respond to this request with one of the following four forms
of syntax (NOTE - a request to add may be answered with an order to
subtract nodes or even to kill the parallel job):

(1) “#:add N {i-j,k,l,m-n,...}” where # is the original request ID and N
may or may not agree with the requested number of nodes and is

The LDAS wrapper API’s baseline requirements and implementation

Page 18 of 43

zero or larger, but can not exceed the comm world. The list in
square brackets consists of the actual N nodes involved in the add.

(2) “#:sub N {i-j,k,l,m-n,...}” where # is the original request ID and N
may or may not agree with the requested number of nodes and is
zero or larger, but can not exceed the comm world. The list in
square brackets consists of the actual N nodes involved in the sub.

(3) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

(4) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

b) “#:request sub N” where # is the request ID (an incremental counter
starting at 1) and N is the number of nodes the wrapperAPI would like to
subtract from the process space associated with the current comm world.
The mpiAPI will respond to this request with one of the following four
forms of syntax (NOTE - a request to subtract may be answered with an
order to add nodes or even to kill the parallel job):

(1) “#:sub N {i-j,k,l,m-n,...}” where # is the original request ID and N
may or may not agree with the requested number of nodes and is
zero or larger, but can not exceed the comm world. The list in
square brackets consists of the actual N nodes involved in the sub.

(2) “#:add N {i-j,k,l,m-n,...}” where # is the original request ID and N
may or may not agree with the requested number of nodes and is
zero or larger, but can not exceed the comm world. The list in
square brackets consists of the actual N nodes involved in the add.

(3) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

(4) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

c) “#:warning {list of warning messages}” where # is the request ID (an
incremental counter starting at 1) and warning reports that a warning
level exception has occurred at some level of the wrapperAPI which is
described by the messages contained in the list. Typically warnings will
be used to indicate that a non-fatal condition exists in the wrapperAPI’s
execution. The mpiAPI log this warning message using the standard
LDAS logs file system and then will respond to this request with one of
the following forms of syntax:

(1) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

(2) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

The LDAS wrapper API’s baseline requirements and implementation

Page 19 of 43

d) “#:error {list of error messages}” where # is the request ID (an incre-
mental counter starting at 1) and error reports that a error level excep-
tion has occurred at some level of the wrapperAPI which is described by
the messages contained in the list. Typically error will be used to indicate
that a fatal condition exists in the wrapperAPI’s execution. The mpiAPI
logs this error message using the standard LDAS log file system and then
will respond to this request with one of the following forms of syntax:

(1) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

(2) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

e) “#:progress nnn.mm%” where # is the request ID (an incremental
counter starting at 1) and nnn.mm% is the percent complete for the
wrapperAPI’s parallel process job. The mpiAPI logs this error message
using the standard LDAS log file system and then will respond to this
request with one of the following forms of syntax:

(1) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

(2) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

f) “#:using N {i-j,k,l,m-n,...} nodes out of the M available in comm
world” is the default “nominal” command where # is the request ID (an
incremental counter starting at 1) and N is the number of nodes being
actively used (more specifically the N found in the list [i-j,k,l,m-n,...])
from the M available in the comm world. The mpiAPI logs this warning
message using the standard LDAS log file system and then will respond
to this request with one of the following forms of syntax:

(1) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

(2) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

g) “#:projected ratio n.mmmmm” where # is the request ID (an incre-
mental counter starting at 1) and n.mmmmm is the ratio of the projected
time to completion to the amount of data being analyzed. The mpiAPI
logs this error message using the standard LDAS log file system and then
will respond to this request with one of the following forms of syntax:

(1) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

(2) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

The LDAS wrapper API’s baseline requirements and implementation

Page 20 of 43

The wrapperAPI will typically send a subset of these commands to the mpi-
API upon completion of each cycle of data through the slave processes.

h) The set of commands will consist of either of the following sets:

(1) During regular processing:

one command from a) or b) or f)

plus

command c) if warnings occurred

plus

command d) if errors occurred

plus

command e) and command g).

(2) At the completion all analysis:

command e) with progress at 100.00%

plus

command c) if warnings occurred.

5. The wrapperAPI will provide a method to estimate the number of nodes
needed to run the parallel process in real time and calculate the load balanc-
ing request as integer nodes, such that the projected ratio is less than or equal
to realTimeRatio, while remaining as close to realTimeRatio as possible.
This in itself requires that the wrapperAPI be able to extract the length of the
data sequence in terms of collection time, while also measuring progress on
analyzing the data in wall clock time.

C. WrapperAPI Dynamically Loaded Library Interface

1. The wrapperAPI will load all indexed analysis algorithms from dynamically
loaded libraries from the local Beowulf file space. Each type of search will
have its own dynamically loaded library. This will allow each mpirun com-
mand to be associated with a particular type of search by the particular
dynamically loaded library assigned by the command line arguments (see -
dynlib command line option above). The wrapperAPI will load the dynami-
cally loaded library using the Unix dopen and related functions:
SYNOPSYS

#include <dlfcn.h>

void *dlopen (const char *filename, int flag);
const char *dlerror(void);
void *dlsym(void *handle, char *symbol);
int dclose (void *handle);

Special symbols _init, _fini.

The flag variable used in the dlopen call must not include the

The LDAS wrapper API’s baseline requirements and implementation

Page 21 of 43

RTLD_GLOBAL flag value. See the Unix (Linux) manpages for more
details on the use of dlopen.

