

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T980094-00 E- 10/8/1998

The Generic API’s
“base-line specifications”

James Kent Blackburn
Philip Ehrens, David Farnham

Distribution of this document:

LIGO LDAS Group

California Institute of Technology
LIGO Project - MS 51-33

Pasadena CA 91125
Phone (818) 395-2129
Fax (818) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project - MS 20B-145

Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

This is an internal working document
of the LIGO Project.

Table of Contents

Index

file \\SIRIUS\kent\Documents\framemaker\GenericAPI\GenericSpecCover.fm - printed October 9, 1998

ter-
tem

pro-

ter-
t uti-
K

ing
L/TK
ared

 file
API

facil-

o

The Generic API’s
“base-line specification”

James Kent Blackburn
Philip Ehrens, David Farnham

California Institute of Technology
LIGO Data Analysis Group

October 8, 1998

I. Introduction

A. General Description:

1. The genericAPI provides the base set of functionality in the form of an in
preted command language that exist in all LIGO Data Analysis Sys
(LDAS) distributed computing API components.

a) The interpreted command language to be used is TCL/TK, which
vides a command line, scripting and a graphical interface.

b) The TCL/TK commands are extended to support low level system in
faces and greater computational performance using C++ code tha
lizes the standard TCL C code API library in the form of a TCL/T
package.

2. The genericAPI TCL/TK script accesses a genericAPI.rcs file contain
needed information and resources to extend the command set of the TC
language using the genericAPI package, which exists in the form of a sh
object.

3. The genericAPI will provide setup and configuration for all socket and
based communications used in all other LDAS distributed computing
components.

B. The genericAPI.tcl Script’s Specification:

1. The following is a list of TCL/TK procedures (proc’s) which are imple-
mented in the genericAPI.tcl script.

a) These commands are used as part of the genericAPI’s on-line help
ity, but may be used in other contexts as needed.

(1) initHTML: Initialized an existing text widget into an HTML ren-
dering widget capable of displaying a subset (tables, forms, and
columns not supported) of HTML 2.0 which has bee extended t
support the internal LDAS lightweight data format based on XML.
Usage: initHTML .text
where .text is the name of an LDAS HTML text widget. It is a
required parameter.
Return object: TCL exception returned if .text previously defined
as an incompatible widget.
Page 1 of 19

The Generic API’s “base-line specification”

o-

nd.

 and

ted

ning
local

es

u-
ich
auto-
ble.

es

gging

 to
by
ot
(2) renderHTML: Parses and renders HTML content in a TCL vari-
able. Used to display HTML formatted content generated by a pr
cedure, as opposed to rendering a URL. The logging system
(described later) uses this method to produce reports on dema
Extensions allow arbitrary data to be embedded in HTML content
which can be handled by call-backs associated with tag names
attributes.
Usage: renderHTML .text $var
where .text is the name of an LDAS HTML text widget and $var is
a TCL variable containing HTML text. Both .text and $var are
required.
Return object: TCL exception on error.

(3) renderURL: Parses and renders files containing HTML, images,
Internal LDAS Light-Weight Tagged Data and pointers to data into
an HTML text widget or other specified widget, such as associa
with the Internal LDAS Light-Weight Format. The services avail-
able will be extended through the use of resource files contai
the TCL call-backs and associated tags. Relative, partial and
URL’s are handled transparently.
Usage: renderURL .text $var
where .text is the name of an LDAS HTML text widget and $var is
a TCL variable containing a URL. Both .text and $var are required.
Return object: TCL exception on error.

(4) showHelp: Compound command which collects and index
LDAS help files and generates an HTML text widget with appropri-
ate functionality for browsing the dynamic hyper-text help doc
mentation. All files in a resource defined directory hierarchy wh
match a regular expression search for file names are included
matically, making the help system more flexible and extensi
The HTML 2.0 subset is the base language for the help system.
Usage: showHelp .text {topic} {path}
where .text is the name of an LDAS HTML text widget and is a
required parameter. Both topic and path are optional. The topic
parameter has a default value of “help” and the default path is
given in the genericAPI’s resource file.
Return object: TCL exception on complete absence of all help fil
or if .text is an incompatible widget.

b) These commands are used as part of the genericAPI’s message lo
facility but may be used in other contexts as needed.

(1) openLog: This is an internal function used by other log functions
open a log file for appending. It is not typically called directly
the user. If the file does not exist a dialog will appear which will n
Page 2 of 19

The Generic API’s “base-line specification”

est
time
-

is a

to

lly
st of
 can

ntry

 the

d

s
ulta-
e of
ded
go away until you either ask it to open an existing log or requ
that a new log file be created; looping back to the dialog each
an illegal log file is used. All entries in all log files are time
stamped and become available for automatic report generation.
Usage: openLog logname {subdirectory}
where logname is the name of the log file, and subdirectory
valid directory for creating log files. The default for the subdirec-
tory is given in the genericAPI’s resource file.
Return object: TCL exception when

(a) file already open,

(b) subdirectory is excluded,

(c) or group permissions restrict log file creation.

(2) closeLog: Closes a log file that has been opened with openLog.
Usage: closeLog logname
where logname is the name of the log file to which the entry is
be added.
Return object: TCL exception when

(a) file is not open,

(b) or group permissions restrict log file closure.

(3) addLogEntry: Adds a log entry to a specified log automatica
adding a time-stamp and user ID. Added log entries may consi
any text. However, only those entries which are tagged properly
become part of generated reports. Proper tags must be HTML or
internal LDAS light-weight format. This function calls openLog if
the log file is not already open for adding entries, then add the e
and finally closes the log file with closeLog. If the log file is
already open, then this command leaves it open after adding
entry.
Usage: addLogEntry logname message {tag}
where message is the string to be added to the log file, an
logname is the name of the log file, tag is an HTML or Internal
LDAS Light-Weight Format tag (defaults to <message>).
Return object: TCL exception when

(a) an attempt is made to write to an illegal log file,

(b) group permissions restrict writing,

(c) or log file does not exist.

