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I. SUMMARY
A. The investigation of excess noise in violin modes of steel wires

During the year 1997 a new set of records of the mechanical vibrations of violin modes
was obtained. In contrast with the former measurements of 1996 of the excess noise observed
above the Brownian motion in 20 ym diameter tungsten wires we have tested now the noise
in 80um steel wires made of the same material that is used in LIGO prototype. As we
expected smaller mean square amplitude of the Brownian motion due to the larger diameter
of the wires, we had to improve substantially the optical readout system. The achieved
new resolution 2 x 10™''¢m/+/Hz was sufficient to record Brownian vibration with relative
accuracy better than 10% (see details in Appendix I).

The main results of these measurements are the following:

1. We observed the existence of two types of excess noise: the first is relatively rare rises
and falls of the mean amplitude over several relaxation times; the second is presence
of fast variations (jumps) of the amplitude with the event rate higher as compared to

pure Brownian motion.

2. The total intensity and amplitude of the excess noise peaks were remarkably (5-8

times) lower than in case of tungsten wires.

3. We have not observed significant dependence of the excess noise on the stress value

within the range of applied loads (see details in Appendix I).

B. Design and development of a new vacuum chamber for the tests of Q-factors in

suspension’s modes

In our attempts to obtain high mechanical Q-factors in the suspensions’ modes (see
annual MSU reports 1995 and 1996) we have reached Qo =~ (0.5 + 1.1) x 10® and Qpend =

1 x 108. In those experiments it is likely that the obtained values are not the ultimate

2



ones for a very pure fused silica suspension because of the substantially large gap between
precalculated and the measured values. The origin of the discrepancy was probably due to
the insufficient depression of some sources of dissipation (recoil losses, residiual gas losses,
surface losses in suspension fibers, electric field losses). These main motivations were the
basic ones which led us to ellaboration of a new design and implementation of a new vacuum
chamber. We expect to obtain higher quality factors first of all in pendulum modes. During
1997 the design was done and a chamber with the installation attached to a heavy basement
wall were manufactured, assembled and tested. The obtained vacuum is 3 x 1072 Torr (in
older chamber it was only 2 x 107® Torr). At present installation of special inchamber
equipment is in progress. The first tests of losses in new suspension may be realized in

coming spring. (See details in Appendix II).

C. The investigation of dynamical and dissipative actions of electric controller on the

test mass

It is reasonable to expect that the usage of an electric controller will produce dynamical
and dissipative actions on the test masses (although these actions will be much smaller than
that from a magnetic actuator). In our previous preliminary experiments we observed the

dissipative actions on the test masses due to the following processes:

1. the dissipative processes on the surface of conductors which are connected to the source

of electrical field;
2. electrostatic field produced by electrical charges located on the surface of fused silica;
3. Joule losses in resistive part of the controller cirquit.

To obtain the complete necessary information about the role of the processes 1. and 2. and
about the possibilities to decrease their dynamical and dissipative actions it is necessary to

rearrange inchamber equipment and to make some changes in the chamber itself. This will

be done next spring.




In this report we describe the results we obtained about the source 3. The main result
of the described in Appendix III measurements and calculations is that this source does not
prevent to obtain @ > 10® when the controller tunes the test mass at a distance of the order

of 107° cm. (See details in Appendix III)

D. The analysis of a new principle of intracavity readout system

In 1997 a new intracavity readout system was proposed and analysed. In brief the princi-
ple of this scheme is the following. Let in the system the two coupled Fabry-Perot resonators
initially be identical. Small variations of its lengths lead to amplified redistribution of en-
ergy causing force on central mirror. The resulting mirror displacement may be detected
using methods standard for the bar antennas. The scheme provides gain in resolution and
allows to beat the standard quantum limit without the use of non-classical pumping. The
origin of this key advantage is that the fluctuations in optical part of the meter may be in
principle totally excluded and the only source of back action will be the meter, which in
case of microwave transducer consumes very small amount of energy.

The ultimate sensitivity and the required optical pump power in this scheme do not
depend on the quantum state of the pump field. The required state of e. m. field in the
resonator with a well determined energy difference in the two arms of the antenna is forming

automatically in the process of monitoring the coordinate of the coupling mirror. (See details

in Appendix IV)

E. New SQL free principle of coordinate monitoring of the test mass

The new concept of quantum measurement — quantum variation measurement — is
proposed to circumvent the standard quantum limit with meter for continuous coordinate
registration. Heisenberg microscope as a variant of coordinate meter is analyzed. The idea
can be clarified on the example of two measurements separated in time and space, using

apriori knowledge on duration and form of acting force. In the first measurement the linear
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combination of coordinate and back action momentum should be obtained (it is possible
for real coordinate meter) and in the second one experimentalist measures the coordinate.
The subtractions of the results of these measurements permit to exclude the response on the

back action and thus to circumvent the standard quantum limit. These speculations can be

extended on procedure of continuous measurement. (See details in Appendix V).




Appendix 1

I. THE MEASUREMENTS OF THE EXCESS NOISE
IN THE STEEL SUSPENSION WIRES:

TECHNIQUES AND RESULTS.

The laser interferometric device prepared formerly for the excess noise research has been
used. An essential improvement of the experimental installation and the method of mea-
surement have been made in comparison with the first one in which the tunsten wires have

been examined. The amplitude of Brownian oscillation on the fundamental violin mode of

~ [T
A=1—— (1)

Here w is violin mode frequency, k is Boltzman constant, T is temperature and m* is effective

a string 1s:

mass of the string. For the steel wires | = 15 c¢m long and 80 pm in diameter under the
stress about 50% of breaking tension value w ~ 27 x 1.5 kHz, A ~2x1071° ¢m. This value
is approximately 3 times smaller than in the previous experiments with the tungsten wires.

We have managed to increase the sensitivity of the measurements up to 20 times and

reached the value of displacement resolution
AZpmin >~ 2 x 107" em/V Hz (2)

The key feature of the new installation is the possibility of parallel observations on the two
different samples placed in the ends of two arms of the interferometer (see Figurel ). It
allows one to vetoe any external disturbances due to residual seismic and laser power fluctu-
ations using an anticorrelation method. In additional, the enhanced feedback stabilization
scheme have kept the perfect tuning of the interferometer during up to 10 — 14 hours, which
allows to make a long time records. A new calibration method has been used. We used the

He — Ne laser wavelength as a reference. The beam splitter was attached to PZT drive,




which could be driven by the AC source on the frequency close to the fundamental mode
frequencies of the tested wires. When the amplitude of the beam splitter oscillation reaches
the quarter wave value, the output signal on this frequency becomes specifically distorted.
Reducing the AC value till the response of the system becomes equal to the signals corre-
sponded to the wires oscillations one can determine these amplitudes with sufficient accuracy.
At the same time the linearity of the system is tested. In the process of measurements the
PZT drive was used by feedback stabilization scheme for the compensation of slow drift in
the interferometer.

The noise properties of a steel wire samples has been studied. We tested the material
provided by LIGO team, identical to the one used for the mirror suspension on the prototype
and first stage of the LIGO detector.

In this report the results obtained on the steel samples 15 e¢m length 80 um in diameter
under the stresses from 50% to 95% from the breaking tension value are presented. All the
samples had been polished and cleaned before measurement. The breaking tension value
has been determined in the set of the preliminary tests as the ratio of the critical load value
to the cross-section area of the samples. Critical load cases the break of the samples during
1-3 seconds.

While each sample was fixed on the frame of experimental device once forever, it was
still possible to change its stress from one measurement to another. The minimum interval
between the measurements was 3—4 hours because this process requires the vacuum chamber
to be open. In contrast with the previous experiments with tungsten only the top end of
the sample was rigidly clamped. The bottom end was attached to the lead load. To prevent
the horizontal movement of the load it was fixed by the thin cantilever made of bronze. The
bending rigidity of the cantilever was small in comparison with the longitudinal rigidity of
the sample. As a result, the sample was subjected to the constant stress on the same way
as the suspension wires of the antenna mirrors.