2. Each slave process will dlopen the dynamically loaded library specified by
the command line option. Each dynamically loaded library must contain six
C functions used to interface the wrapperAPI with the dynamically loaded
library. All six of these required functions will be called in order by each
slave. These functions will be defined within an extern “C” {} from the
wrapperAPI’s C++ code. Each function will use an error or warning message
string variable. This message string will be nulled out before each call to one
of the five interface functions. Any non-null value returned by one of the
interface messages will be cached by the wrapperAPI for command message
communications with the mpiAPI at a convenient time. These messages will
be logged into the LDAS logging system by the mpiAPI:

a) The first required C function is used to initialize the dynamically loaded
library and to configure the parameterization as defined by the command
line option -filterparams. It is called once by the master and each slave
in the MPI_COMM_WORLD:
SYNOPSIS

extern “C” {

#include “wrapperInterface.h”

CHAR *initMessage = 0;

free(initMessage);

INT4 initFilters(INT4 argc, CHAR* argv[], CHAR** initMessage);
}

where argc is a count of the number of parameter arguments being
passed into the dynamically loaded library from the -filterparams com-
mand line option and argv is an array of pointers to the -filterparams
command line options. Note that the argv[0] pointer will store the string
“-filterparams”. This will allow initFilters() to verify that the options are
associated with the appropriate command line option. As an example, if
the command line contained -filterparams=[1.0, 3.0, 10.0], the value of
argc would be 4 and argv[0] would point to “-filterparams”, argv[1]
would point to “1.0”, argv[2] would point to “3.0”, and argv[3] would
point to “10.0”. The initFilter() function will be responsible for parsing
the character values pointed to by argv into numerical values. As noted
earlier all floating point values MUST have a decimal point. Non numer-
ical values are allowed by this mechanism, however they should be dis-
couraged.

The initFilters() function returns a 0 (zero) value if it is successful in
parsing and interpreting the values from argv (including any and all range
checking on these values). In the event of an error, the initFilter() func-

The LDAS wrapper API’s baseline requirements and implementation

Page 22 of 43

tion must return a 1 (one) and assign a unique error message to the
initMessage variable. In the event that a warning condition is estab-
lished, the value returned by initFilter shall be -1 and the corresponding
warning message will be stored in the initMessage variable. Any
warning or error level message stored in initMessage will be logged
under in the LDAS wrapperAPI log file, along with the GPS time, jobID,
hostname, node number and the initFilter() function name. Any memory
associated with initMessage will be freed before the call to initFilter().

The values parsed from the argv pointers must be stored internally in the
global variable space of the dynamically loaded library if they are to be
used by other functions within the dynamically loaded library.

b) The second required function is used to calculate the total number of
indexed filters that will be used in the search algorithms contained within
the dynamically loaded library. It is called once by the master and each
slave in the MPI_COMM_WORLD. Filters will be called using an index
counting scheme that ranges from 1 to the maximum specified by the
value returned within numberIndices. It may also be used to internally
construct a one-to-one identification map between the sequential index
values and a specific set of parameter values used by the indexed filter
algorithms:
SYNOPSIS

extern “C” {

#include “wrapperInterface.h”

UINT4 numberIndices = 0;
CHAR* indexMessage = 0;

free(indexMessage);

INT4 indexFilters(UINT4 *numberIndices, CHAR** indexMessage);
}

The nominal return value for indexFtilters() will be 0 (zero). If the index-
Filters() function has an error then it must return with a value of 1 (one)
and assign a unique error message to indexMessage. A warning may be
reported by a return value of -1 from indexFilters() and providing a warn-
ing message within indexMessage. This function will be guaranteed to
be called by each node or processes of the wrapperAPI before the first
indexed search filter is called. Any warning or error level message stored
in indexMessage will be logged under in the LDAS wrapperAPI log
file, along with the GPS time, jobID, hostname, node number and the
indexFilters() function name. Any memory associated with indexMes-
sage will be freed before the call to indexFilters().

c) The third required function is used to carry out any further pre-condition-

The LDAS wrapper API’s baseline requirements and implementation

Page 23 of 43

ing of data which may not be possible for the LDAS dataConditionAPI.
It is called by each slave process. It will have write privileges on the
input data structure:
SYNOPSIS

extern “C” {

#include “wrapperInterface.h”

CHAR* conditionMessage = 0;

inPut data[];

MPI_Comm* comm;

free(conditionMessage);
INT4 conditionData(inPut* data, CHAR** conditionMessage,

MPI_Comm* comm);

}

The conditionData() function is called with the inPut data structure
which contains the data to be further conditioned. NOTE: It is highly
recommended that use of this function be held to a minimum. Ideally any
functionality present in this function should be migrated upstream into
the dataConditionAPI. Hence, under most circumstances it simply
returns successfully as described below without modifying the inPut
data structure. The justification for this being that it is less expensive to
condition the data upstream once than to condition it a total of N times on
each of the slave processes. The conditionData() function should nomi-
nally never overwrite data found in the inPut data structure, only extend
it with new data local to the node it occupies. It may be that certain types
of analysis require that the data be customized local to each node. Under
these circumstances the conditionData() function may alter the inPut
data structure so long as the analysis performed in applyFilters() on each
node can support this customizing for the duration of the wrapperAPI’s
execution.

The conditionData() function will return an integer value of 0 if success-
ful and an integer value of 1 along with a unique error message in the
conditionMessage variable. If a warning occurs the conditionData()
function will return (with results) a value -1 along with the warning mes-
sages stored in the conditionMessage variable. Any warning or error
level message stored in conditionMessage will be logged under in the
LDAS wrapperAPI log file, along with the GPS time, jobID, hostname,
node number and the conditionData() function name. Any memory asso-
ciated with conditionMessage will be freed before each call to condi-
tionData().