(4) watchLogs: Pops up an HTML widget which scrolls Log entries a
they are generated. Can be invoked multiple times to have sim
neous display of several logs in separate windows or a mixtur
log entries from a selection of logs. Logs can be dynamically ad
Page 3 of 19

The Generic API’s “base-line specification”

nu.
lay.

le.

f
elec-
cal

an

mand
.

r-
om-
I’s
.
t of
.
nt a
AS

so-

ted
or removed from individual widgets using a check-button me
Log entries can be cut and pasted after freezing the disp
Dynamic collation of multiple logs sorted by time is also availab
Usage: watchLogs .text $logs
where .text is the name of an LDAS HTML text widget and $logs is
a TCL list of log files to be watched.
Return object: TCL exception for

(a) illegally named .text widget,

(b) wrong widget type when using pre-existing widget,

(c) or group permission restrictions on log file(s).

(5) queryLogs: Pops up an HTML widget which allows generation o
Log content reports. Report contents are determined by menu s
tion, and organized hierarchically. Times can be specified in lo
time, GPS time and time past (last minute, hour, etc.). Menus allow
exclusion and inclusion of arbitrary logs so that any LDAS log c
be associated with logging events.
Usage: queryLogs .text $logs
where .text is the name of an LDAS HTML text widget and $logs is
a TCL list of log files to be watched.
Return object: TCL exception for

(a) illegally named .text widget,

(b) wrong widget type when using pre-existing widget,

(c) or group permission restrictions on log file(s).

c) These commands are used as part of the genericAPI’s socket com
communications facility but may be used in other contexts as needed

(1) initSock: Initializes a TCL level socket connection in a TCL inte
preter on either a local or remote machine for communicating c
mands for services provided by individual API’s. The genericAP
resource file will provide aliases for common ports and services
This command also initializes a TCL associated array elemen
the form ${hostname}($port) which contains the local socket ID
The resulting arrays are globally available and together represe
table of all sockets on all machines which are in use by the LD
system.
Usage: initSock hostname port
where hostname is the host machine’s name or IP number and port
is the alias for a port defined in the genericAPI’s resource file as
ciated with the service.
Return object: TCL exception on failure to connect

(2) closeSock: Closes a socket initialized with initSock. The associa
entry from the array of the form ${hostname}($port) is removed.
Page 4 of 19

The Generic API’s “base-line specification”

so-

er-

 the
ket

vail-

 part
e

the

h
iated
is

the

 the
ich
will
Usage: closeSock hostname port
where hostname is the host machine’s name or IP number and port
is the alias for a port defined in the genericAPI’s resource file as
ciated with the service.
Return object: TCL exception

(a) if socket not currently open,

(b) or group permission restrictions prevent closing.

(3) openListenSock: Opens a socket using an attendant TCL int
preter. A hash table entry of the form ${hostname}($alias) will con-
tain the socket ID. The port number and its alias are defined in
genericAPI’s resource file. The interpreter listening to the soc
can be a fully functional master or slave TCL interpreter or a safe
master or slave TCL interpreter, possessing a strictly defined a
able command set depending on the context in which openListen-
Sock is used. The command set available at the interpreter is a
of the API that owns the socket. A key may be required to evaluat
any or all commands as specified in the resource file.
Usage: openListenSock alias
where alias is the socket’s port number alias as defined in
genericAPI’s resource file.
Return Object: TCL exception if

(a) socket already open,

(b) port alias not specified in resource file,

(c) socket open fails,

(d) insufficient privilege.

(4) closeListenSock: Safe close for listening socket which will finis
pending communications before closing the socket. The assoc
TCL interpreter will be explicitly terminated when the socket
closed.
Usage: closeListenSock alias
where alias is the socket’s port number alias as defined in
genericAPI’s resource file.
Return Object: TCL exception if

(a) socket not already open,

(b) interpreter terminates improperly,

(c) port alias not specified in resource file,

(d) insufficient privilege.

(5) operatorCmd: Sends a command to an API to be processed by
remote TCL interpreter. Commands consist of TCL code wh
may be interpreted by a safe interpreter. Certain exceptions
Page 5 of 19

The Generic API’s “base-line specification”

ands
hich
om-

 and

et

om-
the

te
and

et

om-
the

g to
s
n is

n-

in

PI but

nent
 for
cause a help window to be generated describing the comm
available at the remote API and a cross reference to API’s w
know about the command that generated the exception if any. C
mands received at the remote API’s interpreter are queued
served to the interpreter on a FIFO basis.
Usage: operatorCmd api command {key}
where api is the name of the remote LDAS API that will interpr
the extended TCL code represented in command, and key is an
optional security key used to authenticate privilege to execute c
mands on a remote API with a default value determined by
genericAPI’s resource file.
Return object: TCL exception if

(a) the socket for communication is not open,

(b) the remote socket is not listening and times out.

(6) emergencyCmd: High priority command used to communica
commands which need to be evaluated immediately. This comm
should have restricted usage.
Usage: emergencyCmd api command {key}
where api is the name of the remote LDAS API that will interpr
the extended TCL code represented in command, and key is an
optional security key used to authenticate privilege to execute c
mands on a remote API with a default value determined by
genericAPI’s resource file.
Return object: TCL exception if

(a) the socket for communication is not open,

(b) the remote socket is not listening and times out.

(7) pingAPI: Check to see that an API’s ports are alive. Sends a pin
both the operator and emergency ports of an API and then generate
a log entry. If the ping does not return, an appropriate exceptio
generated. The ping consists of the TCL string ping.
Usage: pingAPI api {timeout}
where api is the name of an LDAS API, the resource file will ide
tify the hostname and ports for each named API, and timeout is the
number of milliseconds to wait for a live response (defaults to
5000).
Return object: TCL exception if named API does not exist
resource file.

d) These are miscellaneous commands used as part of the genericA
may be used in other context as needed.

