

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T980094-02 E- 11/12/1998

The Generic API’s
“base-line specifications”

James Kent Blackburn
Philip Ehrens, David Farnham

Distribution of this document:

LIGO LDAS Group

California Institute of Technology
LIGO Project - MS 51-33

Pasadena CA 91125
Phone (818) 395-2129
Fax (818) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project - MS 20B-145

Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

This is an internal working document
of the LIGO Project.

Table of Contents

Index

file \\Sirius\kent\Documents\framemaker\GenericAPI\GenericSpecCover.fm - printed November 12,

ter-
tem

pro-

ter-
t uti-
K

ing
L/TK
ared

 file
API

facil-

first
L.
e
dded
ted

r

The Generic API’s
“base-line specification”

James Kent Blackburn
Philip Ehrens, David Farnham

California Institute of Technology
LIGO Data Analysis Group

November 12, 1998

I. Introduction

A. General Description:

1. The genericAPI provides the base set of functionality in the form of an in
preted command language that exist in all LIGO Data Analysis Sys
(LDAS) distributed computing API components.

a) The interpreted command language to be used is TCL/TK, which
vides a command line, scripting and a graphical interface.

b) The TCL/TK commands are extended to support low level system in
faces and greater computational performance using C++ code tha
lizes the standard TCL/TK C code API library in the form of a TCL/T
package.

2. The genericAPI TCL/TK script accesses a genericAPI.rsc file contain
needed information and resources to extend the command set of the TC
language using the genericAPI package, which exists in the form of a sh
object.

3. The genericAPI will provide setup and configuration for all socket and
based communications used in all other LDAS distributed computing
components.

B. The genericAPI.tcl Script’s Specification:

1. The following is a list of TCL/TK procedures (proc’s) which are imple-
mented in the genericAPI.tcl script.

a) These commands are used as part of the genericAPI’s on-line help
ity, but may be used in other contexts as needed.

(1) renderHTML: Parses and renders HTML content from a variety of
possible sources which are identified by the content of the
parameter. It will accept a filename, a URL, or arbitrary HTM
The logging system (described later) uses this method to produc
reports on demand. Extensions allow arbitrary data to be embe
in HTML content which can be handled by call-backs associa
with tag names and attributes.
Usage: renderHTML $var .text
where $var is a TCL/TK variable containing a filename, a URL, o
Page 1 of 20

The Generic API’s “base-line specification”

es

u-
ich
auto-
ble.

lp

gging

 to
by
ot
est

time
-

 is
are

ed

to
HTML text and .text is the name of a text widget and. The and $var
is required and .text will be initialized if necessary
Return object: TCL/TK exception on error.

(2) showHelp: Compound command which collects and index
LDAS help files and generates an HTML text widget with appropri-
ate functionality for browsing the dynamic hyper-text help doc
mentation. All files in a resource defined directory hierarchy wh
match a regular expression search for file names are included
matically, making the help system more flexible and extensi
The HTML 2.0 subset is the base language for the help system.
Usage: showHelp .text {topic} {path}
where .text is the name of an LDAS HTML text widget and is a
required parameter. Both topic and path are optional. The topic
parameter has a default value of “help” and the default path is
given in the genericAPI’s resource file.
Return object: TCL/TK exception on complete absence of all he
files or if .text is an incompatible widget.

b) These commands are used as part of the genericAPI’s message lo
facility but may be used in other contexts as needed.

(1) openLog: This is an internal function used by other log functions
open a log file for appending. It is not typically called directly
the user. If the file does not exist a dialog will appear which will n
go away until you either ask it to open an existing log or requ
that a new log file be created; looping back to the dialog each
an illegal log file is used. All entries in all log files are time
stamped and become available for automatic report generation.
Usage: set fileid [openLog logname]
where fileid is the file ID returned from the command, logname
the name of the log file. The default location for the log files
given in the genericAPI’s resource file.
Return object: The normal return value is the file ID of the open
file. A TCL/TK exception will be when

(a) file already open,

(b) or group permissions restrict log file creation.

(2) closeLog: Closes a log file that has been opened with openLog.
Usage: closeLog logname
where logname is the name of the log file to which the entry is
be added.
Return object: TCL/TK exception when

(a) file is not open,

(b) or group permissions restrict log file closure.
Page 2 of 20

The Generic API’s “base-line specification”

lly
st of
 can

ntry

 the

d

rom
sary.

ri-

on

 are
 and

ed
(3) addLogEntry: Adds a log entry to a specified log automatica
adding a time-stamp and user ID. Added log entries may consi
any text. However, only those entries which are tagged properly
become part of generated reports. Proper tags must be HTML or
internal LDAS light-weight format. This function calls openLog if
the log file is not already open for adding entries, then add the e
and finally closes the log file with closeLog. If the log file is
already open, then this command leaves it open after adding
entry.
Usage: addLogEntry logname message {tag}
where message is the string to be added to the log file, an
logname is the name of the log file, tag is an HTML or Internal
LDAS Light-Weight Format tag (defaults to <message>).
Return object: TCL/TK exception when

(a) an attempt is made to write to an illegal log file,

(b) group permissions restrict writing,

(c) or log file does not exist.

(4) watchLogs: Opens a list of log files for hot reading of log data.
Repeated calls to watchLogs at intervals results in real-time moni-
toring of log data. Logs can be dynamically added or removed f
the active list. The files will be opened and closed as neces
Usage: set data [watchLogs .text $logs]
where .text is the name of an text widget or an un-initialized va
able which is used internally by watchLogs and $logs is a TCL/TK
list of log files to be watched.
Return object: Returns a fresh set of log entries after initializati
in HTML format. TCL/TK exception for

(a) group permission restrictions on log file(s).

(5) queryLogs: Generates a Log content reports. Report contents
determined by optional start and end times or menu selection,
organized hierarchically. Times can be specified in local time, GPS
time and time past (last minute, hour, etc.).
Usage: set data [queryLogs .text {$start} {$end} {$logs}]
where $start is a TCL/TK variable storing the start time and $end
is a TCL/TK variable storing the end time in one of the allow
time formats given above and $logs is an optional TCL/TK list of
log files to be watched which defaults to all available logs.
Return object: Returns a log report as HTML format. TCL/TK
exception for

(a) illegally named .text widget,

(b) wrong widget type when using pre-existing widget,
Page 3 of 20

The Generic API’s “base-line specification”

ile

e
ing

g
 the

mand
.