The signal on the detector output contains the spectral components corresponding to

the oscillations of two different samples. A separation of the components was possible due



to the difference of its frequencies. It was based on the real time fast Fourier transform.
The results of each experiment were the records of the amplitude and frequency for the two
samples. Each value was a result of averaging over 0.2 sec (180 — 380 periods of oscillation
for the frequencies 0.9 — 1.9 kH z, typical for the stress values mentioned above). Hence, the
effective bandwidth defined by 1024 points FFT was 5 Hz. The signal-to-noise ratio in this
bandwidth was 10 + 15, witch allows to observe variations of the amplitude during the time
interval shorter as compared to the relaxation time 7* of the samples oscillations (typically
5 + 12 sec). The number of the tested samples was 8, the overall duration of observation
was about 90 hours.

The analysis of the results consists of two different approaches. First was based on the
amplitude averaging over the time interval ¢ = 3 x 7*. The obtained values A; can be
regarded as independent realizations of a stochastic process. The variation of these values
is 0 4;. This amplitudes has been compared with A in order to select statistically significant
deviations. A x? criterion has been used. Three different types of deviations has been
observed:

i) The deviations cased by the stabilization system fault - covers less than 10% of all
records, can be easily selected and rejected.

i1) Relatively short (1 — 37*) rising of the amplitude to the 3 + 4 o4, level happens up
to 20 times per 10 hours of observation (see tablel ), that in some cases was a statistically
significant exceedence of the Brownian motion amplitude.

i1) Relatively short (about 3 7*) rising of the amplitude over the 4 o4, level happens
twice just for one sample.

It is important, that the measured mean amplitude was always equal to the estimated
value for the Brownian motion with the accuracy better than 15%. At the same time we
have no reasonable explanation for the rising of the amplitude yet. Note, that the absence of
any correlation between such events in the pairs of samples tested simultaneously confirms,

from our point of view, an inner nature of such a behavior of the samples.

The second approach treated the variations of the oscillation amplitude during the time




short as compared to the relaxation time. The ems value of the variations is:

| 2kT | 2t
AA’élems ~ — o\ 9.
m*w? \{ 3> (3)

if the 7* = 10 sec, t = 0.2 sec AAeps ~ 0.12A. The variations of amplitude are independent
realizations of a stochastic process. The distribution of this process has to be close to
Gaussian. The distributions obtained in experiments show excess quantity of the events
than the variation of amplitude AA overcomes the 4 x AA.,,, level (see table2 ). The
number of such events varies from a few units to a few tens per 10 hours for the different
samples. In many cases the number of the excessive events was statistically significant.

In additional the spectrum analysis of the amplitude records and crosscorrelation analysis
of the records pairs have been done. No periodic excitations of the sample oscillation as well
as pair correlation have been found. When the stress value exceeds the threshold value
about 90% of breaking tension the slow decrease of the fundamental mode frequency was
observed. It corresponds to the viscous flow of the steel. For example, for the sample 2

under the maximum stress (last column in the tablesl,2) the speed of flow was:

%%—f ~ 6 x 107° 1/hours (4)

For the stress value below the threshold the speed of flow was less then the resolution limit

of the method of measurement:

—— < 3x107% 1/hours (5)

II. DISCUSSION

The main conclusion from the results reported above is the existence of an excess noise
in the fundamental violin mode oscillation of the well stressed steel wires. The intensity
and magnitude of the spontaneous amplitude variations is substantially smaller than it was
obtained earlier on the tungsten wires. Possible explanation is the more homogeneous inner

grain-like structure of the steel in comparison with the bamboo-like structure of the tungsten.



The statistic of the noise varies significantly from sample to sample, which is an evidence
of the nonuniform distribution of the noise sources within the samples. This variation was
proved to be large enough to hide any dependence of the excess noise on the stress value. The
presence of the excessive peaks even on the samples which did not evince viscous flow means
that its origin differ from the mechanical shot noise. The fast variation of the oscillation
amplitude could be a result of avalanche-like process within the small part of the sample,
which originally contains some type of inhonogenety. As far as our method of research does
not provide information about fine time and space structure of the noise, it is difficult to
develop any detailed model.

Let us evaluate the magnitude of the possible rapid (during the time about 1 ms) test
mass displacement induced by the excessive variations of the Brownian oscillation amplitude
of the suspension wire observed in the experiments. If this variation happens during the
time smaller as compared to the oscillation period, the magnitude of test mass displacement

should be maximal:

2
AX ~ Z—gA:z: =1x10""% cm (6)

2
here Az = 4 x 1071° ¢m is an instant variation of the oscillations amplitude, [ = 20 ¢m -
suspension length, w = 27 x 2 x 103 Hz - fundamental mode frequency. It means that under

certain conditions the excess noise in suspension wires could generate the kicks acted on the

test masses and simulated the signal bursts.
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Sample Number 1 2 2 3 2 2 2

Frequency, Hz | 1441 | 1540 | 1647 | 1645 | 1749 | 1841 | 1955
(stress / breaking | (0.51) | (0.59) | (0.67) | (0.67) | (0.76) | (0.84) | (0.95)

tension)

time of observation, | 9.25 | 3.52 | 2.69 | 3.34 | 5.06 | 2.33 9.25

hours

Number of events 17 7 6 5 7 3 18
when A>(4 +30,,)
[theory prediction] (6] (2] [2] 2] | [34] | [1] (6]

Table 1.
The illustration of the excessive events
in the distribution of oscillation amplitude averaged over the interval

long as compared to the relaxation time.
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Sample Number 1 2 2 3 2 2 2

Frequency, Hz 1441 | 1540 | 1647 | 1645 | 1749 | 1841 | 1955
(stress / breaking | (0.51) | (0.59) | (0.67) | (0.67) | (0.76) | (0.84) | (0.95)

tension)

time of observation, | 9.25 352 | 2.69 | 334 | 5.06 | 2.33 9.25

hours

Number of events 865 162 155 257 249 134 546

when AA >3AAens
[theory prediction] | [433] | [165] | [126] | [156] | [237] | [109] | [433]
Number of events 115 2 5 8 7 16 40
when AA >4 AAens
[theory prediction] | [10] [4] [3] [4] [5] [3] [10]
Number of events 7 0 0 0 2 6 4
when AA >5 AAems

[theory prediction] [0] [0] (0] (0] [0] [0] [0]

Table 2.
The illustration of the excessive events

in the distribution of the amplitude variation averaged over the interval

short as compared to the relaxation time.
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1. Vacuum chamber which contains fiber samples and readout interferometer.

2. Fiber sample.

3. PZT driven beam splitter.

4. Aspherical lens with a focal spot of 5 um in diameter on fiber surface.
5. Helium-neon frequency-stabilised laser.
6. Optical insulator.

7. PZT drive.

8. Calibrating signal input.

9. Slow drift compensation loop.

10. Detector.

11. Low noise amplifier.

12. Band bass filter.

13. ADC.

14. Rigid frame for the fiber fixation.

15. Lead load.

Figure 1
Schematic diagram of the
interferometric readout for
the excess noise measurement
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Figure 2

The picture of the vacuum chamber
and measurement devices
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Figure 3

T ypical shape of the spontaneous rising
of the oscillations amplitude
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Figure 4

T ypical time dependence of the amplitude
including one excessive variation event (spontaneous decreacing)
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Appendix II

Design and development of a new vacuum chamber for tests of
Q-factors in the suspension modes

One of the key goals of the MSU research group is to achieve the highest possible
quality factors Q for the fused silica fiber suspensions’ pendulum modes and violin modes }
with test masses near 2 kg. Record high Q - values for these modes about 1x108 have been 1
demonstrated (see annual MSU group reports 1995 and 1996). This value is almost one
order lower than can be expected from the reckons made on the base of the measured
intrinsic losses in high-pure fused silica. But our attempts to increase Q were unsuccessful.
Our research has shown that at the level of Q = 108 several dissipation mechanisms may
make a contribution to the damping of the suspension pendulum mode in the }
experiments. We can point to the following. 1. The recoil losses caused by insufficient
rigidity of the support for the pendulum. 2. Transfer of the energy to the molecules of the
residual gas. 3. Surface losses in the fused silica suspension fibers in particular due to the
sedimentation of silica vapours and dust particles on the fiber in the process of its
fabrication. 4. The losses caused by the action of electric and magnetic fields in particular
due to the electrostatic charges sitting on the fused silica test masses and on dielectric
parts of the various equipment surrounding them. ‘