(1) popMsg: Pops up an undecorated message widget in a promi
location which automatically disappears after a set time. Used
Page 6 of 19

The Generic API’s “base-line specification”

rm
ages
s.

nd
ear,
illi-

 facil-

L
her-

 be

ts,
rify-
l is
ints
d by
r-

 be

files
pri-
w-
rce

the

rts,
low priority exception handling where it is only necessary to info
the user that he is not going to get the expected action. Mass
will persist a minimum of 1 second and a maximum of 5 second
Usage: popMsg message {time}
where message is the string to appear in the message widget a
time is the duration in milliseconds that the message is to app
ranging no less than 1000 millisecond and no more than 5000 m
seconds (default value of 2500 milliseconds).
Return object: TCL exception if unable to execute message.

e) These commands are used as part of the genericAPI’s resource file
ity but may be used in other context as needed.

(1) sourceRsc: Initialization function which can be called from a TC
interpreter to cause modifications to the resource file to be in
ited.
Usage: sourceRsc api
where api is the name of the LDAS API whose resource file is to
interpreted.
Return object: TCL exception when

(a) named API doesn’t exist,

(b) error occurs while sourcing resource file.

(2) validateRsc: Opens a resource file and verifies the conten
prompting the user to set missing environment variables and ve
ing that the settings are valid. A GUI is launched if anything vita
missing. The GUI explains the problem and it’s solution and po
to system specific help when applicable. This command is calle
sourceRsc immediately before the resource file is actually inte
preted.
Usage: validateRsc api
where api is the name of the LDAS API whose resource file is to
interpreted.
Return object: TCL exception when

(a) named API doesn’t exist,

(b) error occurs while sourcing resource file.

2. The genericAPI.rsc Resource File Specification:

a) The genericAPI.rsc resource file, in common with other resource
associated with different API’s and interfaces in the LDAS, consists
marily of individual lines of TCL code with no interdependencies, allo
ing essentially arbitrary ordering of resource information. The resou
file is sourced when an API is started up, and provides information to
interpreter which is site specific or in the nature of a user interface.

b) Typical resource information would include aliases for machine po
Page 7 of 19

The Generic API’s “base-line specification”

ccess
, and

aged
stab-

m-

pful

ified
AS

sage

y the

r

t of

um-
hese
n. To
 each
nd
to be

/TK
ared

gh the
 the
host names and API names, encrypted system and user keys for a
and authentication, local system defaults and environment variables
user preferences such as colors and fonts.

c) Users who write their own API’s based on the genericAPI are encour
to source their own resource file, based on the genericAPI.rsc, to e
lish unique preferences and avoid conflicts.

d) A default resource file is included with the genericAPI with verbose co
ments and a help file explaining it’s use in detail.

e) If a required resource file is not found an exception is thrown with hel
instructions for configuring the API (see sourceRsc).

f) Required parameters which would generate exceptions without spec
values include the default location for resource files, help files and LD
libraries, as well as the name of the local host computer.

g) The values of encrypted keys will be calculated by a standard mes
digest or hashing algorithm.

3. Specification of the LDAS HTML text widget:

a) The LDAS HTML text widget is a top-level window containing a plain TK
text widget, with associated menus, entries, and buttons as defined b
showHelp command supporting a subset of HTML 2.0 excluding tables,
forms, multi-columns, JPEG images, and image maps (these may be
made available in the furture). It will support additional tags defined fo
the Internal LDAS Light-Weight Data Format. The renderHTML and
the renderURL commands call the showHelp command with the name
of the widget to be created. If the name provided for the widget is tha
an existing widget which is not consistent with an LDAS HTML text wid-
get, the showHelp command will throw an exception.

4. Specification of TCL exceptions:

a) Each TCL command returns with a TCL exception when the circ
stances associated with the call warrant throwing an exception. T
exceptions may be generated by more than one anomalous conditio
address the particulars of the condition that generated an exception,
TCL exception will have associated with it unique integer ID’s a
descriptive messages allowing the exact cause of the exception
traced.

C. The genericAPI.so Package’s Specification:

1. The following is a list of C/C++ language based extension to the TCL
command language which are implemented in the genericAPI.so sh
object package. These extended commands are added to TCL/TK throu
TCL interface library and made available to the TCL/TK interpreter using
loadable package mechanism in TCL/TK.
Page 8 of 19

The Generic API’s “base-line specification”

 library
 in

and
ess is

using

er.
cal
 used
e

ich

di-

s &

nd.

ort
s are
hine
he

er
cal
 used
e

ich

di-

s &
a) These extended commands are used to manage a C++ socket class
which allows binary data to be communicated between LDAS API’s
either streams or as C++ objects.

(1) createDataSocket: Creates a data socket at the specified port
address. The port and address are optional. The default addr
the IP address of the machine returned by gethostname. The default
port is zero, which cause the system to choose an unused port
a call to the getSocketPort command.
Usage: set ptSok [createDataSocket {port} {address}]
where port is an optional (but highly recommended) port numb
The address is the optional IP number associated with the lo
host, but may be used to specify particular IP addresses when
on a gateway machine. Note: In order to specify an address, th
port must also be specified!
Return object: This command returns a pointer to a socket wh
can be stored in a TCL variable as in the case of ptSok above.
This command throws a TCL exception under the following con
tions:

(a) bad_alloc - memory allocation fails,

(b) bind_failure - unable to bind socket to the specified addres
port,

(c) invalid_address - the address is not a valid IP address,

(d) invalid_host - the host to which address refers can't be fou

(2) createServerSocket: Creates a server socket at the specified p
and address and listens for connections. The port and addres
optional. The default address is the IP address of the mac
returned by gethostname. The default port is zero, which causes t
system to choose an unused port using a call to the getServerPort
command.
Usage: set ptSrv [createServerSocket {port} {address}]
where port is an optional (but highly recommended) port numb
and address is the optional IP number associated with the lo
host, but may be used to specify particular IP addresses when
on a gateway machine. Note: In order to specify an address, th
port must also be specified!
Return object: This command returns a pointer to a socket wh
can be stored in a TCL variable as in the case of ptSrv above.
This command throws a TCL exception under the following con
tions:

(a) bad_alloc - memory allocation failed,

(b) bind_failure - unable to bind server to the specified addres
Page 9 of 19

The Generic API’s “base-line specification”

nd.

ted

r to
n-

di-

des-
g at

nd.

st
 pro-
fied
 any

of
fault

s a
s
g an

ich

di-
port,

(c) invalid_address - the address is not a valid IP address,

(d) invalid_host - the host to which address refers can't be fou

(3) connectDataSocket: Connects the given socket to a server loca
at the specified address and port.
Usage: connectDataSocket $ptSok address port
where ptSok is a socket pointer that has been returned by create-
DataSocket, address is the IP address or hostname of the serve
connect to and port is the port number on which the server is liste
ing.
Return object: none.
This command throws a TCL exception under the following con
tions:

(a) invalid_socket - the socket doesn't exist,

(b) connect_failure - the socket was unable to connect to the
ignatedaddress (for example, a server may not be listenin
thataddress),

(c) invalid_address - the address is not a valid IP address,

(d) invalid_host - the host to which address refers can't be fou

(4) acceptDataSocket: Extracts the first pending connection reque
and associates it with a socket. If an address and / or port is
vided, then the connection is only accepted from the speci
address and / or port. The default port is zero, corresponding to
port and the default address is (an empty string) corresponding to
any address.
Usage: set ptSok [acceptDataSocket $ptSrv {address} {port}]
where ptSrv is a server pointer that has been returned by create-
ServerSocket, address is the optional IP address or hostname
the client from which to accept communications and has a de
of any client address when not specified. The port is the optional
port number from which to accept communications and ha
default of any client port. In order to specify a port, the addres
must also be specified or the address can be specified usin
empty string, allowing all addresses at a specific port.
Return object: This command returns a pointer to a socket wh
can be stored in a TCL variable as in the case of ptSok above.
This command throws a TCL exception under the following con
tions:

(a) invalid_server - the server does not exist,

(b) invalid_address - the address is not a valid IP address,
Page 10 of 19

The Generic API’s “base-line specification”

nd,

 be

ho-

any

en

di-

any

en

di-

 C++
ts.

en

al
as in

di-
(c) invalid_host - the host to which address refers can't be fou

(d) bad_alloc - memory allocation failed,

(e) accept_failure - the unix accept command failed,

(f) identify_failure - the source socket's identity was unable to
determined,

(g) illegal_connection - connection attempted from an unaut
rized socket.

(5) closeDataSocket: Closes and destructs a data socket, freeing
memory allocated for it.
Usage: closeDataSocket $ptSok
where ptSok is a socket pointer variable which has previously be
set by a call to createDataSocket.
Return object: none.
This command throws a TCL exception under the following con
tions:

(a) invalid_socket - the socket doesn't exist.

(6) closeServerSocket: Closes and destructs a data server, freeing
memory allocated for it.
Usage: closeServerSocket $ptSrv
where ptSrv is a server pointer variable which has previously be
set by a call to createServerSocket.
Return object: none.
This command throws a TCL exception under the following con
tions:

(a) invalid_server - the server doesn't exist.

b) These extended commands are used to obtain information from the
socket class library associated with current instances of socket objec

(1) getSocketIpAddress: Returns the socket's local IP address.
Usage: set ptVar [getSocketIpAddress $ptSok]
where ptSok is a socket pointer variable which has previously be
set by a call to createDataSocket.
Return object: This command returns a string containing the loc
IP address of the socket which can be stored in a TCL variable
the case of ptVar above.
This command throws a TCL exception under the following con
tions:

(a) invalid_socket - the socket doesn't exist,

(b) system_call_failure - the getsockname system function failed.

(2) getSocketPort: Returns the socket's local port.
Usage: set ptVar [getSocketPort $ptSok]
Page 11 of 19

The Generic API’s “base-line specification”

en

al
e as

di-

en

al
as in

di-

en

al
e as

di-

ch

en

r’s
le as

di-
where ptSok is a socket pointer variable which has previously be
set by a call to createDataSocket.
Return object: This command returns a string containing the loc
port number of the socket which can be stored in a TCL variabl
in the case of ptVar above.
This command throws a TCL exception under the following con
tions:

(a) invalid_socket - the socket doesn't exist,

(b) system_call_failure - the getsockname system function failed.

(3) getServerIpAddress: Returns the server's local IP address.
Usage: set ptVar [getServerIpAddress $ptSrv]
where ptSrv is a socket pointer variable which has previously be
set by a call to createServerSocket.
Return object: This command returns a string containing the loc
IP address of the socket which can be stored in a TCL variable
the case of ptVar above.
This command throws a TCL exception under the following con
tions:

(a) invalid_server - the server doesn't exist

(b) system_call_failure - the getsockname system function failed.

(4) getServerPort: Returns the server's local port.
Usage: set ptVar [getServerPort $ptSok]
where ptSok is a socket pointer variable which has previously be
set by a call to createServerSocket.
Return object: This command returns a string containing the loc
port number of the socket which can be stored in a TCL variabl
in the case of ptVar above.
This command throws a TCL exception under the following con
tions:

(a) invalid_server - the server doesn't exist,

(b) system_call_failure - the getsockname system function failed.

(5) getSocketPeerIpAddress: Returns the peer’s IP address to whi
this socket is connected.
Usage: set ptVar [getSocketPeerIpAddress $ptSok]
where ptSok is a socket pointer variable which has previously be
set by a call to createDataSocket.
Return object: This command returns a string containing the pee
IP address for the socket which can be stored in a TCL variab
in the case of ptVar above.
This command throws a TCL exception under the following con
tions:
Page 12 of 19

The Generic API’s “base-line specification”

 is

en

r’s
e as

di-

ation
PI.

n-

re

di-

file

cts

 to

di-
(a) invalid_socket - the socket doesn't exist,

(b) unconnected_socket - the socket is not connected,

(c) system_call_failure - the getpeername system function failed.

