

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T980119-01 E- 01/18/1999

The Metadata API’s
baseline requirements

James Kent Blackburn

Distribution of this document:

LIGO LDAS Group

California Institute of Technology
LIGO Project - MS 51-33

Pasadena CA 91125
Phone (818) 395-2129
Fax (818) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project - MS 20B-145

Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

This is an internal working document
of the LIGO Project.

Table of Contents

Index

file \\SIRIUS\kent\Documents\LDAS\MetadataAPI\MetadataAPIReqCover.fm - printed January 18,

Page 1 of 9

The Metadata API’s
baseline requirements

James Kent Blackburn

California Institute of Technology
LIGO Data Analysis Group

January 18, 1999

I. Introduction

A. General Description:

1. The metadataAPI is the LDAS custom Database Client used to interface with
the LIGO Database server in the LDAS distributed computing environment.
It will use an interpreted command language for control. It will provide for
all database functions such as table creation, inserts, queries, etc.

a) The interpreted command language to be used is TCL/TK, which pro-
vides a command line, scripting and a graphical interface.

b) The TCL/TK commands are extended to support low level system inter-
faces to the Frames and system I/O functions to the Frame files, as well
as greater computational performance using C++ code that utilizes the
standard TCL C code API library in the form of a TCL/TK package.

2. The metadataAPI’s TCL/TK script accesses the metadataAPI.rsc file con-
taining needed information and resources to extend the command set of the
TCL/TK language using the metadataAPI package, which exists as a shared
object.

3. The metadataAPI will receive its commands from the managerAPI, reporting
back to the managerAPI upon completion of each command. This command
completion message will include the incoming identification used by the
manager to track completion of sequenced commands being handled by the
assistant manager levels of the managerAPI.

B. The metadataAPI.tcl Script’s Requirements:

1. The metadataAPI.tcl script will provide all the functionality inherited by the
genericAPI.tcl script (i.e. help, logging, operator & emergency sockets, etc.).

2. The metadataAPI.tcl script will report to the managerAPI’s receive socket
upon completion of each command issued by the managerAPI’s assistant
manager levels. This involves transmission of a message identifying the spe-
cific command completed as coded by the managerAPI (see LIGO-T980115-
0x-E for details).

3. The metadataAPI.tcl script will validate each command received on the oper-
ator or emergency socket as appropriate for the metadataAPI to evaluate.
This includes validation of commands, command options, encryption keys
and managerAPI identification indexes.

The Metadata API’s baseline requirements

Page 2 of 9

4. The metadataAPI.tcl script will support casual SQL statement validation. If
this validation is supported by the dynamic SQL routines in the TBD data-
base, then this function can be moved into the metadataAPI.so package using
the database client development API library.

5. In the event that an exception occurs while processing a command, the meta-
dataAPI.tcl layer will report the exception to the ManagerAPI’s emergency
socket along with the necessary command identification issued by the man-
agerAPI with the metadataAPI command.
Note: Once reported to the managerAPI, the appropriate assistant manager
will terminate the high level command and the userAPI that issued this high
level command will be notified of the exception.

C. The metadataAPI.so Package Requirements:

1. The metadataAPI.so package will be developed in C++ using the C language
interface to TCL/TK to communicate with the TCL/TK command layer. The
wrappers between C++ functionality and TCL/TK command language exten-
sions will be machine generated using the SWIG API code writer.

2. The metadataAPI.so package will inherit the functionality to communicate
Internal Light Weight Format Data through the data sockets from the generi-
cAPI.so package.

3. The metadataAPI.so package will be a LDAS custom database client, used to
communicate SQL statements and data with the database server.