The local and global node information are also passed into the condition-
Data() function using the MPI communicator structure comm. Using this

The LDAS wrapper API’s baseline requirements and implementation

Page 24 of 43

structure it is possible for conditionData() to identify the local node, the
total nodes in the communicator and to make node-to-node communica-
tions if this is the desired way to split up input data. NOTE: It is impor-
tant to consider in the design of conditionData() that it will be called
multiple times as part of a loop within the wrapperAPI. Also, each time
that it is called the MPI communicator may have been modified to
include a different set of nodes. Thus, the conditionData() may require
static internal data to recognize when to repeat steps or when to redo
steps associated with conditioning data, including node-to-node commu-
nications which may be used to pass data to indexFilters() instead of
using the conventional path through the inPut data structure passed by
the call to indexFilters(). This may be useful, for example, to distribute
local data in a distributed FFT algorithm.

d) The fourth required function is the parallel search engine. It is used to
apply a particular set of index filter parameters to the data and to return
the results of the filtration algorithms. It will typically be called repeat-
edly in a loop on each slave process until all indexed filters have been
analyzed. As such it has a highly specialized set of input and output
structures which must be general enough to carry out index filter gravita-
tional wave searches from interferometer data:
SYNOPSIS

extern “C” {

#include “wrapperInterface.h”

INT4 beginIndex;

INT4 endIndex;

CHAR* filterMessage = 0;

inPut data[];

outPut* result[1+endIndex-beginIndex];

BOOLEAN finalCall;

MPI_Comm* comm;

free(filterMessage);
INT4 applyFilters(INT4 beginIndex, INT4 endIndex,

const inPut* data, outPut** result, CHAR** filterMessage,

BOOLEAN finalCall, MPI_Comm* comm);

}

The applyFilters() function is called only by the active slaves over and
over again in a loop with two integers beginIndex and ending at end-
Index until all indices have been analyzed. These two variable can be
identical, signifying that only one index will be applied to the data found
in the inPut data structure prior to returning the results, otherwise each
index will be analyzed using the data in inPut before returning. The
applyFilters() function must, internal to the dynamically loaded library,

The LDAS wrapper API’s baseline requirements and implementation

Page 25 of 43

associate this index to a set of physical parameters associated with the fil-
ter model. The applyFilters() function must cast the inPut into LAL
standard data structures appropriate for the internal LAL algorithms
being used. The applyFilters() function must cast results into the out-
Put structure specified above.

The typedef inPut structure will be an array of data sequences associ-
ated with pre-conditioned interferometer channel date. In most cases only
one sequence containing the pre-conditioned strain signal from the inter-
ferometer will be contained in this structure. However, using the array
construct, more complex filters using multi-channel data sequences are
supported. NOTE: The applyFilters() function must not modify the con-
tents of this typedef inPut structure as it may be needed for further anal-
ysis by the slave process using a different set of template indices (unless
subsequent calls to applyFilters() expect the input data to be modified).

The typedef outPut structure will be an array of pointers large enough
to hold all results from all indices (1+endIndex-beginIndex) analyzed
during the call to the applyFilters() function. The applyFilters() func-
tion will be responsible of allocating needed memory for the outPut.

The results of the applyFilters() function are stored in the results
array of outPut typedef structures. The wrapperAPI is responsible for
evaluating the significant attribute of each element of the results
array and in the event it is TRUE making a deep copy (on the wrapperAPI
side) of the contents of the dataBase doubly linked list typedef structure
in the memory space of the wrapperAPI, allowing the applyFilters()
function to reuse this variable space. NOTE: This includes making a
copy of the optional array of sequence typedef structure attributes if
they are not NULL.

The applyFilters() function will return an integer value of 0 if successful
and an integer value of 1 along with a unique error message in the fil-
terMessage variable. If a warning occurs the applyFilters() function
will return (with results) a value -1 along with the warning messages
stored in the filterMessage variable. Any warning or error level mes-
sage stored in filterMessage will be logged under in the LDAS wrap-
perAPI log file, along with the GPS time, jobID, hostname, node number
and the applyFilters() function name. Any memory associated with
filterMessage will be freed before each call to applyFilters().
The LDAS system has the authority to end a wrapperAPI job in the midst
of execution. To allow the underlying search algorithm to gracefully
recongnize this impending termination, the applyFilters() will always be
called on its last pass with the boolean flag finalCall set to TRUE.

The local and global node information are also passed into the applyFil-
ters() function using the MPI communicator structure comm. Using this

The LDAS wrapper API’s baseline requirements and implementation

Page 26 of 43

structure it is possible for applyFilters() to identify the local node, the
total nodes in the communicator and to make node-to-node communica-
tions if this is the desired way to split up the filter analysis. NOTE: It is
important to consider in the design of applyFilters() that it will be called
multiple times as part of a loop within the wrapperAPI. Also, each time
that it is called the MPI communicator may have been modified to
include a different set of nodes. Thus, the applyFilters() may require
static internal data to recognize when to repeat steps or when to redo
steps associated with analyzing data, including node-to-node communi-
cations. This may be useful, for example, to distribute local data in a dis-
tributed FFT algorithm.

e) The fifth required function is used to free the memory associated with the
array of output structures returned by the applyFilters() function above.
It must be called to guarantee that the associated LAL memory dealloca-
tion routines are used to free memory previously allocated with LAL
memory allocation routines.
SYNOPSIS

extern “C” {

#include “wrapperInterface.h”

outPut* result[1+endIndex-beginIndex];

CHAR* freeMessage = 0;

free(freeMessage);