(6) getSocketPeerPort: Returns the peer’s port to which this socket
connected.
Usage: set ptVar [getSocketPeerPort $ptSok]
where ptSok is a socket pointer variable which has previously be
set by a call to createServerSocket.
Return object: This command returns a string containing the pee
port number for the socket which can be stored in a TCL variabl
in the case of ptVar above.
This command throws a TCL exception under the following con
tions:

(a) invalid_socket - the socket doesn't exist,

(b) unconnected_socket - the socket is not connected,

(c) system_call_failure - the getpeername system function failed.

c) These extended commands are used to store and restore the inform
contained in C++ socket objects currently instantiated in the genericA

(1) shutdown: Closes all sockets, writing information about their co
nections to the given file (which is overwritten if it already exists).
Usage: shutdown filename
where filename is the name of the file where all socket objects a
to be stored.
Return object: none.
This command throws a TCL exception under the following con
tions:

(a) restore_connect_timeout - a needed server doesn't exist,

(b) file_creation_failed - the file could not be created,

(c) bad_alloc - insufficient memory available.

(2) restore: Restores socket connections as written in the given
(which must have been written by the shutdown command).
Usage: restore filename {timeout}
where filename is the name of the file where the socket obje
were previously stored with the shutdown command and timeout is
an optional timeout in milliseconds used in waiting for servers
become available (defaults to 5000 milliseconds).
Return object: none.
This command throws a TCL exception under the following con
tions:

(a) restore_connect_timeout -a needed server doesn't exist,
Page 13 of 19

The Generic API’s “base-line specification”

of the

ro-

ed

di-

ed

di-

ata
ly
s an
 raw
 No
(b) file_not_found - the file could not be located on system,

(c) bad_alloc - insufficient memory available.

d) These extended commands are used to communicate elements
Internal LDAS Light-Weight Data and Raw Binary Data between API’s
using the Data Sockets.

(1) sendElementAscii: This command sends an Internal LDAS Light-
Weight Data set, called an Element because of its relationship to
XML elements, through a Data Socket in ASCII form. This method
of sending Elements is not expected to be used often and is p
vided for completeness.
Usage: sendElementAscii ptSok ptElem
where ptSok is a pointer to a Data Socket which has previously
been opened with the createDataSocket command, and ptElem is
a pointer to an Element object that has previously been instantiat
in the C++ layer.
Return object: none.
This command throws a TCL exception under the following con
tions:

(a) invalid_socket - the socket doesn't exist,

(b) invalid_element - the element doesn’t exist.

(2) sendElementObject: This command sends an Internal LDAS
Light-Weight Data set, called an Element because of its relationship
to XML elements, through a Data Socket as a C++ Object. This
method of sending Elements be used often because of efficiency.
Usage: sendElementObject ptSok ptElem
where ptSok is a pointer to a Data Socket which has previously
been opened with the createDataSocket command, and ptElem is
a pointer to an Element object that has previously been instantiat
in the C++ layer.
Return object: none
This command throws a TCL exception under the following con
tions:

(a) invalid_socket - the socket doesn't exist,

(b) invalid_element - the element doesn’t exist.

(3) sendRawBinary: This command sends a raw stream of binary d
through a Data Socket. The binary data must have been previous
been instantiated in the C++ binary storage class which include
attribute for the number of bytes. This command is used to send
unstructured or arbitrarily structured data through the socket.
attempt is made to understand the content of the data.
Usage: sendRawBinary ptSok ptBin
Page 14 of 19

The Generic API’s “base-line specification”

 in

di-

+

di-

+

di-

ry
e
 No
where ptSok is a pointer to a Data Socket which has previously
been opened with the createDataSocket command, and ptBin is a
pointer to an Binary object that has previously been instantiated
the C++ layer.
Return object: none.
This command throws a TCL exception under the following con
tions:

(a) invalid_socket - the socket doesn't exist,

(b) invalid_element - the element doesn’t exist.

(4) recvElementAscii: This command receives an Internal LDAS
Light-Weight Data set from a Data Socket in ASCII form.
Usage: set ptElem [recvElementAscii ptSok]
where ptSok is a pointer to a Data Socket which has previously
been connected with the acceptDataSocket command, and ptElem
is a pointer to the Element object which is instantiated in the C+
layer by the receiver.
Return object: This command returns a pointer to an Element object
that has been received through the Data Socket. The format attribute
for the Element is guaranteed to be ASCII after this command is
called.
This command throws a TCL exception under the following con
tions:

(a) invalid_socket - the socket doesn't exist,

(b) bad_alloc - insufficient memory for element.

(5) recvElementObject: This command receives an Internal LDAS
Light-Weight Data set from a Data Socket in C++ object form.
Usage: set ptElem [recvElementObject ptSok]
where ptSok is a pointer to a Data Socket which has previously
been connected with the acceptDataSocket command, and ptElem
is a pointer to the Element object which is instantiated in the C+
layer by the receiver.
Return object: This command returns a pointer to an Element object
that has been received through the Data Socket. The incoming for-
mat attribute for the Element is unaltered by this command.
This command throws a TCL exception under the following con
tions:

(a) invalid_socket - the socket doesn't exist,

(b) bad_alloc - insufficient memory for element.