4. The metadataAPI.so package will provide functions for the following data-
base management procedures:

a) Creation of LIGO Frame metadata tables.

b) Migration of older LIGO Frame metadata tables into upgraded LIGO
Frame metadata tables

c) Insertion and updates on entries in the LIGO Frame metadata tables.

d) Highly repeated SQL commands will use static SQL API library calls to
efficiently communicate with the database server.

e) The metadata.so package will support dynamic SQL commands of arbi-
trary query content within the SQL language standard.

f) The metadata.so package will support a superset of queries of a TBD
nature which allow for more efficient interaction with LIGO metadata
which doesn’t directly correspond to SQL but can customized around
SQL and C/C++ methods such as use of LDAS defined binary records.

5. The metadataAPI.so package will use ODBC (Open Database Connectivity)
where possible to minimize code dependencies on vendor client API’s. For
those features of the database with are deemed highly useful to LIGO, the
custom API calls will be acceptable.

The Metadata API’s baseline requirements

Page 3 of 9

II. Component Layers of the LDAS MetadataAPI

A. LDAS Distributed MetadataAPI components:

1. The LDAS distributed metadataAPI is made up of two major layers.

a) TCL/TK Layer - this layer is the command layer and deals primarily with
commands and/or messages and their attributes and/or parameters, as
well as communicate with the underlying Package Layer through TCL/
TK extensions.

b) C/C++ Package Layer - this layer is the data engine layer and deals pri-

LIGO Metadata Table(s)

Relational Database

genericAPI.tcl

genericAPI.so

metadataAPI.so

metadataAPI.tcl

TCL/TK Layer

C/C++ Layer

Relational Database
ServerServerServer

Application

Relational Database
ClientClientClient
API

genericAPI.rsc

metadataAPI.rsc

TCL Script

LDAS MetadataAPI
Components

TCP/IP
Sockets

Start-up Resource

The Metadata API’s baseline requirements

Page 4 of 9

marily with the binary data and the algorithms and methods needed to
manipulate LIGO’s data and interface with the database server.

2. The TCL/TK layer consists of two internal and two external components,
designed to optimize code reuse at the level of the command language used
in all LDAS API’s.

a) The metadataAPI.tcl - this TCL/TK script contains specialized TCL/TK
procedures and specialized command language extensions which are par-
ticular to the metadataAPI in the LDAS architecture.

b) The genericAPI.tcl - this TCL/TK script contains the common TCL/TK
procedures and command language extensions found in all LDAS API’s.
the genericAPI.tcl code will be sourced in the metadataAPI.tcl script.

c) The metadataAPI.rsc - this TCL/TK script contains the start-up and con-
figuration defaults which are unique to the metadataAPI.

d) The genericAPI.rsc - this TCL/TK script contains the start-up and config-
uration defaults which are common to each LDAS API. The generi-
cAPI.rsc will be embedded in the metadataAPI.rsc file.

3. The C/C++ package layer consists of three internal components, each devel-
oped in C++ and C to take advantage of the higher performance associated
with compiled languages which is needed for the types of activities that are
being carried out in this layer and loaded as shared objects.

a) The metadataAPI.so - this shared object contains the C++ classes and C
interface functions needed to extend the command language set of each
metadataAPI, allowing it to more efficiently manipulate of Internal Light
Weight Format Data and provide Database Client functions.

b) The genericAPI.so - this shared object contains the C++ classes and C
interface functions needed to extend the command language set of all
API’s in LDAS, allowing efficiency and optimal code reuse. It will be
linked into the metadataAPI.so shared object directly.

c) The database client API - this is the library used to develop a custom cli-
ent, capable of communicating with the database server. This library will
be linkable with the metadataAPI.so C/C++ code and will support all
SQL statements associated with creating tables, inserts and updates on
the tables, table migration, and queries in concert with the database
server.

4. The database server will execute tasks on the LIGO Frame metadata tables as
requested by the LDAS metadataAPI (which will be functioning as a custom
client to the database server). The database server will manage the LIGO
tables and be responsible for such routine maintenance as database table
backups and other database management functions. The choice of platform
for the database server and tables is not coupled to the platform being used
for the metadataAPI (client). However, this platform should be able to effi-

The Metadata API’s baseline requirements

Page 5 of 9

ciently handle the order 400GB per year database expected for LIGO.