In order to improve the quality-factors it is necessary to decrease substantially the
influence of all these losses mechanisms. The experimental set-up which was used in
previous (1996) our measurements does not permit to solve these problems. To achieve
the maximum possible Q for the fused silica mass suspensions new chamber was
developed, designed and tested. It is shown in Pictures la and 1b, the schematic design of
the chamber is shown in Fig.2

The rigidity of the support structure for the pendulum was increased by attaching
of a massive steel table of thickness 40 mm to the main wall of the laboratory building of
thickness 1.5 m. This table was used for fastening of the top fused silica disk with the
welded pendulum fiber and as a cover of the chamber. An estimated value of the
for this support was approximately 10!0 N/m. One can estimate

equivalent rigidity K ,,

the recoil losses for 2 kg pendulum (spring constant K,,,, ~ 102 N/m) suspended from this

support structure using a relationship: Q7. = K, Q'Isup / K, ~ 10°. Damping in the



support structure Qy,, is assumed to be approximately 10-1. A value of the required
vacuum in the chamber is determined by the residual gas damping Q,,, . According to our
measurement of gas damping for pendulums to be tested the following relationship is
valid: Q. = (5x10-3) x P(Torr) for gas pressure P < 3x10-5 Torr. A vacuum level of
approximately 3x10% Torr was achieved in the chamber after backing using a
turbomolecular pump and an ion pump. Backing of the chamber and the pendulum at a
temperature near 120°C is used to remove water from a surface of fused silica as well.

The system for excitation of the pendulum oscillation and the sensor for
monitoring its motion as well as an arrester of the pendulum are designed in such a way
that they were removed to sufficient distances from the pendulum. This permit to exclude

the losses caused by electric fields from the accidental charges sitting on the surface of

fused silica.




Picture la Picture 1b
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Appendix II1

The investigation of dynamical and dissipative actions of
electric controller on the test mass

The electric controller will produce dynamical and dissipative actions on the test
mass. In our previous preliminary experiments we observed the dissipative actions on the
test mass due to the following processes: 1) the dissipative processes on the surface of
conductors which are connected to the source of electric field; 2) électrostatic field produced
by electric charges located on the surface of fused silica; 3) Joule losses in the resistive part
of the controller’s circuit. We describe below the results of our calculation and experimental
investigations of dissipation introduced by electric controller into the test mass (the source
#3). This damping is an inherent property of the electric driver system. It is not relevant to
damping produced by the test mass servo control system and is not suppressed by the filter.

Consider a model of the electric controller shown schematically in Fig.1. The test
mass m suspended as a pendulum is an oscillator with a spring constant k& =mg/l. Thereis a
capacitor plate of an area S separated by a small gap d from the conductive surface of the
test mass. This plate is an electrode of the electric controller. The control voltage is applied
to this electrode. In any case there is a resistor R in the circuit ( an internal impedance of
the voltage generator U). C = g, S /d is a capacitance between the electrode and the test
mass. C, is a stray capacitance which does not change in motion of the test mass.

In the general case the ac voltage U = U, cosv pt can be used to produce the dc
control force applied to the test mass due to a quadratic dependence of the force on the
voltage. The advantage of ac voltage is an absence of dc electric field which may introduce a
damping due to the dissipative electron processes on the surfaces.

Suppose that the change of the position of the test mass x is small in comparison
with the gap x/d << I. In this case the equation of motion for the test mass and for the

charge g in the circuit are

g’ 1-2(1-a)x/d,) |

o (1

mi+kx =-—

GR+—2_(1+ax/d,)=U,cospt, . 2

G, +C

s




where a = Cy /A Cy+€, ), d=dy+x.

When solving these equations we exclude any resonance and parametric action of the
controller on the test mass by choosing the frequency p # (m/l)w, (here m and ! are whole
numbers, @, is the resonance frequeney of the oscillator ). We also assume the amplitude of
a constrained oscillation of the test mass with the frequency p to be much smaller then the
amplitude of a free oscillation with the frequency w, ,.

Finding the solution of the equations in the first approximation and calculating a
ratio of the energy lost per period of oscillation to the stored energy we find the damping

coefficient of the oscillator

- UsRC; 1-(p’ -w,)7
2d;me, (1+p2T2)~[1+(p+wo)zrz]'[1+(p-—w0)212}.

o 3

Eq.(3) may be written in terms of the quasistatic displacement of the test mass Ax under

the action of the force from the controller

28w RC, H-(p" - wy)7’
S 4y, i+prw ] 1+ (p- 0, T}

o )

Note that accerding to Eq. (4) with the constraint [p’ - @)’ > 1 the introduced
damping becomes negative; that is, a regeneration of the oscillator is possible. This is the
result of the additional delayed rigidity introduced in the osciltator by the controller.

The Johnson noise of the resistor R in the circuit of the controller is a source of the
fluctuating force acting on the test mass. A calculation of the spectral density of this force

gives

c,U, [I+ (P’ + Qz)r]

2d, J '(1 + )1+ (p+ QP i+ (p-) e ©)

S.(Q) = 4kTR(

Comparing Egs.(3) and (5) one can verify that the spectral density of the fluctuating force

acting on the test mass is coupled with the introduced friction coefficient H((2), namely, the




sum of positive and modulus of negative parts according to the Fluctuation-dissipation
theorem.

The experimental investigations of the damping introduced by the electric controller
were carried out with the special pendulum. It was taken a reasonably large value of the
resistor in the circuit of the electric controller R in order to obtain high damping and to
exclude the influence of the other mechanisms of losses caused by electric field. The
dependence of the introduced damping O on the value of the resistor R in the circuit of
the electric controller in the case that dc voltage is applied is shown in Fig.2. In the case that
ac voltage is applied the dependence of Q7 on the frequency p of this voltage for R =
10GOhm is shown in Fig.3. The experimental results are in a good agreement with the
calculations to be carried out with a fitting parameter C, . They are shown by the lines in
Figs.2 and 3.

In the actual controller it is reasonable to choose the frequency p ~ 10¢ sl in order to
decrease the amplitude of the constrained oscillation of the test mass. Substituting the
parameters of the test mass and the electric controller to Egs. (4) and (5) : m = 10 kg, y =6

s1,S=3cm?,d=101cm, R=1030hm, U =250 V, one can obtain Q" ~ 3x10-2 and S

~ 2x10-3® N2/Hz with the range of controller about 10-> cm.
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Figure Captions

Fig.1 Schematic model of the electric controller.

Fig.2 Dependence of the introduced damping on a value of the resistor in the circuit of the
electric controller for dc U = 1000 V.

Fig.3 Dependence of the introduced damping on a frequency of the applied voltage U= 360 V.
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Abstract

A new scheme of gravitational wave antennas is proposed which due to the effect of light pressure behaves analogous
to solid state antenna of the same scale. The gravitational signal in this scheme is transformed into the force acting on
a mirror. The resulting mirror displacement may be detected using methods standard for the bar antennas. The scheme
provides gain in resolution and allows one to beat the standard quantum limit without the use of non-classical pumping. ©

1997 Published by Elsevier Science B.V.

1. Introduction

All known schemes of laser gravitational wave an-
tennas, the first generation of which will be put into
operation [ 1-4] in a few years, are based on the same
principle. The gravitational signal is measured by a
phase shift of the optical output wave. In such a case
the main limiting factor is the quantum shot noise
which leads to the necessity to increase pumping. In
a previous paper [5] we proposed a new principle.
Instead of extracavity measurement of the time phase
shift it was suggested that the space phase shift be de-
tected directly in the arms of a gravitational antenna
using the principles of non-linear optics and quantum
non-demolition measurements. A scheme was exam-
ined as an illustration in which the space phase shift
produced by a gravitational wave converts to the phase
shift in a microwave resonator coupled with thin trans-
parent plates with cubic non-linearity, which are in-
serted in the optical system. At the same time for the
planned parameters of laser gravitational wave anten-
nas in the system there is a strong cubic non-linearity

caused by the ponderomotive effect of the light pres-
sure [6]. In this paper we analyze the possibility of
using this “natural” non-linearity to transform the vari-
ation of the metric produced by the gravitational wave
into the force acting on an additional mirror placed
inside the optical resonator.