INT4 freeOutput(outPut** result, CHAR** freeMessage);
}

The freeOutput() function will go through and free unneeded memory
from each non-NULL array element in the array of outPut structures.
NOTE: if state information was stored in the outPut for subsequent calls
to the applyFilters() function, it should not be freed. This function will
return an integer value of 0 (zero) upon successfully deallocating mem-
ory and a 1 if the memory deallocation fails along with an error message
in the freeMessage variable. The value of -1 will be returned if a warn-
ing occurs along with a message in freeMessage. Any warning or error
level message stored in freeMessage will be logged under in the LDAS
wrapperAPI log file, along with the GPS time, jobID, hostname, node
number and the freeOutput() function name.

f) The last required function is used to free up any dynamically allocated
memory that may be associated with the indexed filter search algorithms
found in the dynamically loaded library. It is called once at the comple-
tion of all calls to applyFilters() by the master and all slaves of the
MPI_COMM_WORLD.
SYNOPSIS

The LDAS wrapper API’s baseline requirements and implementation

Page 27 of 43

extern “C” {

#include “wrapperInterface.h”

CHAR* freeMessage = 0;

free(freeMessage);

INT4 freeFilters(CHAR** freeMessage);
}

The specifics of this function will depend on the internal workings of the
algorithms found in each particular dynamically loaded search library.
For example, if a one-to-one identification map was dynamically con-
structed as an index, then it must be freed upon completion of the search.
This function will return an integer value of 0 (zero) upon successfully
deallocating memory and a 1 if the memory deallocation fails along with
an error message in the freeMessage variable. The value of -1 will be
returned if a warning occurs along with a message in freeMessage.
Any warning or error level message stored in freeMessage will be
logged under in the LDAS wrapperAPI log file, along with the GPS time,
jobID, hostname, node number and the freeFilters() function name.

g) The definitions for these interface functions and data types outlined
above will be included into code via the wrapperInterface.h file.
This header file will contain valid ANSI C syntax. Also, this header file
must be guarded and must be included within an extern “C” {} block
for C++ code as previously illustrated. The structures defined within
wrapperInterface.h are given below:

/* prevent multiple inclusions of header file */

#ifndef WRAPPER_INTERFACE_H

#define WRAPPER_INTERFACE_H

/* include this file to get interface datatypes */

#include "wrapperInterfaceDatatypes.h" /* datatype header file */

/* ANSI C prototypes for four interfacing functions */

#ifdef __cplusplus

extern “C” {

#endif

/* LDAS_BUILD must define these as external resolved functions */

#ifdef LDAS_BUILD

#define LDAS_EXTERN extern

#else

#define LDAS_EXTERN

#endif

The LDAS wrapper API’s baseline requirements and implementation

Page 28 of 43

LDAS_EXTERN INT4 initFilters(INT4 argc, CHAR* argv[],

CHAR** initMessage);

LDAS_EXTERN INT4 indexFilters(UINT4* numberIndices,

CHAR** indexMessage);

LDAS_BUILD INT4 conditionData(inPut* data,

CHAR** conditionMessage, MPI_Comm* comm);

LDAS_BUILD INT4 applyFilters(INT4 beginIndex,

INT4 endIndex, const inPut* data, outPut* result,

CHAR** filterMessage, BOOLEAN finalCall, MPI_Comm* comm);

LDAS_BUILD INT4 freeFilters(CHAR** freeMessage);

#undefine LDAS_BUILD

#ifdef __cplusplus

}

#endif

#endif

This file includes the header file wrapperInterfaceDatatypes.h
which contains all the data types used by the interface functions. It con-
tents is given below:

/* prevent multiple inclusions of header file */

#ifndef WRAPPER_INTERFACE_DATATYPES_H

#define WRAPPER_INTERFACE_DATATYPES_H

#ifdef __cplusplus

extern “C” {

#endif

typedef enum {timeD, freqD, bothD} domain;

typedef enum { boolean_1u, char_s, char_u,

int_2s, int_2u, int_4s, int_4u, int_8s, int_8u,

real_4, real_8, complex_8, complex_16

} datatype;