(6) recvRawBinary: This command receive a raw stream of bina
data through from Data Socket. This command is used to receiv
raw unstructured or arbitrarily structured data from the socket.
Page 15 of 19

The Generic API’s “base-line specification”

+

di-

of the

y
t-
a
 the
ring
ject

r

e
 a

di-
attempt is made to understand the content of the data.
Usage: set ptBin [recvRawBinary ptSok]
where ptSok is a pointer to a Data Socket which has previously
been connected with the acceptDataSocket command, and ptBin
is a pointer to the Binary object which is instantiated in the C+
layer by the receiver.
Return object: This command returns a pointer to a Binary object
that has been received through the Data Socket.
This command throws a TCL exception under the following con
tions:

(a) invalid_socket - the socket doesn't exist,

(b) bad_alloc - insufficient memory for raw binary.

e) These extended commands are used to communicate elements
Internal LDAS Light-Weight Data and Raw Binary Data to and from the
TCL/TK layer and the underlying C++ layer.

(1) putElement: This command puts an Internal LDAS Light-Weight
Data set, called an Element object, into the C++ layer from a binar
string variable (the variable doesn’t necessarily contain non-prin
able character) in the TCL/TK layer. The command returns
pointer to the Element object which has been instantiated in
C++ layer by this command. The data stored in the binary st
variable can be translated into a new format in the Element ob
using the format and compress options.
Usage: set ptElem [putElement $bstring {format} {compress}]
where bstring is a TCL variable containing either an ASCII o
Binary string for an Internal LDAS Light-Weight Data Element. The
optional format and compress parameter is used to translate th
data within the bstring (along with the associated attributed) into
different format within the instantiated Element object in the C++
layer, and ptElem is a pointer to the Element object which is instan-
tiated in the C++ layer. The format can be one of {ascii | binary |
base64}. The compress can be a single integer value from {0 - 9}
where 0 is no compression and 9 is maximum compression. The
compress parameter is ignored when the format is ascii.
Return object: This command returns a pointer to an Element
object.
This command throws a TCL exception under the following con
tions:

(a) bad_alloc - insufficient memory for element,

(b) illegal_element - TCL bstring format is illegal,

(c) illegal_format - translation format unrecognized,
Page 16 of 19

The Generic API’s “base-line specification”

ent
 the
ion
ary

d.

other
rent
e
n

di-

the
ry
ta. It
arse

a,
ted
t

ect

di-

 a
ing
(d) illegal_compression - compression not {0-9}.

(2) getElement: This command gets an Internal LDAS Light-Weight
Data set which has previously been instantiated as an Elem
object in the C++ layer and stores it in a binary string variable in
TCL/TK layer. The format of the data in the bstring representat
of the Element object must be specified and if the format is bin
or base64, then an optional compression factor can be specifie
Usage: set bstring [getElement ptElem format {uncompress}]
where ptElem is a pointer to the Element object which is instanti-
ated in the C++ layer. The format can be one of {ascii | binary |
base64}. The uncompress option is a string value, uncompress
means to uncompress the data if it is compressed and any
string, including no string means to leave the data at its cur
compression level. The compress parameter is ignored when th
format is ascii. The bstring is the TCL variable to contain either a
ASCII or Binary string for an Internal LDAS Light-Weight Data
Element.
Return object: This command returns an Internal LDAS Light-
Weight Data Element as a TCL/TK binary string.
This command throws a TCL exception under the following con
tions:

(a) bad_alloc - insufficient memory for element,

(b) invalid_element - the element does not exist,

(c) illegal_format - translation format unrecognized.

(3) putRawBinary: This command puts a raw binary data set into
C++ layer in the form of a binary object containing the raw bina
data and the number of bytes associated with the raw binary da
returns a pointer to the binary object. No attempt is made to p
the raw binary data.
Usage: set ptBin [putRawBinary $bstring $nbytes]
where bstring is a TCL variable containing the raw binary dat
nbytes is a TCL variable containing the number of bytes associa
with the raw binary data, and ptBin is a pointer to the binary objec
instantiated in the C++ layer by this command.
Return object: This command returns a pointer to the binary obj
instantiated in the C++ layer when called.
This command throws a TCL exception under the following con
tions:

(a) bad_alloc - insufficient memory for binary object.

(4) getRawBinary: This command gets a raw binary data set from
binary object in the C++ layer, returning a binary string contain
Page 17 of 19

The Generic API’s “base-line specification”

eter
. No

ch

 raw
y

di-

tween
r. It

relies
port

t
ata.

r the
the raw binary data and modifies the value of the second param
to be the number of bytes associated with the raw binary data
attempt is made to parse the raw binary data.
Usage: set bstring [getRawBinary ptBin nbytes]
where ptBin is a pointer to a binary object in the C++ layer whi
has previously been instantiated, nbytes is a TCL variable which
will be updated to hold the number of bytes associated with the
binary data, and bstring is the TCL variable to contain the binar
data after the call is made.
Return object: This command returns a TCL binary string.
This command throws a TCL exception under the following con
tions:

(a) bad_alloc - insufficient memory for binary string,

(b) invalid_binary - binary object doesn’t exist.

D. The Internal LDAS Light-Weight Data Format Specification:

1. The Internal LDAS Light-Weight Data Format is a subset of the LIGO Light-
Weight Data Format. Both are based on XML, the likely successor to HTML.
However, the Internal LDAS Light-Weight Data Format is designed to be the
minimal set of elements needed to move data through sockets and be
the TCL/TTK layer and the extended commands found in the C/C++ laye
is primarily meant to be a machine oriented data format, and as such,
heavily on attributes over nested elements. The LDAS system will sup
the full implementation of the LIGO Light-Weight Data Format using a spe-
cialized API, the Light-Weight Data Format API, which will be specified in a
forthcoming set of documents.

2. Each element of the Internal LDAS Light-Weight Data Format is of the form:
<tag attribute1=”value” attribute2=”value” ...>rawdata</tag>
where the element begins with a < character and is followed by the tag-name
which identifies the base data type. Then the attributes are listed, each se
equal to a value enclosed in quotes and provide descriptions about the d
The opening tag is closed with a > character. The rawdata then follows. The
element is terminated by the closing tag which is just the < character fol-
lowed by the / character followed by the tag-name and finally the > character.