2. Energy redistribution in the system of the two
coupled resonators

We start with examining two resonators of Fabry—

Perot type with high finesse, having lengths L, = L, =
L. Let these resonators be coupled, for example, by
means of a mirror with a small transmittance coeffi-

-cient T (see Fig. 1). Here we take absorption as neg-

ligible so that R? 4 T? = 1, where R is the reflectivity
of the mirror. The influence of losses will be discussed
in the next section.

Eigenfrequencies in such a system form a series of
doublets. Frequencies in each doublet @ and w_ are
apart from each other by (see Appendix A)

0375-9601 /97 /517.00 © 1997 Elsevier Science B.V. All rights reserved.

PII S0375-9601(97)00413-1




V.B. Braginsky et al. / Physics Letters A 232 (1997) 340348 341

2)

. 4N
|

i

i

!

L,

Fig. 1. Two topologies of antennas: (a) L-topology; (b)
X-topology.

b)

0 _cT
SWye — W = —l—",
where ¢ is the speed of light. By choosing the appro-
priate transmittance T this value can be made to be
close to the frequency of gravitational waves wg;.
Now we consider that by external pumping only
one mode of the doublet, say w., is excited. In this
case the identical energy £/2 will be stored in each
Fabry-Perot resonator. A small change in the optical
lengths of the resonators will result in an energy redis-
tribution between the resonators, proportional to this
_ change. In thfs paper we suggest that this effect be
used for the detection of gravitational waves by mea-
suring the difference of energies in the two coupled
resonators. It is important that such a measurement
must not be accompanied by the absorption of quanta,
i.e. it is necessary to measure the energy difference
in a QND way. One can suggest several variants of a
concrete design for the realization of the given idea.
The only condition needed is that partial frequencies
in the two coupled resonators be changed differently

O8F, =~

under the action of gravitational waves. For example
the L-scheme of the paper in Ref. [5] (Fig. 1a) or
X-scheme, similar to that from Ref. [8] suggested for
dual recycling (Fig. 1b). In both figures all mirrors
except the coupling one, D, have in our approxima-
tion reflectivity equal to unity and the mirror D has a
certain small coefficient of amplitude transmittance T.
As calculations show, both schemes give similar re-
sults and so here, to be specific, we will analyze only
the L-scheme.

As shown in Appendix B, the difference in optical
energies in two arms of this new gravitational wave
antenna 6E(t) for an optimal orientation of the res-
onators and optimal polarization of the gravitational
wave can be described by the following integral,

1

SE(1) =‘—"{£ sin 2(¢ — t)SL(¢') dt’, (D)

—o0

where wo = (w,. +w_) /2 and 8L = Lh(+) is the dif-
ference in the resonators’ lengths caused by the grav-
itational wave, h(t) is the perturbation of the metric.
This equality evidently is also valid if Ly # Lo, but
|Ly — Ly — nA/2| <« TA, where n is an integer and A
is the optical wavelength. Formula (1) shows that the
dynamics of the response to the external action is sim-
ilar (without taking into account the constant factor)
to those of the oscillator with frequency £2. In partic-
ular, the response is maximal when the characteristic
frequency of the gravitational wave wg, ~ (2.

Also may be of interest, at the same time, the qua-
sistatic case, when the h(¢) signal slowly changes in
comparison to the frequency {2, as in this case the
system is wideband - its coefficient of transformation
weakly depends on the signal frequency. In this case,

a)oaL(t ) :
nL o,
For the measurement’of relatively slow variations of

8E(t) (with characteristic time ~ wé‘,’) one can use a
non-linearity of ponderomotive origin. In other words,

() =€ (2)

" the most natural method of QND measurement of the

value 6€(t) will be the measurement of the difference
force of optical pressure acting on the central coupling
mirror D,

8E(L)

3
2 (3)
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This scheme is in essence similar to the principle of
ponderomotive energy measurement [7].

In this case, the perturbation of the metric due to the
gravitational wave in the suggested scheme is trans-
formed into the displacement Axp of the mirror D
caused by the force of the light pressure. This dis-
placement is the absolute coordinate movement rela-
tive to an independent mass which is not in interaction
with the optical wave. The optical field in this case
behaves analogous to “horns” in the solid bar gravi-
tational wave antennas [ 10], transforming a relative
displacement of two butt-ends to the absolute move-
ment of two close plates of the capacitance transducer.
One can estimate the value of this effect. Substituting
Eq. (2) into (3), we obtain 6F), = (27wE [TA) h, where
A = 27rc/wy is the optical wavelength. If £ = 107 erg,
A=10"%cm, and T = 1072, then if h = 3 x 1075,
8F, ~ 2 x 1077 din.

Evidently, the direct use of this relatively large value
of 8F), for numerical estimates is incorrect, because
in the analysis given above we have not taken into
account the whole dynamics of this rather complex
scheme caused by finite masses of all mirrors.

3. Dynamical behavior of the meter

When analyzing the dynamical properties of this
measuring system it is sufficient to take into account
only one doublet of the optical modes. Assuming that
only processes with characteristic time 7 > L/c are
of interest, one can consider two coupled lumped os-
cillators instead of the distributed system. The equa-
tions of motion for the generalized coordinates ¢; and
g» of the oscillators according to this model may be
represented in the form {

N

q1

*
opt

wo

== (UP™ (1) + UP(0)],

+ w3 (@1 + Dwoqy

G +

.. 72
i+ L 4 wd(1)g2 + Owoq
Topt

= %‘i[u;’“""’(t) +UP(HT, (4)

where 75, is the energy relaxation time of the partial

optical resonators, UM% and UP, " are, respectively,

the fluctuational forces and pumping forces, p is the
wave impedance, w2 are the optical partial frequen-
cies dependent on displacements of the mirrors x4 5.p
and on the variation of metrics h(t),

w (1) = wo (1 - h(zt) + x4(t) zxo(t)) ’
w2 (t) = wo (1 + h(zt) + xp () ZXB(I)> ‘

The whole self-consistent set of equations of motion
of the system must also include equations for the me-
chanical degrees of freedom. We shall limit our con-
sideration to the case when the mirrors are nearly free
masses (the resonant frequencies of pendulums are
much less than wg,), coupled with the external world
only through a small mechanical dissipation. Mirror D
is also connected with a meter of the mechanical co-
ordinate. Let the relaxation time of the mechanical de-
grees of freedom be much longer than the time of mea-
surement so one can ignore direct damping and con-
sider only associated fluctuational forces Fie!, F{'
and Ff**. Then the corresponding equations will be

Miq = -E2gt + PR,
Mig = P2 + (),

mip = %Q(q% — )+ F™ () + FR (), (5)

where M is the mass of the mirrors A and B, m is
that of D, F™* is the fluctuational back-action of the
coordinate meter on the mirror D.

Eqgs. (4) and (5) form a complete set of equations
describing the dynamics of the system. Its concrete
behavior depends on the parameters of pumping. The
choice of the pumping frequency is determined by re-
quirements on the dynamical stability of the system.
In Appendix D it is shown that in the case of pumping
at a lower frequency of the doublet w _ negative elec-
tromagnetic rigidity appears. For nearly free masses in
the system it leads to asynchronous instability, which
during a short time (of the order of 27!) pushes the
system out of the operational regime.

When pumping at the higher frequency of the dou-

" blet w., the electromagnetic rigidity is positive. If

m* L2 2
&< Lc:t'nrxts =TS (6)
8(1)0
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where m* = (1/m + 1/2M) ™! is the effective mass,
then asynchronous instability is absent. For L = 4 km,
2=10°s"",T=10"2 and m* = 10° g, inequality
(6) gives the threshold energy Eres = 107 erg. How-
ever, in this case there exists an oscillatory instability
which rocks the system at frequency wine ~ (2 with
characteristic time 7, > 1/7-:,““/ {2 (see Appendix
C).

It is appropriate to introduce here the characteris-
tic frequency @, caused by the optical rigidity, @* =
2wo€2/m*L?. Tt is appropriate to note also that this
analysis is valid only in the linear approximation when
xa.8,0 < AT and when the energy at w, is much
larger than that at w_.