/* include this file to get LAL datatypes */

#include <mpi.h>

#include "LALAtomicDatatypes.h" /* LAL header file */

typedef union { /* these pointer types MUST exist in LAL! */

BOOLEAN *boolean; /* pointer to BOOLEAN type */

The LDAS wrapper API’s baseline requirements and implementation

Page 29 of 43

CHAR *chars; /* pointer to CHAR */

UCHAR *charu; /* pointer to UCHAR */

INT2 *int2s; /* pointer to INT2 */

UINT2 *int2u; /* pointer to UINT2 */

INT4 *int4s; /* pointer to INT4 */

UINT4 *uint4u; /* pointer to UINT4 */

INT8 *int8s; /* pointer to INT8 */

UINT8 *int8u; /* pointer to UINT8 */

REAL4 *real4; /* pointer to REAL4 */

REAL8 *real8; /* pointer to REAL8 */

COMPLEX8 *complex8; /* pointer to COMPLEX8 */

COMPLEX16 *complex16; /* pointer to COMPLEX16 */

} dataPointer; /* union supporting pointer type checking */

typedef struct {

UINT8 numberSamples; /* no. of data samples in interval */

UINT8 startSec; /* GPS start time in seconds */

UINT8 startNan; /* GPS start time in nanoseconds */

UINT8 stopSec; /* GPS stop time in seconds */

UINT8 stopNan; /* GPS stop time in nanoseconds */

REAL8 timeStepSize; /* uniform step size in seconds */

} gpsTimeInterval; /* time domain interval */

typedef struct {

UINT8 numberSamples; /* no. of data samples in interval */

UINT8 gpsStartTimeSec; /* GPS start time in seconds */

UINT8 gpsStartTimeNan; /* GPS start time in nanoseconds */

UINT8 gpsStopTimeSec; /* GPS start time in seconds */

UINT8 gpsStopTimeNan; /* GPS start time in nanoseconds */

REAL8 startFreq; /* starting frequency in hertz */

REAL8 stopFreq; /* ending frequency in hertz */

REAL8 freqStepSize; /* uniform step size in hertz */

} frequencyInterval; /* frequency domain interval */

typedef struct {

UINT8 numberSamples; /* no. of data samples in interval */

UINT8 gpsStartTimeSec; /* GPS start time in seconds */

UINT8 gpsStartTimeNan; /* GPS start time in nanoseconds */

UINT8 gpsStopTimeSec; /* GPS stop time in seconds */

UINT8 gpsStopTimeNan; /* GPS stop time in nanoseconds */

REAL8 startFreq; /* starting frequency in hertz */

REAL8 stopFreq; /* ending frequency in hertz */

REAL8 timeStepSize; /* uniform step size in seconds */

REAL8 freqStepSize; /* uniform step size in hertz */

} timeFreqInterval; /* frequency domain interval */

typedef union {

gpsTimeInterval dTime; /* time domain interval info */

frequencyInterval dFreq; /* frequency domain interval info */

timeFreqInterval dBoth; /* time+frequency domain interval info */

} interval;

The LDAS wrapper API’s baseline requirements and implementation

Page 30 of 43

#define maxHistoryName 64

#define maxHistoryUnits 64

typedef struct dcHistoryTag {

struct dcHistoryTag *previous; /* previous data cond. filter */

CHAR name[maxHistoryName]; /* data conditioning filter name */

CHAR units[maxHistoryUnits]; /* data conditioning filter units */

datatype type; /* data type for column */

UINT4 numberValues; /* no. rows to add to column */

dataPointer value; /* pointer to table’s column data */

struct dcHistoryTag *next; /* next data cond. filter */

} dcHistory; /* this is a bi-directional linked list */

#define maxStateName 64

typedef struct stateVectorTag {

struct stateVectorTag *previous; /* previous state vector */

CHAR stateName[maxStateName]; /* name of state*/

multiDimData *store; /* reuseable state vector data store */

struct stateVectorTag *next; /* next state vector */

} stateVector;

typedef struct {

CHAR name[256] /* name of the data in dataPointer */

CHAR units[256] /* comma separated units of the data */

domain space; /* either time, frequency or both domain */

datatype type; /* type of data in pointer */

interval range; /* epoch of time/frequency for data */

UINT4 numberDimensions; /* no. of dimensions in data */

UINT4 dimensions[]; /* no. of elements along each dimension */

dcHistory *history; /* data conditioning history */

dataPointer data; /* pointer to multi-dimensional data */

} multiDimData;

typedef struct {

UINT4 numberSequences; /* number of data channels in inPut */

stateVector *states; /* input state vector information */

multiDimData sequences[]; /* array of conditioned data */

} inPut;

typedef enum { binaryInspiral, ringDown, periodic, burst,

stocastic, timeFreq, instrumental, protoType, experimental

} catagory; /* astrophysical/instrumental search catagories */

#define dbNameLimit 19 /* Note DB2 limits names to 18 letters */

typedef struct dataBaseTag {

struct dataBaseTag *previous; /* previous table data set */

CHAR tableName[dbNameLimit]; /* name of LDAS table */

CHAR columnName[dbNameLimit]; /* column name in LDAS table */

The LDAS wrapper API’s baseline requirements and implementation

Page 31 of 43

datatype type; /* data type for column */

UINT4 numberRows; /* no. rows to add to column */

dataPointer rows; /* pointer to table’s column data */

struct dataBaseTag *next; /* next table data set */

} dataBase; /* this is a bi-directional linked list */

typedef struct {

INT8 indexNumber; /* number of index results in outPut */

catagory search; /* type of astrophysical/instrumental search */

BOOLEAN significant; /* signals that require post-processing */

stateVector *states; /* output state vector information */

dataBase *results; /* filter results to be ingested into DB */

multiDimData *optional; /* optional sequences (1 per index) */

} outPut;

#ifdef __cplusplus

}

#endif

#endif

This wrapperInterface.h header file learns about the LAL standard
datatypes by including the LALAtomicDatatypes.h header file. This
header file must at a minimum contain the following definitions:

#ifndef _LALATOMICDATATYPES_H

#define _LALATOMICDATATYPES_H

#ifdef LDAS_BUILD

#include "LDASConfig.h"

#else

#include "LALConfig.h"

#include "LALRCSID.h"

RRCSID(LALATOMICDATATYPESH, “$Id: LALAtomicDataTypes.h,

v 1.1 2000/04/20 20:02:33 jolien Exp $”)

#endif

typedef char CHAR;

typedef unsigned char UCHAR;

typedef unsigned char BOOLEAN;

#if SIZEOF_SHORT == 2

typedef short INT2;

typedef unsigned short UINT2;

#elif SIZEOF_INT == 2

typedef int INT2;

typedef unsigned int UINT2;

#else

The LDAS wrapper API’s baseline requirements and implementation

Page 32 of 43

#error "ERROR: NO 2 BYTE INTEGER FOUND"

#endif

#if SIZEOF_INT == 4

typedef int INT4;

typedef unsigned int UINT4;

#elif SIZEOF_LONG == 4

typedef long INT4;

typedef unsigned long UINT4;