/
cat-
he
rts

ent
.
nt a
AS

ser-

K

ted
he

so-
(c) or group permission restrictions on log file(s).

(6) ArchiveLog: Closes current log file if open then moves the log f
to a standard archive directory (possibly NFS mounted). The next
call to addLogEntry will automatically create a new log file for th
API. This command is meant to prevent log files from becom
manageably large.
Usage: archiveLog {$log}
where $log is an optional TCL/TK variable storing the name of lo
files to be archived and defaults to the API’s log file. The path to
archive directory is specified in the resource file.
Return object: TCL/TK exception for

(a) log files specified that do not exist,

(b) directory path that does not exist

(c) or group permission restrictions on log files.

c) These commands are used as part of the genericAPI’s socket com
communications facility but may be used in other contexts as needed

(1) initSock: Initializes a TCL/TK level socket connection in a TCL
TK interpreter on either a local or remote machine for communi
ing commands for services provided by individual API’s. T
genericAPI’s resource file will provide aliases for common po
and services.
This command also initializes a TCL/TK associated array elem
of the form ${hostname}($port) which contains the local socket ID
The resulting arrays are globally available and together represe
table of all sockets on all machines which are in use by the LD
system.
Usage: set services [initSock hostname port]
where hostname is the remote (or local is service is local) host
machine’s name or IP number and port is the alias for a port
defined in the genericAPI’s resource file associated with the
vice.
Return object: Returns the socket ID for the services. TCL/T
exception

(a) on failure to connect.

(2) closeSock: Closes a socket initialized with initSock. The associa
entry from the array of the form ${hostname}($port) containing t
socket ID is removed.
Usage: closeSock hostname port
where hostname is the host machine’s name or IP number and port
is the alias for a port defined in the genericAPI’s resource file as
ciated with the service.
Page 4 of 20

The Generic API’s “base-line specification”

er-

 the
ket
r a
tly

hich
ter-

the

the
a

h
iated
 is
 to

the

 the
de
ions
Return object: TCL/TK exception

(a) if socket not currently open,

(b) or group permission restrictions prevent closing.

(3) openListenSock: Opens a socket using an attendant TCL/TK int
preter. A hash table entry of the form ${hostname}($alias) will con-
tain the socket ID. The port number and its alias are defined in
genericAPI’s resource file. The interpreter listening to the soc
can be a fully functional master or slave TCL/TK interpreter o
safe master or slave TCL/TK interpreter, possessing a stric
defined available command set depending on the context in w
openListenSock is used. The command set available at the in
preter is a part of the API that owns the socket. A key may be
required to evaluate any or all commands as specified in
resource file.
Usage: set intID [openListenSock alias {safe}]
where alias is the socket’s port number or alias as defined in
genericAPI’s resource file and safe is an option used to specify
safe interpreter.
Return Object: Normally returns the interpreter ID, or a TCL/TK
exception if

(a) socket already open,

(b) port alias not specified in resource file,

(c) socket open fails,

(d) insufficient privilege.

(4) closeListenSock: Safe close for listening socket which will finis
pending communications before closing the socket. The assoc
TCL/TK interpreter will be explicitly terminated when the socket
closed. The associated socket array entry will be modified
remove its socket ID.
Usage: closeListenSock alias
where alias is the socket’s port number or alias as defined in
genericAPI’s resource file.
Return Object: TCL/TK exception if

(a) socket not already open,

(b) interpreter terminates improperly,

(c) port alias not specified in resource file,

(d) insufficient privilege.

(5) operatorCmd: Sends a command to an API to be processed by
remote TCL/TK interpreter. Commands consist of TCL/TK co
which may be interpreted by a safe interpreter. Certain except
Page 5 of 20

The Generic API’s “base-line specification”

nds
hich
om-

 and

et

om-
the

te
and

et

om-
the

g to
-
ption

n-

nd

PI but

nent
will cause a help window to be generated describing the comma
available at the remote API and a cross reference to API’s w
know about the command that generated the exception if any. C
mands received at the remote API’s interpreter are queued
served to the interpreter on a FIFO basis.
Usage: operatorCmd api command {key}
where api is the name of the remote LDAS API that will interpr
the extended TCL/TK code represented in command, and key is an
optional security key used to authenticate privilege to execute c
mands on a remote API with a default value determined by
genericAPI’s resource file.
Return object: TCL/TK exception if

(a) the socket for communication is not open,

(b) the remote socket is not listening and times out.

(6) emergencyCmd: High priority command used to communica
commands which need to be evaluated immediately. This comm
should have restricted usage.
Usage: emergencyCmd api command {key}
where api is the name of the remote LDAS API that will interpr
the extended TCL/TK code represented in command, and key is an
optional security key used to authenticate privilege to execute c
mands on a remote API with a default value determined by
genericAPI’s resource file.
Return object: TCL/TK exception if

(a) the socket for communication is not open,

(b) the remote socket is not listening and times out.

(7) pingAPI: Check to see that an API’s ports are alive. Sends a pin
both the operator and emergency ports of an API and then gener
ates a log entry. If the ping does not return, an appropriate exce
is generated. The ping consists of the TCL/TK string ping.
Usage: set pingtime [pingAPI api {timeout}]
where api is the name of an LDAS API, the resource file will ide
tify the hostname and ports for each named API, and timeout is the
number of milliseconds to wait for a live response (defaults to
5000).
Return object: Returns the ping round-trip time and local host a
remote host clock times. A TCL/TK exception if

(a) named API does not exist in resource file.

d) These are miscellaneous commands used as part of the genericA
may be used in other context as needed.