The described oscillatory instability is also inherent
in _arrowband recycling schemes. The asynchronous
threshold instability must also be taken into account
for standard schemes with recycling [8,9].

In gravitational antennas it is simple to achieve
ﬂT:p[ > 1. In this case, the condition ripe > 1 is
also satisfied, which makes it possible to inhibit the
oscillatory instability, for example, by rare appropriate
kicks at time intervals = 7ipg.

Egs. (6) are solved in Appendices C, D. In the qua-
sistatic case, wy < @ ~ 0/ V2, the signal displace-
ment of the mass m is equal to (see formula (E.1) in
Appendix D)

xgg iy = H0. 7
In this case the optical fields in the interferometer’s
arms work as rigid bars pushing mirror D.

If wy > ® ~ /+/2 then the response Pyl €3
has a resonance character (E.1). It means that the
re._ nse of the mass m may substantially exceed the
value of Lh(t)/2 if the gravitational burst is a long
wave packet. In this case the optical bars-behave like
rigid springs. !

4. Threshold sensitivity of the new antenna

It is convenient to present the results of the com-
putation of the obtainable sensitivity in the described
antenna in the form of several thresholds of detection,
cach dependent only on one source of dissipation or
noise of the meter. As a reference characteristic value
for comparison we will use the standard quantum iimit

(SQL) of the sensitivity, which in case of antennas
with free masses is

£ f
hsoL =
SQL Lug || morg’ (8)

where 7, is the duration of the gravitational
wavepacket with a characteristic frequency wer, & is
a factor of the order of unity dependent on the form
of the wavepacket. If m* = 10% g, wy, = 600 s™! and
Ty = 1072 s (one period), hsq =~ 10722,

4.1. Absorption in optical resonators

The absorption limited signal-to-noise ratio as it
follows from formula (E.2) of Appendix E equals

(S) 00wt T (ho(@) 2 de ©)
opt.loss.

n 25 D2+ o? 27

— 00

n

where A, (w) is the spectrum of the metric variation
h(t). At optimal tuning, when wgr 2 2 and O = 1,
one can deduce from formula (9) that the value of the
minimal detectable signal is

P _ hsaL
opt.loss. = .
v wng;pt

Consequently, when w75, > 1, which is easy to
satisfy, the losses in the optical mirrors do not prevent
one from obtaining a sensitivity better than that of the
SQL.

(10)

4.2. Mechanical losses in the suspension of mirrors
Aand B

The SNR for mechanical fluctuations has a simple
form, ;

5 M2 dew
(3). = [ @) P52,
n/ mechioss. 4Ty Hyy 2 -

-0

where « is Boltzmann constant, Ty is the temperature,
Hyy is the coefficient of friction. This value is equal to
the SNR for the case of detection of the force MLA(¢)
on a test mass 2M. This limitation is inherent to all
known methods of gravitational waves detection. Cor-
responding estimates which have been repeatedly cited
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in the literature (see for example Ref. [11]) show
that with the current experimental culture of the iso-
lation of the test masses, Crossing the SQL becomes
possible.

4.3. Noise terms of coordinate meter and of
suspension losses of mirror D

1t is known that the output signal of a meter of co-
ordinate x(z) may be represented in the form [12]
7(¢) = x(1) + x™(0), where x™*(¢) is the ad-
ditive noise of the meter. The ultimate sensitivity of
the detection system essentially depends on the char-
acter of the autocorrelation functions of noise terms
Fmeer (1) and x™ (1) and on their crosscorrelation.
Up to now several methods have been suggested, al-
lowing one to overcome the standard quantum limit
by choosing parameters of these noise terms, staying
in the domain of the coordinate measurement. These
methods may also be used in our scheme. However,
their analysis lies outside the framework of this paper,
so here we will limit ourselves with only an analysis
of the simplest case of uncorrelated white noise terms
of the meter x™*f(¢) and F meter () In this case the
signal-to-noise ratio on the background of noise terms
of the meter and noise Fg“c‘( 1), caused by mechanical
losses in suspension of the mirror D, has the form

‘ [o o]
N M2@8L2 4 ,
<;>meter_ (2M+m)2 / w ‘hw(w)l

-

x [Jf(w“ — W20+ 6%,

3

m? 27’

me* \*Se+S.] " dw
2M+m

+ (w“ -+

(1)

where S, and Sg are the spectral densities of the noise
terms x™" (1) and F™ (1), which must correspond
to the uncertainty relation [12]

2
S:SF 2 T
and

2kTym
m =0

T*

m

is the spectral density of the noise Fp(t), 75, is the
mechanical relaxation time for the mass m.

Formula (11) has a rather bulky appearance. In
the dependence on the signal spectrum and values of
parameters of the system different limits of sensitivity
are possible. We consider two characteristic special
cases.

Quasistatic case. Let condition wg K {2 = @ be
satisfied. In this case

7)
N/ meter

N _
s [ et
(2M + m)2w*S; + SF + Sm 2’

If the average value of the signal equals zero as in the
case of gravitational waves detection, and dissipation
is small enough,

2
26T Ty

£
Tm

<k, (12)

then the value of the minimal detectable amplitude of
the metric variation will be equal to

m
he 1+ =—hsaL,
TS

ie. form < M it corresponds to SQL. For the parame-
ters given above, inequality (12) at room temperature
gives 77, > 8 x 10° s, which looks possible in the near
future [11,13]. ‘

Resonant case. If the spectrum of the signal is con-
centrated near f_x_"__équency wgr = 1 /2, then the reso-
nant character ofsthe expression under the integral in
formula (11) allows one to obtain a sensitivity bet-
ter than the SQL. The price will be a longer time of
detection Tmeas > Tgr» and as a consequence a more
serious requirement on dissipation for the following
inequality to be fulfilled,

2
2T Tmess (13)

*
Tm

Let us assume that @ = wgr, which corresponds to the

maximal permitted energy £. In this case it follows
from expression (11), that :

___}EQL__‘ (14)

h~
@Wgr/TgrTmeas




he
WS

14)
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Consequently, by increasing Timeas up to the limit set
by expression (13) or by cooling the test mass, it is
possible to obtain a sensitivity better than the standard
quantum limit.

5. Conclusion

Summing up the above discussion of the new
scheme of laser gravitational wave antenna with a
ponderomotive parametric amplification of the re-
sponse, it is appropriate to emphasize the following
specific features of the scheme.

(1) At an optimal value of the optical energy & in
both arms of the resonator (see formula (7)) a burst
of gravitational radiation with amplitude / leads to a
force action on the central mirror D and produces, in
the case of a wideband signal, its oscillations with am-
plitude Axp equal to AL /2. In the case of a narrowband
signal, resonant amplification of the response is possi-
ble. In this way, the gravitational wave antenna has all
the advantages of the solid state bar antenna with the
characteristic dimensions of a laser one (4 km for the
LIGO project). If m = 10% g, then, for wg = 10° 571,
the optimal value £ < 107 erg. If 73, = 10 s (corre-
sponding to the value of the mirrors’ finesse available
today) then the required pumping power is only W ~
109 erg/s. For the detection of weak oscillations of the
central muioor cmawve 1o the additional test mas: -~
interacting with the optical field one may use any ce-
tector developed for bar antennas, for example, a mi-
crowave parametric transducer [-14]. In this case the
following condition must be satisfied,

A hL S ad

Xp o~ — 2 —————,
b 2 ~ WmwTmeas V Naw .
where .
-
-1 - -t
dwmw :
d = wnw ;

om (%52)

is the parameter of tunability of a microwave resonator,
Wmw 1S the microwave frequency, Tme,s is the duration
of the measurement, Npw 1S the number of used mi-
crowave quanta and « is the noise factor of the mi-
crowave amplifier. The value nowadays achieved for
the factor ad/wmwTmeas is = 3 x 1072 cm [14]. As
a result the required microwave power is also not too

large: if h = hsqu =~ 10722, then Wy, =~ 10 erg/s.

For interferometric measurement in laser gravita-
tional antenna, the response (time phase shift of the
output wave) equals

Ad =~ Khw,Ty,

where K is a dimensionless parameter equal to unity
for optimal tuning. In the scheme examined in this
paper, the factor

Lonw

K= ~ 10*.

dw,
In other words, the scheme described provides essen-
tial amplification of the response.