3. The tag-names are case-insensitive and can be any of the following fo
Internal LDAS Light-Weight Data Format:

a) CHAR_S - signed byte,

b) CHAR_U unsigned byte,

c) INT_2S - 2 byte signed integer,

d) INT_2U - 2 byte unsigned integer,

e) INT_4S - 4 byte signed integer,
Page 18 of 19

The Generic API’s “base-line specification”

t

s a

e

 to
he

a;
 sep-

vel
 (

or

nt’s

y

f) INT_4U - 4 byte unsigned integer,

g) REAL_4 - 4 byte IEEE 754 floating point number,

h) REAL_8 - 8 byte IEEE 754 floating point number,

i) COMPLEX_8 - pair of REAL_4’s ordered as (real, imaginary),

j) COMPLEX_16 - pair of REAL_8’s ordered as (real,imaginary).

4. The understood attributed for the Internal LDAS Light-Weight Data Forma
are (all other attributes are ignored by the genericAPI):

a) ndim = “integer” - the number of dimension in the rawdata and ha
default value of 1 (vector) if not present,

b) dims = “integer,integer,...” - ndim comma delimited integers telling th
number of elements in each dimension of the rawdata; if ndim=0 (scalar)
then dims is ignored and defaults to 1,

c) mdorder = “f77 | c” - indicates whether a multidimensional data set is
be incremented fastest on the first index “f77” or last index “c”; t
default is “c” if not present,

d) format = “ascii | base64 | binary” - the encoded format of the rawdat
if “ascii” then compression is not allowed and each number is space
arated; the default is binary if not present,

e) compression = “0 - 9” - an integer between 0 and 9 specifying the le
of compression used for binary or base64 formats; the default is 0no
compression) if not present,

f) byteorder = “little | big” - whether integers are stored in little endian
big endian order; the default is little endian if not present,

g) bytes = “integer” - number of bytes of rawdata between the eleme
tags-names; required if format is binary and compression not zero,

h) comment = “arbitrary text string” - optional and defaults to an empt
string if not present.
Page 19 of 19

	file \\SIRIUS\kent\Documents\framemaker\GenericAPI...
	Laser Interferometer Gravitational Wave Observator...
	- LIGO -
	GenericAPI_BS.pdf
	The Generic API’s “base-line specification”
	James Kent Blackburn Philip Ehrens, David Farnham ...
	I. Introduction
	A. General Description:
	1. The genericAPI provides the base set of functio...
	a) The interpreted command language to be used is ...
	b) The TCL/TK commands are extended to support low...

	2. The genericAPI TCL/TK script accesses a generic...
	3. The genericAPI will provide setup and configura...

	B. The genericAPI.tcl Script’s Specification:
	1. The following is a list of TCL/TK procedures (p...
	a) These commands are used as part of the genericA...
	(1) initHTML: Initialized an existing text widget ...
	(2) renderHTML: Parses and renders HTML content in...
	(3) renderURL: Parses and renders files containing...
	(4) showHelp: Compound command which collects and ...

	b) These commands are used as part of the genericA...
	(1) openLog: This is an internal function used by ...
	(a) file already open,
	(b) subdirectory is excluded,
	(c) or group permissions restrict log file creatio...

	(2) closeLog: Closes a log file that has been open...
	(a) file is not open,
	(b) or group permissions restrict log file closure...

	(3) addLogEntry: Adds a log entry to a specified l...
	(a) an attempt is made to write to an illegal log ...
	(b) group permissions restrict writing,
	(c) or log file does not exist.

	(4) watchLogs: Pops up an HTML widget which scroll...
	(a) illegally named .text widget,
	(b) wrong widget type when using pre-existing widg...
	(c) or group permission restrictions on log file(s...

	(5) queryLogs: Pops up an HTML widget which allows...
	(a) illegally named .text widget,
	(b) wrong widget type when using pre-existing widg...
	(c) or group permission restrictions on log file(s...

	c) These commands are used as part of the genericA...
	(1) initSock: Initializes a TCL level socket conne...
	(2) closeSock: Closes a socket initialized with in...
	(a) if socket not currently open,
	(b) or group permission restrictions prevent closi...

	(3) openListenSock: Opens a socket using an attend...
	(a) socket already open,
	(b) port alias not specified in resource file,
	(c) socket open fails,
	(d) insufficient privilege.

	(4) closeListenSock: Safe close for listening sock...
	(a) socket not already open,
	(b) interpreter terminates improperly,
	(c) port alias not specified in resource file,
	(d) insufficient privilege.

	(5) operatorCmd: Sends a command to an API to be p...
	(a) the socket for communication is not open,
	(b) the remote socket is not listening and times o...

	(6) emergencyCmd: High priority command used to co...
	(a) the socket for communication is not open,
	(b) the remote socket is not listening and times o...

	(7) pingAPI: Check to see that an API’s ports are ...

	d) These are miscellaneous commands used as part o...
	(1) popMsg: Pops up an undecorated message widget ...

	e) These commands are used as part of the genericA...
	(1) sourceRsc: Initialization function which can b...
	(a) named API doesn’t exist,
	(b) error occurs while sourcing resource file.

	(2) validateRsc: Opens a resource file and verifie...
	(a) named API doesn’t exist,
	(b) error occurs while sourcing resource file.

	2. The genericAPI.rsc Resource File Specification:...
	a) The genericAPI.rsc resource file, in common wit...
	b) Typical resource information would include alia...
	c) Users who write their own API’s based on the ge...
	d) A default resource file is included with the ge...
	e) If a required resource file is not found an exc...
	f) Required parameters which would generate except...
	g) The values of encrypted keys will be calculated...

	3. Specification of the LDAS HTML text widget:
	a) The LDAS HTML text widget is a top-level window...

	4. Specification of TCL exceptions:
	a) Each TCL command returns with a TCL exception w...

	C. The genericAPI.so Package’s Specification:
	1. The following is a list of C/C++ language based...
	a) These extended commands are used to manage a C+...
	(1) createDataSocket: Creates a data socket at the...
	(a) bad_alloc - memory allocation fails,
	(b) bind_failure - unable to bind socket to the sp...
	(c) invalid_address - the address is not a valid I...
	(d) invalid_host - the host to which address refer...