#else

#error "ERROR: NO 4 BYTE INTEGER FOUND"

#endif

#if SIZEOF_LONG == 8

typedef long INT8;

typedef unsigned long UINT8;

#elif SIZEOF_LONG_LONG == 8

typedef long long INT8;

typedef unsigned long long UINT8;

#else

#error "ERROR: NO 8 BYTE INTEGER FOUND"

#endif

#if SIZEOF_FLOAT == 4

typedef float REAL4;

#else

#error "ERROR: NO 4 BYTE REAL FOUND"

#endif

#if SIZEOF_DOUBLE == 8

typedef float REAL8;

#else

#error "ERROR: NO 8 BYTE REAL FOUND"

#endif

typedef struct {

 REAL4 re;

 REAL4 im;

} COMPLEX8;

typedef struct {

 REAL8 re;

 REAL8 im;

} COMPLEX16;

#endif

Notice that this LALAtomicDatatypes.h header file will include the
LDAS LDASConfig.h header file which is generated by the LDAS
autoconfig scripts at configuration time when LDAS_BUILD is defined

The LDAS wrapper API’s baseline requirements and implementation

Page 33 of 43

(by LDAS) and will include the LALConfig.h header file which is gen-
erated by the LAL autoconfig scripts at configuration time otherwise. In
the event that this file is not available, the necessary definitions found in
this file for both SPARC Solaris and Intel Pentium Linux computers
using the GCC 2.95.2 compiler can be placed in a mock-up config.h
file which looks like the following:

/* for Intel Pentium Linux and SPARC Solaris using */
/* GCC version 2.95.2 */

#ifndef TypeConfigH
#define TypeConfigH

/* The number of bytes in a double. */
#define SIZEOF_DOUBLE 8

/* The number of bytes in a float. */
#define SIZEOF_FLOAT 4

/* The number of bytes in a int. */
#define SIZEOF_INT 4

/* The number of bytes in a long. */
#define SIZEOF_LONG 4

/* The number of bytes in a long long. */
#define SIZEOF_LONG_LONG 8

/* The number of bytes in a short. */
#define SIZEOF_SHORT 2

#endif

This mock-up file may not contain any other definitions that conflict with
LDAS. In the integrated build of the wrapperAPI, the config.h file gener-
ated by the LDAS autoconfig scripts shall be used to define these sizes.
NOTE: The SIZEOF_UNSIGNED_* are not needed as they are guaran-
teed to be consistent with signed sizes on the LDAS target platforms at
this time (early 2000).

h) The dynamically loaded library (dll) shared object file will define the
interface functions. The top level C source file LALWrapperInter-
face.c for any dll shared object which provides the interface definition
will contain the following:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <setjmp.h>

#include “wrapperInterface.h”

The LDAS wrapper API’s baseline requirements and implementation

Page 34 of 43

#include “LALWrapperInterface.h”

#include “LALmalloc.h”

NRCSID(LALWRAPPERINTERFACEC,”$Id: LALWrapperInterface.c$);

#define STRINGIFY_HELPER(a) #a

#defind STRINGIFY(a) STRINGIFY_HELPER(a)

#define FILELINEID “, file: “ __FILE__ \

“, line: “stringify(__LINE__) \

“, $Id: LALWrapperInterface.c$”

int debuglevel = 0;

enum {warning = -1, Nominal = 0, Error = 1 };

static INT4 stringifyStatus(CHAR **msgString, Status * status);

static void signalHandler(int sig);

static void *wrapperParams;

static CHAR *exceptionMessage;

static jmp_buf jump;

INT4 initFilters(INT4 argc, CHAR* argv[], CHAR** initMessage)

{

INT4 code;

/* initMessage must come in as a pointer to NULL */

if (!initMessage || *initMessage) return Error;

signal (SIGABRT, signalHandler);

signal (SIGSEGV, signalHandler);

if (setjmp(jump) == 0) {

Status status = {0};

CHAR *warning = NULL;

STRVector args;

args.length = argc;

args.data = argv;

initFilters(&status, &wrapperParams, &args, &warning);

code = stringifyStatus(initMessage, &status);

if (warning && !code) {

*initMessage = realloc(*initMessage, strlen(warning) + 1);

if (*initMessage) {

strcpy (*initMessage, warning);

code = warning;

}

else {

return Error;

}

}

}

else {

The LDAS wrapper API’s baseline requirements and implementation

Page 35 of 43

*initMessage = realloc(*initMessage,

strlen(exceptionMessage) + 1);

if (*initMessage) {

strcpy (*initMessage, exceptionMessage);

}

return Error;

}

return code;

}

INT4 indexFilters(UINT4* numberIndices, CHAR** indexMessage)

{

INT4 code;

/* indexMessage must come in as a pointer to NULL */

if (!indexMessage || *indexMessage) return Error;

signal (SIGABRT, signalHandler);

signal (SIGSEGV, signalHandler);

if (setjmp(jump) == 0) {

Status status = {0};

IndexFiltersParams params;

params.warning = NULL;

params.wrapperParams = wrapperParams;

IndexFilters(&status, numberIndices, ¶ms);

code = stringifyStatus(indexMessage, &status);

if (params.warning && ! code) {

*indexMessage = realloc(*indexMessage,

strlen(params.warning) + 1);

if (*indexMessage) {

strcpy(*indexMessage, params.warning);

code = Warning;

}

else {

return Error;

}

}

}

else {

*indexMessage = realloc(*indexMessage,

strlen(exceptionMessage) + 1);

if (*indexMessage) {

strcpy(*indexMessage, exceptionMessage);

}

return Error;

}

return code;