(1) popMsg: Pops up an undecorated message widget in a promi
Page 6 of 20

The Generic API’s “base-line specification”

 for
rm
ages
s. If
lts
OG
ll be
L-

nd
ear,
illi-

 facil-

/
 be

 be

ts,
rify-
l is
ints
d by
r-

 be

files
location which automatically disappears after a set time. Used
low priority exception handling where it is only necessary to info
the user that he is not going to get the expected action. Mass
will persist a minimum of 1 second and a maximum of 5 second
popMsg determines that the TK toolkit is not available, it defau
to sending the messages to STDERR. If the variable LOCALL
is set to a path/filename in the resource file, all messages wi
time-stamped and copied to the file location specified by LOCA
LOG.
Usage: popMsg message {time}
where message is the string to appear in the message widget a
time is the duration in milliseconds that the message is to app
ranging no less than 1000 millisecond and no more than 5000 m
seconds (default value of 2500 milliseconds).
Return object: TCL/TK exception if unable to execute message.

e) These commands are used as part of the genericAPI’s resource file
ity but may be used in other context as needed.

(1) sourceRsc: Initialization function which can be called from a TCL
TK interpreter to cause modifications to the resource file to
inherited.
Usage: sourceRsc api
where api is the name of the LDAS API whose resource file is to
interpreted.
Return object: TCL/TK exception when

(a) named API doesn’t exist,

(b) error occurs while sourcing resource file.

(2) validateRsc: Opens a resource file and verifies the conten
prompting the user to set missing environment variables and ve
ing that the settings are valid. A GUI is launched if anything vita
missing. The GUI explains the problem and it’s solution and po
to system specific help when applicable. This command is calle
sourceRsc immediately before the resource file is actually inte
preted.
Usage: validateRsc api
where api is the name of the LDAS API whose resource file is to
interpreted.
Return object: TCL/TK exception when

(a) named API doesn’t exist,

(b) error occurs while sourcing resource file.

2. The genericAPI.rsc Resource File Specification:

a) The genericAPI.rsc resource file, in common with other resource
Page 7 of 20

The Generic API’s “base-line specification”

pri-
s,
he
a-
ter-

rts,
ccess

, and

aged
stab-

m-

pful

ified
AS

sage

y the

r

t of

cir-
tion.
condi-
xcep-
ger
ption
associated with different API’s and interfaces in the LDAS, consists
marily of individual lines of TCL/TK code with no interdependencie
allowing essentially arbitrary ordering of resource information. T
resource file is sourced when an API is started up, and provides inform
tion to the interpreter which is site specific or in the nature of a user in
face.

b) Typical resource information would include aliases for machine po
host names and API names, encrypted system and user keys for a
and authentication, local system defaults and environment variables
user preferences such as colors and fonts.

c) Users who write their own API’s based on the genericAPI are encour
to source their own resource file, based on the genericAPI.rsc, to e
lish unique preferences and avoid conflicts.

d) A default resource file is included with the genericAPI with verbose co
ments and a help file explaining it’s use in detail.

e) If a required resource file is not found an exception is thrown with hel
instructions for configuring the API (see sourceRsc).

f) Required parameters which would generate exceptions without spec
values include the default location for resource files, help files and LD
libraries, as well as the name of the local host computer.

g) The values of encrypted keys will be calculated by a standard mes
digest or hashing algorithm.

3. Specification of the LDAS HTML text widget:

a) The LDAS HTML text widget is a top-level window containing a plain TK
text widget, with associated menus, entries, and buttons as defined b
showHelp command supporting a subset of HTML 2.0 excluding tables,
forms, multi-columns, JPEG images, and image maps (these may be
made available in the future). It will support additional tags defined fo
the Internal LDAS Light-Weight Data Format. The renderHTML and
the renderURL commands call the showHelp command with the name
of the widget to be created. If the name provided for the widget is tha
an existing widget which is not consistent with an LDAS HTML text wid-
get, the showHelp command will throw an exception.

4. Specification of TCL/TK exceptions:

a) Each TCL/TK command returns with a TCL/TK exception when the
cumstances associated with the call warrant throwing an excep
These exceptions may be generated by more than one anomalous
tion. To address the particulars of the condition that generated an e
tion, each TCL/TK exception will have associated with it unique inte
ID’s and descriptive messages allowing the exact cause of the exce
to be traced.
Page 8 of 20

The Generic API’s “base-line specification”

/TK
ared

gh the
ter

 library
 in

and
ess is

using

er.
cal
 used
e

ich

ng

s &

nd.

ort
s are
hine
he

er
cal
 used
e

C. The genericAPI.so Package’s Specification:

1. The following is a list of C/C++ language based extension to the TCL
command language which are implemented in the genericAPI.so sh
object package. These extended commands are added to TCL/TK throu
TCL/TK interface library and made available to the TCL/TK interpre
using the loadable package mechanism in TCL/TK.

a) These extended commands are used to manage a C++ socket class
which allows binary data to be communicated between LDAS API’s
either streams or as C++ objects.

(1) createDataSocket: Creates a data socket at the specified port
address. The port and address are optional. The default addr
the IP address of the machine returned by gethostname. The default
port is zero, which cause the system to choose an unused port
a call to the getSocketPort command.
Usage: set ptSok [createDataSocket {port} {address}]
where port is an optional (but highly recommended) port numb
The address is the optional IP number associated with the lo
host, but may be used to specify particular IP addresses when
on a gateway machine. Note: In order to specify an address, th
port must also be specified!
Return object: This command returns a pointer to a socket wh
can be stored in a TCL/TK variable as in the case of ptSok above.
This command throws a TCL/TK exception under the followi
conditions:

(a) bad_alloc - memory allocation fails,

(b) bind_failure - unable to bind socket to the specified addres
port,

(c) invalid_address - the address is not a valid IP address,

(d) invalid_host - the host to which address refers can't be fou

(2) createServerSocket: Creates a server socket at the specified p
and address and listens for connections. The port and addres
optional. The default address is the IP address of the mac
returned by gethostname. The default port is zero, which causes t
system to choose an unused port using a call to the getServerPort
command.
Usage: set ptSrv [createServerSocket {port} {address}]
where port is an optional (but highly recommended) port numb
and address is the optional IP number associated with the lo
host, but may be used to specify particular IP addresses when
on a gateway machine. Note: In order to specify an address, th
port must also be specified!
Page 9 of 20

The Generic API’s “base-line specification”

ich

ng

s &

nd.

ted

r to
n-

ng

des-
g at

nd.