(2) The sensitivity of our scheme is not limited by
the standard quantum limit if @grTmeas > 1 (see for-
mula (14)). Moreover, in the coordinate meter one
can use any of the non-stationary schemes of mea-
surement suggested before [15], allowing us to beat
the SQL. The origin of this key advantage is that the
fluctuations in the optical part of the meter may be
in principle totally excluded and the only source of
back-action will be the meter, which in case of the
microwave transducer consumes very small energy.

(3) Itis reasonable to note that the ultimate sensitiv-
ity and the optical pump power needed in this scheme
do not depend on the quantum state of the pump field.
The required state of the e.m. field in the resonator
with a well-determined energy difference in the two
arms of the autenna forms automatically in the process
of monitoring the coordinate of the coupling mirror.
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Appendix A. The eigenfrequencies of the
resonator -

Let a; , be the traveling waves’ amplitudes running
from mirror D (see Fig. 1a), L, ; are the lengths of the
left and right arms. If A and B are absolutely reflective -
mirrors then the boundary conditions for the mirror D
yield
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2ikL,

2kl _ iTay €¥412,

a; =Rare
a; = Ray eZiklr _ iTq) eBkh,

where k = wg/c is the wavenumber. The characteristic
equation for this system of equations has the form
cos2kL — Rcosk(Ly — L) = 0.

If k(L1 — L2) « land T =1 — R? < 1, we obtain

nmc {2
Wop 2~ £
T
2= %arcsinT ~ —Cz—

where n is an integer. In the case of the X-scheme
(Fig. 1b) the characteristic equation gives 2 <=
2cT/L.

Appendix B. The redistribution of the energy

Let us consider a pair of coupled resonators with
slowly varying partial frequencies,

h
w1 2(1) = wo (1 F -%tl> .

The equations of motion for this system have the form

Gi(0) + @2 (D@ (1) + Nwoqa(1) =0, ‘
(1) + @3(D) @(1) + Qwoqi (1) =0, (B.1)

- where q) 2 are the coordinates of the oscillators.

Eqs. (B.1) can be transformed to the equations for
the normal coordinates g+ (1) = (41 (1) :l:qz(t))/\/i:
G+ @2as () = BRDa- (D
G+t () =wBh(Dgs(D,

where w4 = wpt{2/2 are the eigenfrequencies (terms
of the order higher than linear are neglected).
Let initially the mode with the higher eigenfre-
- quency w, only be excited:

q+(t) = qocos wyl.

In this case,

t
q_(1) = woqo / sinw_(t—t')cosw+t'h(t')dt'.

—0o0

Hence the normalized difference of the energies of the
partial oscillators is equal to

SE(H) _ () —qt(1) _ 24+(Ng-(D)
£ g (1) + g1 (1) g () + ¢~ (1)
!
=w0/sin.()(t—t')h(t')dt',

—0

where £ is the total energy in the system.

Appendix C. The dynamics of the system
Egs. (4), (5) yield the full set of the equations of
motion of the system,

2x_
o (1) + 280pg+ (1) + (wi + w%—‘f—xL—(’—)> a+(1)

5 [ x+(1) _ xp(D) _ h(t)
+2w0<\/§L I 5 >q_(t)

= 5";°—[U*i“"‘"(t) +UM(ND],

ii—(t) + 280pg - (1) + <w2_ +w§\/§x£(t)>i q-(t)

h
+20} <";§’L) - "DL(’) - 2”) g:+(1)

=3’,39[U‘1“'“P(r> + UM (],

\/ipwo
L

Mi (1) =— ge (g (1) + FE (@),

Mi_ (1) = =222 (2 (1) + (D] + FI(D)

V2L :

. mip(t) = 2plc‘uqu((t)q_(t) +F“‘e‘e’(t)j-_[~:g“°‘”(t)r ,

(C.1)

where UR " (¢) are the pumps, Sope = 1/277, Uhuet =
(Utliuc( + Uguct)/\/i, xy = (x4 + xB)/\/i, Fiuct =
( FAﬂuct 4 Fguct) /\/i

Let only one mode with frequency either w (down-
conversion regime) or w_ (up-conversion regime) be
pumped, UL (1) = Uo sin(wx?), Ug () = 0. Lin-
earizing Egs. (C.1) in the approximation of strong

34
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pumping and using the method of slowly varying-
amplitudes, one obtains

fluct
a(1) + Somalt) £ 2b(1) = _gxpﬁ ,
b(t) + Sopb(1) F fa(t)
_ hD x| xp(D) UM
= woqo ( ) - \/-Z—L + T ) + P) »

Mz, (1) = _";EZ"a(t) + Flot(py
.. ,0 040 meter fluct
mip(t) = 7 ——a(t) + F™ (1) + Fp™' (1),

(C2)

where ¢ is the mean amplitude of the pumped mode,
a(t) and b(t) are the slowly varying-amplitudes of
the other mode, and Uﬂ““(t) are the fluctuational sine
and cosine components of the Uﬂ““(t)

The characteristic equation for the system (C.2) is
the following,

PAp* +280pp” + (8o + )P £6°) =0. (C3)

Appendix D. On the dynamics stability
D.1. Down-conversion regime

The roots of the characteristic Eq. (C.3) in this case
may easily be found in the approximation of smail
Sopt. If opt = 0, then

mesyf- 22 T o

(both £ signs are independent, angl we do not consider
the trivial root p = 0). If @ < ?*/4 then all roots
are purely imaginary and the system is stable.

For small 8o # O the roots rhay be presented in
the form p = po + p’, where p’ is a small variance in
the linear approximation proportional to §op. If @ «
{2 then

! 50Plpg
T 2pd 4+ 7

If @ — 2/V/2 then

, _ELEi (802
P\

Some roots have positive real parts which, however,
are small in comparison with the roots’ absolute val-
ues. This corresponds to relatively weak oscillatory
instability.

D.2. Up-conversion regime

For 8o = 0 the roots of the characteristic equation
(C.3) are equal to

nes -2\ T

One of these roots has a large positive real part. In this
way the system is strongly asynchronously unstable.
This result may be proved more rigorously and gen-
eralized on the case of 8,5 # 0 by using the Raus-
Gurvitz criterion. This shows that the system is unsta-
ble if pumped at a lower frequency for all parameter
values.

Appendix E. Signal-to-noise ratio

Using the spectral representation one can obtain
from the set of equations (C.2) that the spectrum of
xp(t) is equal to

Xpw(®) = 389 () + X, (w),

where

@) = 211‘\440:; 8 _g:(wa();u) (E-D
is the spectrum of the signal,

Xo(w) = Dettw) :

3 Furlneter(w)_*_Fgcht(w)
m

\/_2-@4 fluct
T e () F

2
woGow™
mL

X [.OUﬂ“c'(w) + (iw + 5op;)Uﬂ"Ct(w)]} ,
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is the spectrum of fluctuations of xp (1), F5*(w) is
the spectrum of F meter (+) and so on, and

Det(w) = [ 0? (1 — 0? + 2ibopw + 82) — 6*1.
The output signal of the coordinate meter is equal to

(1) = x(1) + Xauer (1),

where x™'(¢) is the additive noise of the meter.
Hence

xw(a)) = wa(w) + xrﬂx)\eter(w)

22 () + Xo (@) + 15" (@),

and SNR is equal to

‘ srgnal(w)lz dw
/ S(w) 27’ (E2)

where S(w) is the spectral density of the total noise
X, (@) + x2(w).
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Abstract

We demonstrate taking the Heisenberg microscope as an example that the standard quantum limit for registration of
force can be overcome in a quantum coordinate measurement. We propose to vary the distance between the diffraction
slit and detector plane during measurement so that one can measure a linear combination of coordinate and back action
momentum transfered to the probe mass in accordance with the uncertainty principle. Changing the distance in a special
way enables one to exclude the influence of the back action fluctuations, thus implementing the idea of a quantum variation
measurement. © 1997 Elsevier Science B.V.