	(2) createServerSocket: Creates a server socket at...
	(a) bad_alloc - memory allocation failed,
	(b) bind_failure - unable to bind server to the sp...
	(c) invalid_address - the address is not a valid I...
	(d) invalid_host - the host to which address refer...

	(3) connectDataSocket: Connects the given socket t...
	(a) invalid_socket - the socket doesn't exist,
	(b) connect_failure - the socket was unable to con...
	(c) invalid_address - the address is not a valid I...
	(d) invalid_host - the host to which address refer...

	(4) acceptDataSocket: Extracts the first pending c...
	(a) invalid_server - the server does not exist,
	(b) invalid_address - the address is not a valid I...
	(c) invalid_host - the host to which address refer...
	(d) bad_alloc - memory allocation failed,
	(e) accept_failure - the unix accept command faile...
	(f) identify_failure - the source socket's identit...
	(g) illegal_connection - connection attempted from...

	(5) closeDataSocket: Closes and destructs a data s...
	(a) invalid_socket - the socket doesn't exist.

	(6) closeServerSocket: Closes and destructs a data...
	(a) invalid_server - the server doesn't exist.

	b) These extended commands are used to obtain info...
	(1) getSocketIpAddress: Returns the socket's local...
	(a) invalid_socket - the socket doesn't exist,
	(b) system_call_failure - the getsockname system f...

	(2) getSocketPort: Returns the socket's local port...
	(a) invalid_socket - the socket doesn't exist,
	(b) system_call_failure - the getsockname system f...

	(3) getServerIpAddress: Returns the server's local...
	(a) invalid_server - the server doesn't exist
	(b) system_call_failure - the getsockname system f...

	(4) getServerPort: Returns the server's local port...
	(a) invalid_server - the server doesn't exist,
	(b) system_call_failure - the getsockname system f...

	(5) getSocketPeerIpAddress: Returns the peer’s IP ...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket is not connect...
	(c) system_call_failure - the getpeername system f...

	(6) getSocketPeerPort: Returns the peer’s port to ...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket is not connect...
	(c) system_call_failure - the getpeername system f...

	c) These extended commands are used to store and r...
	(1) shutdown: Closes all sockets, writing informat...
	(a) restore_connect_timeout - a needed server does...
	(b) file_creation_failed - the file could not be c...
	(c) bad_alloc - insufficient memory available.

	(2) restore: Restores socket connections as writte...
	(a) restore_connect_timeout -a needed server doesn...
	(b) file_not_found - the file could not be located...
	(c) bad_alloc - insufficient memory available.

	d) These extended commands are used to communicate...
	(1) sendElementAscii: This command sends an Intern...
	(a) invalid_socket - the socket doesn't exist,
	(b) invalid_element - the element doesn’t exist.

	(2) sendElementObject: This command sends an Inter...
	(a) invalid_socket - the socket doesn't exist,
	(b) invalid_element - the element doesn’t exist.

	(3) sendRawBinary: This command sends a raw stream...
	(a) invalid_socket - the socket doesn't exist,
	(b) invalid_element - the element doesn’t exist.

	(4) recvElementAscii: This command receives an Int...
	(a) invalid_socket - the socket doesn't exist,
	(b) bad_alloc - insufficient memory for element.

	(5) recvElementObject: This command receives an In...
	(a) invalid_socket - the socket doesn't exist,
	(b) bad_alloc - insufficient memory for element.

	(6) recvRawBinary: This command receive a raw stre...
	(a) invalid_socket - the socket doesn't exist,
	(b) bad_alloc - insufficient memory for raw binary...

	e) These extended commands are used to communicate...
	(1) putElement: This command puts an Internal LDAS...
	(a) bad_alloc - insufficient memory for element,
	(b) illegal_element - TCL bstring format is illega...
	(c) illegal_format - translation format unrecogniz...
	(d) illegal_compression - compression not {0-9}.

	(2) getElement: This command gets an Internal LDAS...
	(a) bad_alloc - insufficient memory for element,
	(b) invalid_element - the element does not exist,
	(c) illegal_format - translation format unrecogniz...

	(3) putRawBinary: This command puts a raw binary d...
	(a) bad_alloc - insufficient memory for binary obj...

	(4) getRawBinary: This command gets a raw binary d...
	(a) bad_alloc - insufficient memory for binary str...
	(b) invalid_binary - binary object doesn’t exist.

	D. The Internal LDAS Light-Weight Data Format Spec...
	1. The Internal LDAS Light-Weight Data Format is a...
	2. Each element of the Internal LDAS Light-Weight ...
	3. The tag-names are case-insensitive and can be a...
	a) CHAR_S - signed byte,
	b) CHAR_U unsigned byte,
	c) INT_2S - 2 byte signed integer,
	d) INT_2U - 2 byte unsigned integer,
	e) INT_4S - 4 byte signed integer,
	f) INT_4U - 4 byte unsigned integer,
	g) REAL_4 - 4 byte IEEE 754 floating point number,...
	h) REAL_8 - 8 byte IEEE 754 floating point number,...
	i) COMPLEX_8 - pair of REAL_4’s ordered as (real, ...
	j) COMPLEX_16 - pair of REAL_8’s ordered as (real,...

	4. The understood attributed for the Internal LDAS...
	a) ndim = “integer” - the number of dimension in t...
	b) dims = “integer,integer,...” - ndim comma delim...
	c) mdorder = “f77 | c” - indicates whether a multi...
	d) format = “ascii | base64 | binary” - the encode...
	e) compression = “0 - 9” - an integer between 0 an...
	f) byteorder = “little | big” - whether integers a...
	g) bytes = “integer” - number of bytes of rawdata ...
	h) comment = “arbitrary text string” - optional an...