st
 pro-
fied
 any

of
fault

s a
s
g an

ich
Return object: This command returns a pointer to a socket wh
can be stored in a TCL/TK variable as in the case of ptSrv above.
This command throws a TCL/TK exception under the followi
conditions:

(a) bad_alloc - memory allocation failed,

(b) bind_failure - unable to bind server to the specified addres
port,

(c) invalid_address - the address is not a valid IP address,

(d) invalid_host - the host to which address refers can't be fou

(3) connectDataSocket: Connects the given socket to a server loca
at the specified address and port.
Usage: connectDataSocket $ptSok address port
where ptSok is a socket pointer that has been returned by create-
DataSocket, address is the IP address or hostname of the serve
connect to and port is the port number on which the server is liste
ing.
Return object: none.
This command throws a TCL/TK exception under the followi
conditions:

(a) invalid_socket - the socket doesn't exist,

(b) connect_failure - the socket was unable to connect to the
ignatedaddress (for example, a server may not be listenin
thataddress),

(c) invalid_address - the address is not a valid IP address,

(d) invalid_host - the host to which address refers can't be fou

(4) acceptDataSocket: Extracts the first pending connection reque
and associates it with a socket. If an address and / or port is
vided, then the connection is only accepted from the speci
address and / or port. The default port is zero, corresponding to
port and the default address is (an empty string) corresponding to
any address.
Usage: set ptSok [acceptDataSocket $ptSrv {address} {port}]
where ptSrv is a server pointer that has been returned by create-
ServerSocket, address is the optional IP address or hostname
the client from which to accept communications and has a de
of any client address when not specified. The port is the optional
port number from which to accept communications and ha
default of any client port. In order to specify a port, the addres
must also be specified or the address can be specified usin
empty string, allowing all addresses at a specific port.
Return object: This command returns a pointer to a socket wh
Page 10 of 20

The Generic API’s “base-line specification”

ng

nd,

 be

ho-

any

en

ng

any

en

ng

 C++
ts.

en

al
ble

ng
can be stored in a TCL/TK variable as in the case of ptSok above.
This command throws a TCL/TK exception under the followi
conditions:

(a) invalid_server - the server does not exist,

(b) invalid_address - the address is not a valid IP address,

(c) invalid_host - the host to which address refers can't be fou

(d) bad_alloc - memory allocation failed,

(e) accept_failure - the unix accept command failed,

(f) identify_failure - the source socket's identity was unable to
determined,

(g) illegal_connection - connection attempted from an unaut
rized socket.

(5) closeDataSocket: Closes and destructs a data socket, freeing
memory allocated for it.
Usage: closeDataSocket $ptSok
where ptSok is a socket pointer variable which has previously be
set by a call to createDataSocket.
Return object: none.
This command throws a TCL/TK exception under the followi
conditions:

(a) invalid_socket - the socket doesn't exist.

(6) closeServerSocket: Closes and destructs a data server, freeing
memory allocated for it.
Usage: closeServerSocket $ptSrv
where ptSrv is a server pointer variable which has previously be
set by a call to createServerSocket.
Return object: none.
This command throws a TCL/TK exception under the followi
conditions:

(a) invalid_server - the server doesn't exist.

b) These extended commands are used to obtain information from the
socket class library associated with current instances of socket objec

(1) getSocketIpAddress: Returns the socket's local IP address.
Usage: set ptVar [getSocketIpAddress $ptSok]
where ptSok is a socket pointer variable which has previously be
set by a call to createDataSocket.
Return object: This command returns a string containing the loc
IP address of the socket which can be stored in a TCL/TK varia
as in the case of ptVar above.
This command throws a TCL/TK exception under the followi
Page 11 of 20

The Generic API’s “base-line specification”

en

al
ari-

ng

en

al
ble

ng

en

al
ari-

ng

ch

en

r’s
ble

ng
conditions:

(a) invalid_socket - the socket doesn't exist.

(2) getSocketPort: Returns the socket's local port.
Usage: set ptVar [getSocketPort $ptSok]
where ptSok is a socket pointer variable which has previously be
set by a call to createDataSocket.
Return object: This command returns a string containing the loc
port number of the socket which can be stored in a TCL/TK v
able as in the case of ptVar above.
This command throws a TCL/TK exception under the followi
conditions:

(a) invalid_socket - the socket doesn't exist.

(3) getServerIpAddress: Returns the server's local IP address.
Usage: set ptVar [getServerIpAddress $ptSrv]
where ptSrv is a socket pointer variable which has previously be
set by a call to createServerSocket.
Return object: This command returns a string containing the loc
IP address of the socket which can be stored in a TCL/TK varia
as in the case of ptVar above.
This command throws a TCL/TK exception under the followi
conditions:

(a) invalid_server - the server doesn't exist.

(4) getServerPort: Returns the server's local port.
Usage: set ptVar [getServerPort $ptSok]
where ptSok is a socket pointer variable which has previously be
set by a call to createServerSocket.
Return object: This command returns a string containing the loc
port number of the socket which can be stored in a TCL/TK v
able as in the case of ptVar above.
This command throws a TCL/TK exception under the followi
conditions:

(a) invalid_server - the server doesn't exist.

(5) getSocketPeerIpAddress: Returns the peer’s IP address to whi
this socket is connected.
Usage: set ptVar [getSocketPeerIpAddress $ptSok]
where ptSok is a socket pointer variable which has previously be
set by a call to createDataSocket.
Return object: This command returns a string containing the pee
IP address for the socket which can be stored in a TCL/TK varia
as in the case of ptVar above.
This command throws a TCL/TK exception under the followi
Page 12 of 20

The Generic API’s “base-line specification”

 is

en

r’s
ari-

ng

 infor-
the

c-

re

ng

file

cts

ng

een
ima-
 up
conditions:

(a) invalid_socket - the socket doesn't exist,

(b) unconnected_socket - the socket is not connected.

(6) getSocketPeerPort: Returns the peer’s port to which this socket
connected.
Usage: set ptVar [getSocketPeerPort $ptSok]
where ptSok is a socket pointer variable which has previously be
set by a call to createServerSocket.
Return object: This command returns a string containing the pee
port number for the socket which can be stored in a TCL/TK v
able as in the case of ptVar above.
This command throws a TCL/TK exception under the followi
conditions:

(a) invalid_socket - the socket doesn't exist,

(b) unconnected_socket - the socket is not connected.

c) These extended commands are used to store, restore and reset the
mation contained in C++ socket objects currently instantiated in
genericAPI.