PACS: 03.75
Keywords: Heisenberg microscope; Quantum measurement; QND measurement

1. Introduction

Quantum noise in a mechanical displacement meter is a key problem in interferometric gravitational-wave
antennae (the LIGO project) and in some other fundamental experiments. In a continuous coordinate measure-
ment the back action noise of the meter is responsible for the limit of sen51t1v1ty {1-4] known as the standard
quantum’] llrmt For the force having the form

F, = Fsin(wpt), 0<t<2m/wp, ; (1)
acting on a free mass m during a time T =27/ wr <« 277/ wy, the standard quantum limit is equal to
FSQL >~ \/mﬁwg/T. . R (2)

Let us consider a simplified example to illustrate why the standard quantum limit appears: a constant signal
force acts on a free probe mass during time T and one quickly measures the coordinate of the mass twice: at
t =0 (the result is x;) and at t =T (the result is x;). Quickly means that the time 7 of each measurement

! E-mail: vyat@mol.phys.msu.su.

0375-9601/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved.
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Fig. 1. Scheme of the Heisenberg microscope. The matrix of detectors (detector plane) can move along the z-axis, being parallel to the
slit.

is sufficiently small: 7 < T. The difference x_ between these values allows one to register the signal force. It
consists of three terms: x_ = x — p;T/m — x where p; is the back action momentum transfered to the probe
mass during the first measurement. The second measurement of the coordinate x, can be made with a very
small error and conversely the errors of x; and p; are dependent in accordance with the uncertainty principle:
Ax;Ap, > K/2. Therefore the error of the measurement of x_ is restricted by the standard quantum limit:
Ax_ ~ AT/m.

A force measurement with an error of less than Fsqr is known to be theoretically possible in continuous
coordinate measurement if the noise of the meter is correlated in a special way [2,3] (however, no recipe has
been proposed how to obtain the required correlation). A possible way to overcome the standard quantum limit
is also to use a modulated pump [5], a pump in a frequency anticorrelated state [6]. Another way is to prepare
a pump in a squeezed state [7], however, this squeezing should have a special spectral dependence and it is
not clear how this can be realized.

Applying the idea of quantum variation measurement to an optical coordinate meter, it was shown fR-101
that the standard quantum limit can be overcome even with a coherent nonmodulated pump - with n. squeczed
states, photon number states or any other nonclassical states. To do this one has to use a meter measuring a
combination of the coordinate and the back action momentum.

If for the example discussed above, during the first measurement one measures a linear combination (x|+&p1)
(k is a constant) and during the second measurement the coordinate x, (as before with a small error), then the
difference x_ is x_ = x; + kp1 — pyT/m — x2. It is easy to see that the constant k can be chosen in a proper
way (k = T/m) to exclude information about p;. In this case there is no restriction and the standard quantum
limit can be overcome. In Section 2 we present the analysis of this meter for a continuous measurement as a
set of instantaneous ones.

A well known example of a coordinate meter is the Heisenberg microscope [11] descnbed in many quantum
mechanics textbooks. Despite the fact that the Heisenberg microscope is a gedanken scheme which cannot be
realized (at least at present) in a laboratory, it is very illustrative and convenient for analysis. In this paper we
consider a variant of the Heisenberg microscope with a light beam (the traditional scheme involves an electron
beam, however, the difference is not essential).

Let a coherent plane e.m. wave, traveling along the z-axis, diffract on a slit in the probe mass m of a lossless
mechanical oscillator, having a frequency w,, movable only along the x-axis in the plane z = 0 (see Fig.
1). The matrix of photodetectors is placed parallel to the slit plane and in the traditional scheme it is placed
close to the slit. Registering the maximum photo count “spot”, one can measure the x-coordinate of the slit
and therefore the action of the small signal force. Due to the diffraction, each photon transfers the random




conditions (on the right side the same formulas in the limit 7 — 0 are presented),
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x-momentum to the slit - this is the mechanism of the fluctuational back action.

In this paper we demonstrate the possibility in principle to overcome the standard quantum limit for the force
in the Heisenberg microscope: one should change the distance between the slit and the detector plane during
the measurement. In this case a linear combination of coordinate and back action momentum is measured. Thus
one can ignore the back action fluctuations and perform a quantum variation measurement.

In the analysis below we limit the measurement time T to the duration of the signal force action. This is
closer to the experimental situation than an unlimited time of measurement. In Section 3 we present a rigorous
analysis of the Heisenberg microscope.

2. The quantum variation measurement

In this section we illustrate the possibility to overcome the standard quantum limit in a continuous measure-
ment using a meter sensitive to a linear combination of coordinate and back action momentum. It is worth
noting that the meter described below is a simplified one and slightly differs from the Heisenberg microscope.
In the next section we discuss the difference between this meter and the Heisenberg microscope.

Let us divide the measurement time [0,7] into n small equal intervals 7 < 2/ wm: O,t1,t2, ... tj, ... ty;
tj+1 —tj = 7. During each of them the back action momentum Dj transfers to the probe mass; the operators Dj
are independent of each other (in the limit 7 — O this means “white” back action noise). It is essential that the
meter measures not'the coordinate £; but the linear combination §; = % j + a;P; where the coefficients a; can
be chosen different for each interval. The uncertainties ijz- and Apj? are related to each other in accordance

with the Heisenberg principle: Ax?Ap? > #2 /4. The expressions for §;, measured on the jth interval, are
p J P j qj

g1 = xs1 + o1 + 21 + K(11) Py + a1y,
g2 =% + X2 + 22 + K(12) By + K (12 — 11) py + arpa,
g3 = xg3 +J?03+JAC3+K(t3))50+1¥(¢3—tl)ﬁx+K(t3—t2)152+03153, cey 5

A

d;j = xsj + Xo; + %; +K(tj)p0 +K(§l’j — ) p +K(tj—-0)T)pa + ... + a;p;, e
Gn = Xsn + Ron + En + K (1) Py + Ki(t,. —1)pr+ XK(th — 02)T)Pa + ... + anPh. H(3)

Here %,; = ({T Fs()K(jr— t)dr is thé displacement caused by the signal force F;, the function X (gt) =
(mwp,) "' sin w,t describes the action of the external force on the probe oscillator, Xg; = X cos DT, X’d and
Py are the initial coordinate and rpomenfum. : i )

To register a signal force one Should measure the value B = 37 ®;4;, where the coefficients @; should be
defined to maximize the signal2fp-noise ratio. From the system of equations (3) .one can easily obtain (by

summing the columns) that the back action momenta p; can be excluded from the value B under the following

. e e -

S(a(r) + f dny (1)K (1 — 1) =0. (4)

t

~-N

Brar+ > B;K((j - k)T) =0,
~ ST

To exclude the influence of the initial conditions one should additionally assume

n T n T
D ®jcoswmjT=0, - /d:qb(z)coswmt:o, Y #K(jT) =0, /dtq)(t)K(t):O. (5)
0 0 : 0 0

EY/
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In this case the sensitivity is limited only by the measurement error (operator £) that monotonically decreases
with increasing meter power W (in the Heisenberg microscope it is the power of the transmitted beam W). As
a result, the minimal registered force Fmi, is much smaller than the standard quantum limit for the force Fsqr
(achieved at an optimal power WsqL),

Frmin = Fsquv/ WsqL/W. (6)

It is worth noting that strictly speaking one should not simply exclude the back action momenta p; but find the
optimal coefficients a;op at which A B?, containing the combinations of the independent uncertainties ijg and
A pjz, is minimized. However, the conditions obtained above are more obvious and they asymptotically approach
the precise conditions in the practically interesting limit of strong back action (W > WsqL).