III. Communications Provided to MetadataAPI by GenericAPI

A. Socket Based Communications in MetadataAPI:

1. The genericAPI will provide the metadataAPI with an internet socket within
the TCL/TK layer that is the primary communication port for commands and
messages of a normal priority within the LDAS. This port is commonly
referred to as the Operator Socket to reflect its association with normal oper-
ations. Requirements on this socket are that defined by the genericAPI.

2. The genericAPI will provide the metadataAPI with dynamic internet data
sockets within the C/C++ layer that are used to communicate all data (typi-
cally binary data in the Internal Light-Weight Data Format) in the form of
streamed binary data or distributed C++ class objects using the ObjectSpace
C++ Component Series Socket Library. This port is commonly referred to as
the Data Socket to reflect its primary duty in communicating data sets.
Requirements on this socket are defined by the genericAPI.

3. The database client API development library will provide communications
with the database server (using TCP/IP sockets) allowing the hardware/plat-
form solutions for the LDAS metadataAPI to be decoupled from the database
server hardware/platform solutions.

TCL/TK
 Layer

C/C++
 Layer

MetadataAPI(GenericAPI)

Master Interpreter

Master Interpreter

C++ Socket Class Object

Main Master
Interpreter

Operator Socket

Emergency Socket

Data Socket(s)
Binary Data:
Streamed & Objects

Exception Priority:
Errors & Messages

Normal Priority:
Commands & Messages

Database Client API

Database Socket
DB Communications:
SQL & Query Results

Database
Layer

The Metadata API’s baseline requirements

Page 6 of 9

IV. Databases Tools:

A. Relational Database:

1. LDAS has studied the issues of database type to use. It has been decided that
a relational database is sufficient for the tasks of supporting and managing
LIGO’s metadata. Other types considered included object oriented databases
such as ROOT (out of CERN) and the commercial Objectivity database but
were found to be either inadequate or excessive for the needs of LIGO. This
database will have to support of order 400GB of metadata per year.

2. In addition, LDAS has decided to pursue relational databases that support
binary data types and user defined data structures in records. This will pro-
vided for additional flexibility in dealing with the dynamic understanding of
the needs places on the database as understanding of LIGO’s dataset grows.

B. Commercial Database:

1. LDAS has studied the issues of commercial versus public domain databases.
It has been decided to use a commercial relational database product for
LIGO’s metadata. This is expected to reduce maintains requirements on the
database tools in the future. As of this writing, the commercial database
package being prototyped and expected to be the standard for LIGO’s meta-
data is IBM’s DB2 product. It is a relational database supporting binary data,
and user defined data types. It is available for Windows NT, Solaris, HP and
AIX at this time. The server software is much more affordable under Win-
dows NT. Development of custom clients using the DB2 Software Devel-
oper’s Toolkit is affordable on all supported platforms, allowing the LDAS
metadataAPI to be developed under Solaris while the database server runs on
the less expensive Windows NT platform.

2. IBM has announced the availability of DB2 for Linux. A beta release is avail-
able to the public for testing as of this writing. Linux is expected to be a sig-
nificant platform in the LDAS design, making DB2 under Linux an attractive
option from IBM.

C. Open Database Connectivity (ODBC):

1. The metadataAPI.so layer will be developed using C++ classes which act as
wrappers for the ODBC standardized application programmering interface.
ODBC is an access methodology that enables applications, such as the meta-
dataAPI, to seemlessly access heterogeneous databases. In addition to using
ODBC, the metadataAPI.so C++ classes will support the following access
handshake flow with the database server:

a) Establish an environment-handle,

b) establish a database-connectivity-handle,

c) establish a statement-handle,

The Metadata API’s baseline requirements

Page 7 of 9

d) perform a validation,

e) carry out the necessary binding loop,

f) execute the statement,

g) fetch any results from a query,

h) close all unneeded handles.

2. The metadataAPI.so layer will accept arbitrary SQL statements from the
TCL/TK layer of the metadataAPI and using a single SQL interface, carry
out the access handshake flow outlined above.