(1) save: Closes all sockets, writing information about their conne
tions to the given file (which is overwritten if it already exists).
Usage: save filename
where filename is the name of the file where all socket objects a
to be stored.
Return object: none.
This command throws a TCL/TK exception under the followi
conditions:

(a) file_creation_failed - the file could not be created.

(2) restore: Restores socket connections as written in the given
(which must have been written by the save command).
Usage: restore filename
where filename is the name of the file where the socket obje
were previously stored with the save command.
Return object: none.
This command throws a TCL/TK exception under the followi
conditions:

(a) file_not_found - the file could not be located on system,

(b) bad_alloc - insufficient memory available.

(3) reset: Reset is used to clean up all C++ objects that have b
instantiated in the genericAPI.so package. This command is pr
rily meant as a full reset to initial state for the package, freeing
Page 13 of 20

The Generic API’s “base-line specification”

e

ed

ng

ed

ng

ata
ly
s an
 raw
all dynamic memory that has been allocated.
Usage: reset
Return object: none.

d) These extended commands are used to communicate elements of th
Internal LDAS Light-Weight Data and Raw Binary Data between API’s
using the Data Sockets.

(1) sendElementAscii: This command sends an Internal LDAS Light-
Weight Data set, called an Element because of its relationship to
XML elements, through a Data Socket in ASCII form (this includes
base64 formatted data). This method of sending Elements is not
expected to be used often and is provided for completeness.
Usage: sendElementAscii ptSok ptElem
where ptSok is a pointer to a Data Socket which has previously
been opened with the createDataSocket command, and ptElem is
a pointer to an Element object that has previously been instantiat
in the C++ layer.
Return object: none.
This command throws a TCL/TK exception under the followi
conditions:

(a) invalid_socket - the socket doesn't exist,

(b) unconnected_socket - the socket isn’t connected,

(c) invalid_element - the element doesn’t exist.

(2) sendElementObject: This command sends an Internal LDAS
Light-Weight Data set, called an Element because of its relationship
to XML elements, through a Data Socket as a C++ Object. This
method of sending Elements be used often because of efficiency.
Usage: sendElementObject ptSok ptElem
where ptSok is a pointer to a Data Socket which has previously
been opened with the createDataSocket command, and ptElem is
a pointer to an Element object that has previously been instantiat
in the C++ layer.
Return object: none
This command throws a TCL/TK exception under the followi
conditions:

(a) invalid_socket - the socket doesn't exist,

(b) unconnected_socket - the socket isn’t connected,

(c) invalid_element - the element doesn’t exist.

(3) sendRawBinary: This command sends a raw stream of binary d
through a Data Socket. The binary data must have been previous
been instantiated in the C++ binary storage class which include
attribute for the number of bytes. This command is used to send
Page 14 of 20

The Generic API’s “base-line specification”

 No

 in

ng

+

ng

+

ng
unstructured or arbitrarily structured data through the socket.
attempt is made to understand the content of the data.
Usage: sendRawBinary ptSok ptBin
where ptSok is a pointer to a Data Socket which has previously
been opened with the createDataSocket command, and ptBin is a
pointer to an Binary object that has previously been instantiated
the C++ layer.
Return object: none.
This command throws a TCL/TK exception under the followi
conditions:

(a) invalid_socket - the socket doesn't exist,

(b) unconnected_socket - the socket isn’t connected,

(c) invalid_element - the element doesn’t exist.

(4) recvElementAscii: This command receives an Internal LDAS
Light-Weight Data set from a Data Socket in ASCII form (this
includes base64 formatted data).
Usage: set ptElem [recvElementAscii ptSok]
where ptSok is a pointer to a Data Socket which has previously
been connected with the acceptDataSocket command, and ptElem
is a pointer to the Element object which is instantiated in the C+
layer by the receiver.
Return object: This command returns a pointer to an Element object
that has been received through the Data Socket. The format
attribute for the Element is guaranteed to be ASCII after this com-
mand is called.
This command throws a TCL/TK exception under the followi
conditions:

(a) invalid_socket - the socket doesn't exist,

(b) unconnected_socket - the socket isn’t connected,

(c) bad_alloc - insufficient memory for element.

(5) recvElementObject: This command receives an Internal LDAS
Light-Weight Data set from a Data Socket in C++ object form.
Usage: set ptElem [recvElementObject ptSok]
where ptSok is a pointer to a Data Socket which has previously
been connected with the acceptDataSocket command, and ptElem
is a pointer to the Element object which is instantiated in the C+
layer by the receiver.
Return object: This command returns a pointer to an Element object
that has been received through the Data Socket. The incoming for-
mat attribute for the Element is unaltered by this command.
This command throws a TCL/TK exception under the followi
Page 15 of 20

The Generic API’s “base-line specification”

ry
e
 No

+

ng

of the

y
t-
a
 the
ring
ject

r

e
 a
conditions:

(a) invalid_socket - the socket doesn't exist,

(b) unconnected_socket - the socket isn’t connected,

(c) bad_alloc - insufficient memory for element.

(6) recvRawBinary: This command receive a raw stream of bina
data through from Data Socket. This command is used to receiv
raw unstructured or arbitrarily structured data from the socket.
attempt is made to understand the content of the data.
Usage: set ptBin [recvRawBinary ptSok]
where ptSok is a pointer to a Data Socket which has previously
been connected with the acceptDataSocket command, and ptBin
is a pointer to the Binary object which is instantiated in the C+
layer by the receiver.
Return object: This command returns a pointer to a Binary object
that has been received through the Data Socket.
This command throws a TCL/TK exception under the followi
conditions:

(a) invalid_socket - the socket doesn't exist,

(b) unconnected_socket - the socket isn’t connected,

(c) bad_alloc - insufficient memory for raw binary.

e) These extended commands are used to communicate elements
Internal LDAS Light-Weight Data and Raw Binary Data to and from the
TCL/TK layer and the underlying C++ layer.