}

INT4 conditionData(inPut* data, CHAR** conditionMessage,

MPI_Comm* comm)

The LDAS wrapper API’s baseline requirements and implementation

Page 36 of 43

{

INT4 code;

/* conditionMessage must come in as a pointer to NULL */

if (!conditionMessage || *conditionMessage) return Error;

signal (SIGABRT, signalHandler);

signal (SIGSEGV, signalHandler);

if (setjmp(jump) == 0) {

Status status = {0};

ConditionDataParams params;

params.warning = NULL;

params.wrapperParams = wrapperParams;

params.comm = comm;

ConditionData(&status, data, ¶ms);

code = stringifyStatus(conditionMessage, &status);

if (params.warning && ! code) {

*conditionMessage = realloc(*conditionMessage,

strlen(params.warning) + 1);

if (*indexMessage) {

strcpy(*conditionMessage, params.warning);

code = Warning;

}

else {

return Error;

}

}

}

else {

*conditionMessage = realloc(*conditionMessage,

strlen(exceptionMessage) + 1);

if (*conditionMessage) {

strcpy(*conditionMessage, exceptionMessage);

}

return Error;

}

return code;

}

INT4 applyFilters(INT4 beginIndex, INT4 endIndex,

const inPut* data, outPut* result, CHAR** filterMessage,

BOOLEAN finalCall, MPI_Comm* comm)

{

INT4 code;

/* filterMessage must come in as a pointer to NULL */

if (!filterMessage || *filterMessage) return Error;

signal (SIGABRT, signalHandler);

signal (SIGSEGV, signalHandler);

if (setjmp(jump) == 0) {

Status status = {0};

IndexFiltersParams params;

params.warning = NULL;

params.wrapperParams = wrapperParams;

The LDAS wrapper API’s baseline requirements and implementation

Page 37 of 43

params.beginIndex = beginIndex;

params.endIndex = endIndex;

params.finalCall = finalCall;

params.comm = comm;

ApplyFilters(&status, results, data, ¶ms);

code = stringifyStatus(filterMessage, &status);

if (params.warning && ! code) {

*filterMessage = realloc(*filterMessage,

strlen(params.warning) + 1);

if (*filterMessage) {

strcpy(*filterMessage, params.warning);

code = Warning;

}

else {

return Error;

}

}

}

else {

*filterMessage = realloc(*filterMessage,

strlen(exceptionMessage) + 1);

if (*filterMessage) {

strcpy(*filterMessage, exceptionMessage);

}

return Error;

}

return code;

}

}

INT4 freeFilters(CHAR** freeMessage)

{

INT4 code;

/* freeMessage must come in as a pointer to NULL */

if (!freeMessage || *freeMessage) return Error;

signal (SIGABRT, signalHandler);

signal (SIGSEGV, signalHandler);

if (setjmp(jump) == 0) {

Status status = {0};

CHAR *warning = NULL;

FreeFilters(&status, &wrapperParams, &warning);

code = stringifyStatus(freeMessage, &status);

if (warning && ! code) {

*freeMessage = realloc(*freeMessage,

strlen(warning) + 1);

if (*freeMessage) {

The LDAS wrapper API’s baseline requirements and implementation

Page 38 of 43

strcpy(*freeMessage, warning);

code = Warning;

}

else {

return Error;

}

}

LALCheckMemoryLeaks();

}

else {

*freeMessage = realloc(*freeMessage,

strlen(exceptionMessage) + 1);

if (*freeMessage) {

strcpy(*freeMessage, exceptionMessage);

}

return Error;

}

return code;

}

static void signalHandler(int sig)

{

switch(sig)

{

case SIGABRT:

exceptionMessage = “signalHandler: Caught SIGABRT” FILELINEID;

break;

case SIGSEGV:

exceptionMessage = “signalHandler: Caught SIGSEGV” FILELINEID;

break;

case default:

exceptionMessage = “signalHandler: Caught unknown signal” \

FILELINEID;

break;

}

longjmp(jump, sig);

}

static INT4 stringifyStatus(CHAR **msgString, Status *status)

{

enum { MaxNumLevels = 1024 };

enum { MinMsgStringSize = 1 };

enum { TmpStringSize = 1024 };

CHAR tmpString[TmpStringSize];

size_t msgStringSize = 0;

Status *ptr = status;

INT4 code = status->statusCode ? Error : Nominal;

unsigned level = 0;

if (!msgString || *msgString) return Error;

if (!status) {

The LDAS wrapper API’s baseline requirements and implementation

Page 39 of 43

const CHAR err[] = “stringifyStatus: null status structure” \

FILELINEID;

*msgString = realloc(*msgString, sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

}

msgStringSize = MinMsgStringSize;

*msgString = malloc(msgStringSize);

if (!*msgString) return Error;

memset(*msgString, 0, msgStringSize);

while (ptr) {

Status *next = ptr->statusPtr;

size_t totChar = 0;

INT4 numChar;

if (++level > MaxNumLevels) {

const CHAR err[] = “stringifyStatus: too many levels in status
structure” FILELINEID;

free(*msgString);

*msgString = malloc(sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

numChar = sprintf(tmpString, “\nLevel %i: %s\n”, ptr->level,

ptr->Id);

if (numChar < 0) {

const CHAR err[] = “stringifyStatus: an error in sprintf()” \

FILELINEID;

free(*msgString);

*msgString = malloc(sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

}

totChar += numChar;

if (ptr->statusCode) {

numChar = sprintf (tmpString + totChar, “\tStatus code %i: %s\n”,

ptr->statusCode, ptr->statusDescription);

if (numChar < 0) {

const CHAR err[] = “stringifyStatus: an error in sprintf()” \

FILELINEID;

free(*msgString);