D. SQL Statements:

1. The arbitrary SQL statementes carried out by the metadataAPI.so layer and
the database server will be enumerated as templates for creation by the TCL/
TK layer of the metadataAPI. These SQL statements will be closely coupled
to the following catagories of tables in the database:

a) Frame Description Tables - includes frame names, locations, simple
statistics such as first five moments of particular channels, spectra, and
other TBD descriptions.

b) LDAS Event Tables - includes descriptions of events produced by
numerical filters in the LDAS, including astrophysical parameterizations,
statistical confidences, etc.

c) GDS Trigger Tables - includes descriptions of events produced by GDS
trigger filters. These tables should have very similar design to the LDAS
Event Tables.

d) E-Log Tables - includes references to pictures and operator log entries
from the CDS electronic log book (e-log) which are significate to LDAS.

e) IFO State Vector Tables - includes references to the CDS database
which contains IFO configuration, indexed by time-tags for epochs asso-
ciated with each IFO state.

f) LDAS Log File Tables - the log files maintained by the genericAPI layer
in all LDAS API’s have a TCL based database associated with them.
These tables will support moving a subset of these log entries into the
LDAS database server.

2. The SQL statements used to manipulate these tables will be cataloged as
templates, having thier supporting fields identified as parameters to the state-
ments. These statements could then be automatically generated by the TCL/
TK command layer or entered directly by an LDAS operator/user.

The Metadata API’s baseline requirements

Page 8 of 9

V. Software Development Tools

A. TCL/TK:

1. TCL is a string based command language. The language has only a few fun-
damental constructs and relatively little syntax making it easy to learn. TCL
is designed to be the glue that assembles software building blocks into appli-
cations. It is an interpreted language, but provides run-time tokenization of
commands to achieve near to compiled performance in some cases. TK is an
TCL integrated (as of release 8.x) tool-kit for building graphical user inter-
faces. Using the TCL command interface to TK, it is quick and easy to build
powerful user interfaces which are portable between Unix, Windows and
Macintosh computers. As of release 8.x of TCL/TK, the language has native
support for binary data.

B. C and C++:

1. The C and C++ languages are ANSI standard compiled languages. C has
been in use since 1972 and has become one of the most popular and powerful
compiled languages in use today. C++ is an object oriented super-set of C
which only just became an ANSI/ISO standard in November of 1997. It pro-
vided facilities for greater code reuse, software reliability and maintainability
than is possible in traditional procedural languages like C and FORTRAN.
LIGO’s data analysis software development will be dominated by C++
source code.

C. SWIG:

1. SWIG is a utility to automate the process of building wrappers to C and C++
declarations found in C and C++ source files or a special interface file for
API’s to such languages as TCL, PERL, PYTHON and GUIDE. LDAS will
use the TCL interface wrappers to the TCL extension API’s.

D. Make:

1. Make is a standard Unix utility for customizing the build process for execut-
ables, objects, shared objects, libraries, etc. in an efficient manor which
detects the files that have changed and only rebuilds components that depend
on the changed files.If/when LDAS software becomes architecturally depen-
dent, it will be necessary to supplement make with auto-configuration
scripts.

E. CVS:

1. CVS is the Concurrent Version System. It is based on the public domain (and
is public domain itself) software version management utility RSC. CVS is
based on the concept of a software source code repository from which multi-
ple software developers can check in and out components of a software from
any point in the development history.

The Metadata API’s baseline requirements

Page 9 of 9

F. Documentation:

1. DOC++ is a documentation system for C/C++ and Java. It generates LaTeX
or HTML documents, providing for sophisticated online browsing. The doc-
uments are extracted directly from the source code files. Documents are hier-
archical and structured with formatting and references.

2. TclDOC is a documentation system for TCL/TK. It generates structured
HTML documents directly from the source code, providing for a similar
online browsing system to the LDAS help files. Documents include a hyper-
text linked table of contents and a hierarchical structured format.