(1) putElement: This command puts an Internal LDAS Light-Weight
Data set, called an Element object, into the C++ layer from a binar
string variable (the variable doesn’t necessarily contain non-prin
able character) in the TCL/TK layer. The command returns
pointer to the Element object which has been instantiated in
C++ layer by this command. The data stored in the binary st
variable can be translated into a new format in the Element ob
using the format and compress options.
Usage: set ptElem [putElement $bstring {format} {compress}]
where bstring is a TCL/TK variable containing either an ASCII o
Binary string for an Internal LDAS Light-Weight Data Element. The
optional format and compress parameter is used to translate th
data within the bstring (along with the associated attributed) into
different format within the instantiated Element object in the C++
layer, and ptElem is a pointer to the Element object which is instan-
tiated in the C++ layer. The format can be one of {ascii | binary |
base64}. The compress can be a single integer value from {0 - 9}
where 0 is no compression and 9 is maximum compression. The
Page 16 of 20

The Generic API’s “base-line specification”

ng

ent
 the
ion
lue

sion

n
rrent

n

t

ng

the
ry
ta. It
arse
compress parameter is ignored when the format is ascii. The
default for format is “attribute” causing the Internal LDAS Light-
Weight Data Format attribute value to be used.
Return object: This command returns a pointer to an Element
object.
This command throws a TCL/TK exception under the followi
conditions:

(a) bad_alloc - insufficient memory for element,

(b) illegal_element - TCL/TK bstring format is illegal,

(c) illegal_format - translation format unrecognized,

(2) getElement: This command gets an Internal LDAS Light-Weight
Data set which has previously been instantiated as an Elem
object in the C++ layer and stores it in a binary string variable in
TCL/TK layer. The format of the data in the bstring representat
of the Element object is optional and defaults to the attribute’s va
and if the format is binary or base64, then an optional compres
factor can be specified.
Usage: set bstring [getElement ptElem {format} {compress}]
where ptElem is a pointer to the Element object which is instanti-
ated in the C++ layer. The optional format can be one of {ascii |
binary | base64}. The compress option is a integer value betwee
0 and 9, including no string meaning to leave the data at its cu
compression level as assigned by the attribute. The compress
parameter is ignored when the format is ascii. The bstring is the
TCL/TK variable to contain either an ASCII or Binary string for a
Internal LDAS Light-Weight Data Element.The default for format
is “attribute” causing the Internal LDAS Light-Weight Data Forma
attribute value to be used.

Return object: This command returns an Internal LDAS Light-
Weight Data Element as a TCL/TK binary string.
This command throws a TCL/TK exception under the followi
conditions:

(a) bad_alloc - insufficient memory for element,

(b) invalid_element - the element does not exist,

(c) illegal_format - translation format unrecognized.

(3) putRawBinary: This command puts a raw binary data set into
C++ layer in the form of a binary object containing the raw bina
data and the number of bytes associated with the raw binary da
returns a pointer to the binary object. No attempt is made to p
the raw binary data.
Page 17 of 20

The Generic API’s “base-line specification”

a,
so-

ect

ng

 a
ing
eter

. No

ch

ith

ng

le-
ent

ti-

n

w
u-

nti-
Usage: set ptBin [putRawBinary $bstring $nbytes]
where bstring is a TCL/TK variable containing the raw binary dat
nbytes is a TCL/TK variable containing the number of bytes as
ciated with the raw binary data, and ptBin is a pointer to the binary
object instantiated in the C++ layer by this command.
Return object: This command returns a pointer to the binary obj
instantiated in the C++ layer when called.
This command throws a TCL/TK exception under the followi
conditions:

(a) bad_alloc - insufficient memory for binary object.

(4) getRawBinary: This command gets a raw binary data set from
binary object in the C++ layer, returning a binary string contain
the raw binary data and modifies the value of the second param
to be the number of bytes associated with the raw binary data
attempt is made to parse the raw binary data.
Usage: set bstring [getRawBinary ptBin nbytes]
where ptBin is a pointer to a binary object in the C++ layer whi
has previously been instantiated, nbytes is a TCL/TK variable
which will be updated to hold the number of bytes associated w
the raw binary data, and bstring is the TCL/TK variable to contain
the binary data after the call is made.
Return object: This command returns a TCL/TK binary string.
This command throws a TCL/TK exception under the followi
conditions:

(a) bad_alloc - insufficient memory for binary string,

(b) invalid_binary - binary object doesn’t exist.

(5) destructElement: This command deallocates memory for an e
ment object, removing it from the C++ layer. It takes one argum
which is a pointer to the element to be removed.
Usage: destructElement ptElem
where ptElem is a pointer to an element object previously instan
ated in the C++ layer.
Return object: None. This command returns a TCL/TK exceptio
under the following conditions:

(a) invalid_element - specified element doesn’t exist.

(6) destructRawBinary: This command deallocates memory for a ra
binary object, removing it from the C++ layer. It takes one arg
ment which is a pointer to the raw binary object to be removed.
Usage: destructRawElement ptElem
where ptElem is a pointer to a raw binary object previously insta
ated in the C++ layer.
Page 18 of 20

The Generic API’s “base-line specification”

n

tween
r. It

relies
port

t
ata.

r the

t

ed
sepa-
Return object: None. This command returns a TCL/TK exceptio
under the following conditions:

(a) invalid_binary - specified raw binary object doesn’t exist.

D. The Internal LDAS Light-Weight Data Format Specification:

1. The Internal LDAS Light-Weight Data Format is a subset of the LIGO Light-
Weight Data Format. Both are based on XML, the likely successor to HTML.
However, the Internal LDAS Light-Weight Data Format is designed to be the
minimal set of elements needed to move data through sockets and be
the TCL/TK layer and the extended commands found in the C/C++ laye
is primarily meant to be a machine oriented data format, and as such,
heavily on attributes over nested elements. The LDAS system will sup
the full implementation of the LIGO Light-Weight Data Format using a spe-
cialized API, the Light-Weight Data Format API, which will be specified in a
forthcoming set of documents.