*msgString = malloc(sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

}

totChar += numChar;

}

else

{

numChar = sprintf(tmpString + totChar, “\tStatus Code 0: \

Nomimal\n”);

if (numChar < 0) {

const CHAR err[] = “stringifyStatus: an error in sprintf()” \

The LDAS wrapper API’s baseline requirements and implementation

Page 40 of 43

FILELINEID;

free(*msgString);

*msgString = malloc(sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

}

totChar += numChar;

}

numChar = sprintf(tmpString + totChar, “\tfunction %s, file %s,
line %i\n”, ptr->function, ptr->file, ptr-line);

if (numChar < 0) {

const CHAR err[] = “stringifyStatus: an error in sprintf()” \

FILELINEID;

free(*msgString);

*msgString = malloc(sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

}

totChar += numChar;

++totChar;

if (totChar > sizeof(tmpString)) {

const CHAR err[] = “stringifyStatu: have written beyond bounds \

of string” FILELINEID;

free(*msgString);

*msgString = malloc(sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

}

CHAR *tmp = realloc(*msgString, msgStringSize += totChar);

if (tmp) {

*msgString = tmp;

}

else

{

const CHAR err[] - “stringifyStatus: couldn’t allocate memory \

for message string” FILELINEID;

*msgString = realloc(*msgString, sizeof(err));

if (*msgString) strcpy(*msgString, err);

return Error;

}

}

if (ptr != status) LALFree(ptr);

ptr = next;

}

return code;

}

#undef STRINGIFY_HELPER

#undef STRINGIFY

#undef FILELINEID

The LDAS wrapper API’s baseline requirements and implementation

Page 41 of 43

The associated header file, LALwrapperInterface.h will have the follow-
ing content:

#ifndef _LALWRAPPERINTERFACE_H

#define _LALWRAPPERINTERFACE_H

#include “wrapperInterfaceDatatypes.h”

#include “LALDatatypes.h”

#ifdef __cplusplus

extern “C” {

#endif

NRCSID(LALWRAPPERINTERFACEH, “Id: LALWrapperInterface.h$”);

typedef inPut InPut;

typedef outPut OutPut;

typedef struct tagSTRVector {

UINT4 length;

CHAR ** data;

} STRVector;

typedef struct tagIndexFiltersParams

{

CHAR *warning;

void *wrapperParams;

} IndexFiltersParams;

typedef struct tagConditionDataParams

{

CHAR *warning;

void *wrapperParams;

MPI_Comm *comm;

} ConditionDataParams;

typedef struct tagApplyFiltersParams {

CHAR *warning;

void *wrapperParams;

UINT4 beginIndex;

UINT4 endIndex;

BOOLEAN finalCall;

MPI_Comm *comm;

} ApplyFiltersParams;

void initFilters(Status *status, void **params,

STRVector *args);

void IndexFilters(Status *status, UINT4 *numFilters,

IndexFiltersParams *params);

The LDAS wrapper API’s baseline requirements and implementation

Page 42 of 43

void ConditionData(Status *status, InPut *inout,

ConditionDataParams *params, MPI_Comm *comm);

void ApplyFilters(Status *status, OutPut *output,

const Input *input, ApplyFiltersParams *params);

void FreeFilters(Status *status, void **params, CHAR **warning);

#ifdef __cplusplus

}

#endif

#endif

The C source file and associate header above need only be written once
for all dynamically loaded shared object libraries used by the wrapper-
API. However, it will be necessary to link this source codes object mod-
ule into each dynamically loaded shared object.
The LAL algorithms associated with a particular search strategy used in a
particular dynamically loaded shared object library are written into the
six functions {initFilters(), indexFilters(), condition-
Data(), applyFilters(), freeOutput(), freeFilters()}
found in the LALwrapperInterface.c file. The contents of these
functions will vary with each search strategy initiated on the LDAS par-
allel compute cluster using the wrapperAPI as an interface.

VII. WrapperAPI Flow Control

A. Pseudo-Code Illustration of flow control:

1. The following pseudo-code illustrates the steps taken by the wrapperAPI.
The details are left for the implementation.

// wrapperAPI pseudo-code

extern “C” { #include “wrapperInterface.h” }

{ // On every node in Initial Comm perform:

parseCommandLineOptions();

loadDynamicSharedObjects();

errorTestInit(initFilters(argc, argv, initMessage));
errorTestIndex(indexFilters(numberIndices, indexMessage));

errorTestDC(conditionData(data, conditionMessage, LBComm));

MplusLBComm = createWrapperApiLoadBalanceComumunicator();

LBComm = createLoadBalanceCommunicator();

}

while (notFinished()) {
if (inLBNode) {

errorTestTF(applyFilters(beginIndex, endIndex,

data, result, filterMessage, finalCall, LBComm));

errorTestFree(freeOutput(output, freeMessage));

The LDAS wrapper API’s baseline requirements and implementation

Page 43 of 43

slaveNodeSendResults();

}

{ // run on master node only:

masterNodeGathersResults();

if (doLoadBalance) masterNodeCalculatesLoad();

masterNodeInformsLDASmpiAPI();

masterSendResultsToResultAPI();

}

// On every node in MPI_COMM_WORLD perform:

MplusLBComm = createWrapperApiLoadBalanceComumunicator();

LBComm = createLoadBalanceCommunicator();

} /* end of while loop */

{ // On every node in MPI_COMM_WORLD perform:

errorTestFree(freeFilters(freeMessage));

MPI_Finish();

}