2. Each element of the Internal LDAS Light-Weight Data Format is of the form:
<tag attribute1=”value” attribute2=”value” ...>rawdata</tag>
where the element begins with a < character and is followed by the tag-name
which identifies the base data type. Then the attributes are listed, each se
equal to a value enclosed in quotes and provide descriptions about the d
The opening tag is closed with a > character. The rawdata then follows. The
element is terminated by the closing tag which is just the < character fol-
lowed by the / character followed by the tag-name and finally the > character.

3. The tag-names are case-insensitive and can be any of the following fo
Internal LDAS Light-Weight Data Format:

a) CHAR_S - signed byte,

b) CHAR_U unsigned byte,

c) INT_2S - 2 byte signed integer,

d) INT_2U - 2 byte unsigned integer,

e) INT_4S - 4 byte signed integer,

f) INT_4U - 4 byte unsigned integer,

g) REAL_4 - 4 byte IEEE 754 floating point number,

h) REAL_8 - 8 byte IEEE 754 floating point number,

i) COMPLEX_8 - pair of REAL_4’s ordered as (real, imaginary),

j) COMPLEX_16 - pair of REAL_8’s ordered as (real, imaginary).

4. The understood attributed for the Internal LDAS Light-Weight Data Forma
are (all other attributes are ignored by the genericAPI):

a) name = “name:attr1:attr2:...” - the name or names to be associat
with this data. A set of naming attributes can appear after the name
Page 19 of 20

The Generic API’s “base-line specification”

cts
ated.

s a

e

g
pty

 to
he

a;
ace

vel
 (

or

nt’s

y

rated with colons. This would be useful for describing generic obje
like graphs or tables where title, axis labels, etc. might be associ
Defaults to an empty string if not present;

b) ndim = “integer” - the number of dimension in the rawdata and ha
default value of 1 (vector) if not present;

c) dims = “integer,integer,...” - ndim comma delimited integers telling th
number of elements in each dimension of the rawdata; if ndim=0 (scalar)
then dims is ignored and defaults to 1;

d) units = “unit1,unit2,...” - ndim comma delimited unit names specifyin
the units, if any, for each dimension of the rawdata. Defaults to an em
string if not present;

e) mdorder = “f77 | c” - indicates whether a multidimensional data set is
be incremented fastest on the first index “f77” or last index “c”; t
default is “c” if not present;

f) format = “ascii | base64 | binary” - the encoded format of the rawdat
if “ascii” then compression is not allowed and each number is whitesp
(spaces, tabs, returns) separated; the default is binary if not present;

g) compression = “0 - 9” - an integer between 0 and 9 specifying the le
of compression used for binary or base64 formats; the default is 0no
compression) if not present;

h) byteorder = “little | big” - whether integers are stored in little endian
big endian order; the default is little endian if not present;

i) bytes = “integer” - number of bytes of rawdata between the eleme
tags-names; required if format is binary and compression not zero;

j) comment = “arbitrary text string” - optional and defaults to an empt
string if not present.
Page 20 of 20

	file \\Sirius\kent\Documents\framemaker\GenericAPI...
	Laser Interferometer Gravitational Wave Observator...
	- LIGO -
	GenericAPI_BS.pdf
	The Generic API’s “base-line specification”
	James Kent Blackburn Philip Ehrens, David Farnham ...
	I. Introduction
	A. General Description:
	1. The genericAPI provides the base set of functio...
	a) The interpreted command language to be used is ...
	b) The TCL/TK commands are extended to support low...

	2. The genericAPI TCL/TK script accesses a generic...
	3. The genericAPI will provide setup and configura...

	B. The genericAPI.tcl Script’s Specification:
	1. The following is a list of TCL/TK procedures (p...
	a) These commands are used as part of the genericA...
	(1) renderHTML: Parses and renders HTML content fr...
	(2) showHelp: Compound command which collects and ...

	b) These commands are used as part of the genericA...
	(1) openLog: This is an internal function used by ...
	(a) file already open,
	(b) or group permissions restrict log file creatio...

	(2) closeLog: Closes a log file that has been open...
	(a) file is not open,
	(b) or group permissions restrict log file closure...

	(3) addLogEntry: Adds a log entry to a specified l...
	(a) an attempt is made to write to an illegal log ...
	(b) group permissions restrict writing,
	(c) or log file does not exist.

	(4) watchLogs: Opens a list of log files for hot r...
	(a) group permission restrictions on log file(s).

	(5) queryLogs: Generates a Log content reports. Re...
	(a) illegally named .text widget,
	(b) wrong widget type when using pre-existing widg...
	(c) or group permission restrictions on log file(s...

	(6) ArchiveLog: Closes current log file if open th...
	(a) log files specified that do not exist,
	(b) directory path that does not exist
	(c) or group permission restrictions on log files....

	c) These commands are used as part of the genericA...
	(1) initSock: Initializes a TCL/TK level socket co...
	(a) on failure to connect.

	(2) closeSock: Closes a socket initialized with in...
	(a) if socket not currently open,
	(b) or group permission restrictions prevent closi...

	(3) openListenSock: Opens a socket using an attend...
	(a) socket already open,
	(b) port alias not specified in resource file,
	(c) socket open fails,
	(d) insufficient privilege.

	(4) closeListenSock: Safe close for listening sock...
	(a) socket not already open,
	(b) interpreter terminates improperly,
	(c) port alias not specified in resource file,
	(d) insufficient privilege.

	(5) operatorCmd: Sends a command to an API to be p...
	(a) the socket for communication is not open,
	(b) the remote socket is not listening and times o...

	(6) emergencyCmd: High priority command used to co...
	(a) the socket for communication is not open,
	(b) the remote socket is not listening and times o...

	(7) pingAPI: Check to see that an API’s ports are ...
	(a) named API does not exist in resource file.

	d) These are miscellaneous commands used as part o...
	(1) popMsg: Pops up an undecorated message widget ...

	e) These commands are used as part of the genericA...
	(1) sourceRsc: Initialization function which can b...
	(a) named API doesn’t exist,
	(b) error occurs while sourcing resource file.

	(2) validateRsc: Opens a resource file and verifie...
	(a) named API doesn’t exist,
	(b) error occurs while sourcing resource file.

	2. The genericAPI.rsc Resource File Specification:...
	a) The genericAPI.rsc resource file, in common wit...
	b) Typical resource information would include alia...
	c) Users who write their own API’s based on the ge...
	d) A default resource file is included with the ge...
	e) If a required resource file is not found an exc...
	f) Required parameters which would generate except...
	g) The values of encrypted keys will be calculated...

	3. Specification of the LDAS HTML text widget:
	a) The LDAS HTML text widget is a top-level window...

	4. Specification of TCL/TK exceptions:
	a) Each TCL/TK command returns with a TCL/TK excep...

	C. The genericAPI.so Package’s Specification:
	1. The following is a list of C/C++ language based...
	a) These extended commands are used to manage a C+...
	(1) createDataSocket: Creates a data socket at the...
	(a) bad_alloc - memory allocation fails,
	(b) bind_failure - unable to bind socket to the sp...
	(c) invalid_address - the address is not a valid I...
	(d) invalid_host - the host to which address refer...

	(2) createServerSocket: Creates a server socket at...
	(a) bad_alloc - memory allocation failed,
	(b) bind_failure - unable to bind server to the sp...
	(c) invalid_address - the address is not a valid I...
	(d) invalid_host - the host to which address refer...

	(3) connectDataSocket: Connects the given socket t...
	(a) invalid_socket - the socket doesn't exist,
	(b) connect_failure - the socket was unable to con...
	(c) invalid_address - the address is not a valid I...
	(d) invalid_host - the host to which address refer...

	(4) acceptDataSocket: Extracts the first pending c...
	(a) invalid_server - the server does not exist,
	(b) invalid_address - the address is not a valid I...
	(c) invalid_host - the host to which address refer...
	(d) bad_alloc - memory allocation failed,
	(e) accept_failure - the unix accept command faile...
	(f) identify_failure - the source socket's identit...
	(g) illegal_connection - connection attempted from...

	(5) closeDataSocket: Closes and destructs a data s...
	(a) invalid_socket - the socket doesn't exist.

	(6) closeServerSocket: Closes and destructs a data...
	(a) invalid_server - the server doesn't exist.

	b) These extended commands are used to obtain info...
	(1) getSocketIpAddress: Returns the socket's local...
	(a) invalid_socket - the socket doesn't exist.

	(2) getSocketPort: Returns the socket's local port...
	(a) invalid_socket - the socket doesn't exist.

	(3) getServerIpAddress: Returns the server's local...
	(a) invalid_server - the server doesn't exist.

	(4) getServerPort: Returns the server's local port...
	(a) invalid_server - the server doesn't exist.

	(5) getSocketPeerIpAddress: Returns the peer’s IP ...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket is not connect...

	(6) getSocketPeerPort: Returns the peer’s port to ...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket is not connect...

	c) These extended commands are used to store, rest...
	(1) save: Closes all sockets, writing information ...
	(a) file_creation_failed - the file could not be c...

	(2) restore: Restores socket connections as writte...
	(a) file_not_found - the file could not be located...
	(b) bad_alloc - insufficient memory available.

	(3) reset: Reset is used to clean up all C++ objec...

	d) These extended commands are used to communicate...
	(1) sendElementAscii: This command sends an Intern...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket isn’t connecte...
	(c) invalid_element - the element doesn’t exist.

	(2) sendElementObject: This command sends an Inter...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket isn’t connecte...
	(c) invalid_element - the element doesn’t exist.

	(3) sendRawBinary: This command sends a raw stream...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket isn’t connecte...
	(c) invalid_element - the element doesn’t exist.

	(4) recvElementAscii: This command receives an Int...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket isn’t connecte...
	(c) bad_alloc - insufficient memory for element.

	(5) recvElementObject: This command receives an In...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket isn’t connecte...
	(c) bad_alloc - insufficient memory for element.

	(6) recvRawBinary: This command receive a raw stre...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket isn’t connecte...
	(c) bad_alloc - insufficient memory for raw binary...

	e) These extended commands are used to communicate...
	(1) putElement: This command puts an Internal LDAS...
	(a) bad_alloc - insufficient memory for element,
	(b) illegal_element - TCL/TK bstring format is ill...
	(c) illegal_format - translation format unrecogniz...

	(2) getElement: This command gets an Internal LDAS...
	(a) bad_alloc - insufficient memory for element,
	(b) invalid_element - the element does not exist,
	(c) illegal_format - translation format unrecogniz...

	(3) putRawBinary: This command puts a raw binary d...
	(a) bad_alloc - insufficient memory for binary obj...

	(4) getRawBinary: This command gets a raw binary d...
	(a) bad_alloc - insufficient memory for binary str...
	(b) invalid_binary - binary object doesn’t exist.

	(5) destructElement: This command deallocates memo...
	(a) invalid_element - specified element doesn’t ex...

	(6) destructRawBinary: This command deallocates me...
	(a) invalid_binary - specified raw binary object d...

	D. The Internal LDAS Light-Weight Data Format Spec...
	1. The Internal LDAS Light-Weight Data Format is a...
	2. Each element of the Internal LDAS Light-Weight ...
	3. The tag-names are case-insensitive and can be a...
	a) CHAR_S - signed byte,
	b) CHAR_U unsigned byte,
	c) INT_2S - 2 byte signed integer,
	d) INT_2U - 2 byte unsigned integer,
	e) INT_4S - 4 byte signed integer,
	f) INT_4U - 4 byte unsigned integer,
	g) REAL_4 - 4 byte IEEE 754 floating point number,...
	h) REAL_8 - 8 byte IEEE 754 floating point number,...
	i) COMPLEX_8 - pair of REAL_4’s ordered as (real, ...
	j) COMPLEX_16 - pair of REAL_8’s ordered as (real,...

	4. The understood attributed for the Internal LDAS...
	a) name = “name:attr1:attr2:...” - the name or nam...
	b) ndim = “integer” - the number of dimension in t...
	c) dims = “integer,integer,...” - ndim comma delim...
	d) units = “unit1,unit2,...” - ndim comma delimite...
	e) mdorder = “f77 | c” - indicates whether a multi...
	f) format = “ascii | base64 | binary” - the encode...
	g) compression = “0 - 9” - an integer between 0 an...
	h) byteorder = “little | big” - whether integers a...
	i) bytes = “integer” - number of bytes of rawdata ...
	j) comment = “arbitrary text string” - optional an...