3. The analysis of the Heisenberg microscope

First let us consider the traditional scheme when the plane of detectors is close to the slit (i.e. the distance
z between them is small: z < d?/A, where d is the width of the slit and A is the wave length of the incident
light). It seems natural that in order to get information about the coordinate of the slit, one has to measure
Q = [xdxdy P,/ [ dxdy P, where P, is the z-component of the Poynting vector P = E x H /4. The
integration is in the plane z = 0. The error of measurement is caused by the vacuum fluctuations of electrical
(Evac) and magnetic (Hy,c) fields, which should be added to the mean fields (E) and (H). Keeping the cross
terms ((E} X H,y.) and (Eyg X (H)) in the formula for P, one can obtain an expression for the operator %
describing the error of measurement of the coordinate (we consider Gaussian slit with transparency coefficient
~ exp A(k2x%/2), see the Appendix),

oo

. .| hawg —if in

X =—1 W/dﬂ [a(.())e '—a+(.(2)e ']. (7\
—wo

Here wo and W are the mean frequency and mean power of the transmitted beam, ¢ is the speed of light,
the annihilation and creation operators a({2) and a*((2) describe the vacuum fuctuations of the e.m. fields,
their commutators are [a(£2),a™(2')] = 8(£2 — ') and the averages are (a()a™ (7)) = 8(N2 - (),
(@ (Da(2)) =0. 7

The force Fy, acting in the x-direction, is equal to F, = — J dxdy P.. Within the same approximation as
above one can obtain the operator of the fluctuational back action force £ ,

i

¥ - . -~
F= ,/kaw / A2 [afDe " + a* (2)el™], : % ®)
47rewq : v :

‘The fluctuation operators £ and--Fin-accordance to the uncertainty principle, can not be decreased ‘simultane-
ously because they do not commute: [(t), £ (£)1 = ~ihRd(t—1'). With increasing power W, the measurement
error decreases, £ ~ 1 / VW, and the back action increases, £ ~ /W. This leads to the limitation of the
measurement: error to the force by the standard quantum limit (2). '

However, the situation is radically different if there is a possibility to vary the distance z between the
diffractional slit and the plane of detectors during the time of measurement. In the case z # 0, the effective
cross sections of the beam increase and at first sight the error of the coordinate measurement is likely to increase
too. However, we would like to emphasize that in this case one measures not the coordinate of the mass, as in
the standard scheme, but a linear combination of the coordinate and the back action momentum. It is easy to
obtain that in the case z # 0, the operator £ should be replaced with the operator § = £ — (zc/W)F, as in the
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meter analyzed in the previous section. This gives the possibility to subtract the back action from the observed
value and the standard quantum limit can be overcome.
These equations should be added to the equation for the coordinate X of a mechanical oscillator,

X+20X +wliX = (9)

_E+F
—
Here X is the time derivative of the coordinate, F; is a signal force, § = WAk2/4mw} is the coefficient of
diffraction friction due to the light beam. The value of this friction depends on the diffraction angle (see the
Appendix).
The full expression for the measured value Q is (see the Appendix)

0 B« 10 2D - 20
In experiment one measures B,
T
B=/dt¢(r)Q(r) (11)
0

trying to choose functions @(¢) in a proper way to maximize the signal-to-noise ratio.

It is important that the two functions ®(¢) and the distance z () between the slit and the plane of detectors
can be changed during the measurement so that terms containing F can be excluded. For this, the following
condition should be fulfilled (see the Appendix),

t

+/dt1 (Kt — 1) =0, (12)

0

mz(t)c

— (1) W

The differences between the Heisenberg microscope and the meter described in the previous section are: (a)
the existence of the diffraction friction and (b) the presence of a term proportional to the velocity in formula
(10). Both of them seem small corrections, however, we surprisingly obtain that condition (12) (exclusion of
the influence of the back action) is significantly different from condition (4).

The additional conditions, allowing to one exclude the influence of initial conditions, also differ from (5),

&(T)z(T) =0,  &(T)(T) +&(T)z(T) =0. (13)

Under conditions (12), (13) the minimal registered force F,, can be much smaller than the standard quantum
limit, however, the sensitivity is limited, : .

where Wop is the required power of transmmed hght This lmutanon is caused by the dlffractlon fl‘lCllOﬂ (see '

the Appendix). It leads us to conclude that in spite of the obvious smallness, the radiation friction (as well as
the presence of term ~ X in (10) - these are closely related) defines the limit of accuracy of this measurement
scheme.

It should be noted that another scheme is possible where the detector plane is kept at rest and in front of the.

slit (or behind it) there is a lens with focal distance, changed during the measurement time in a proper way.
We do not consider this scheme in detail because, in our opinion, both variants are the gedanken experiments,
- and the one considered above is more illustrative and convenient for analysis.
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4. Conclusion

It is worth noting that the described procedure is not a quantum nondemolition (QND) measurement. The
measured value B gives little information about the coordinate, the momentum or any combination of these.
These values are strongly perturbed by the measuring device when W > WsoL - in accordance with the
uncertainty principle. Indeed, during measurement, white noise with a constant intensity acts on the probe
oscillator. Therefore we can not find any QND variable of a mechanical system. However, this procedure allows
one to exclude the influence of the back action fluctuations and only variations of the coordinate caused by the
signal force are registered. We propose to call this kind of measurement quantum variation measurements.

It is interesting that similar results were obtained for an optic meter [8-10]: the probe mass is a mirror from
which a perpendicularly incident beam is reflected (the mirror can move along the direction of beam). The
fluctuations of the phase of the wave define the error of the coordinate measurement (the analog of % above)
and the back action mechanism is the fluctuations of the light pressure force (the analog of F above). In the
reflected wave one has to measure the especially chosen quadrature component, which is a linear combination
- of the phase (i.e. £) and the amplitude (i.e. F) components. It allows one to exclude the back action from
the measured value. For this meter the obtained formulas (12), (13) and (14) are the same except for the
difference of notations (in Ref. [9] formula (4) was given incorrectly).

Both these schemes do not require any preliminary preparation of the incident light or use of nonclassical
states: a coherent nonmodulated light beam is sufficient. In case of an optic meter the reflected wave is squeezed
- it corresponds to the correlation of the phase and amplitude components. In the Heisenberg microscope it is
the same: the terms proportional to [a(£2) +a*(—0)] and i[a(£2) — a*(—£)] describe the amplitude and
phase fluctuations of the incident wave respectively and in the transmitted wave they are correlated - which
indicates squeezing. This squeezing is not usual: the squeezing in the spectral component of the quadrature
amplitude depends on the spectral frequency. The measurement procedure in both schemes should be modified
to register such squeezing.

The squeezing means that in the output wave there is a variable defined with a small uncertainty. Trying to
relate the quantum variation measurement with the QND measurement, one can claim this variable is a QND
one. However, it should be emphasized that this “QND” variable applies to the whole system: the mechanical
oscillator plus meter (light beam), but not to just the mechanical system as in orthodox QND measurements
[2,3]. These speculations allow one to consider a quantum variation measurement as a generalized QND
measurement.

In both of these schemes we observe the possibility to transform a pure coordinate meter into a correlated
meter, measuring a linear combination of coordinate and back action force - by only a modification of the
procedure of output wave registration. Our opinion is that this is a general property of all coordinate meters.

. '
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Appendix

Let a plane coherent wave, traveling along the z-axis and polarized along y-axis, be perpendicularly in-
cident on a Gaussian slit, of the which transmission coefficient depends on the transverse coordinate as ~
exp(—Ak2x?/2 - Ak2y?/2). Below we use Ak, < Ak,. Then the transmitted wave will be a Gaussian beam
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and its field is described by the y-component of the vector-potential (A,) (we assume that the scalar potential
is zero),

2Wce Ak Ak,
(Ay) =4 —= : :
wj (1 +ia,) (1 +iey)

AKE(x — X)? AkZy? )
- C.C

(15)

. Z
X - t— — _
exP( wolt = ) = S Fia)  2(1+iay)

Here oy = Aki'yzc/Zwo, X is the coordinate of the slit.
To this field should be added the vacuum fluctuation field of the same polarization which is described by the
usual expression for the y-component of the vector-potential Ay,

T [a dk o
Avacy = —Jz—wb(k) exp(—iwt + ik -r) +h.c., (16)
0

where b(k) and b™ (k) are annihilation and creation operators obeying commutation relations [b(k), bt (k)]
= 8( ke — k) 8(ky— k) 8k, — k7)) = 8(k—k'). The averages are (b(k)b* (k")) = S(k—k"y, (b (k)b(K')) =0.
One can define the coordinate of the slit by the measurement of

_ [ xdxdy P,

- , 17
J dxdy P, (n

where P, is the z-component of the Poynting vector P = E x H /4. Keeping only linear terms proportional to
~ Eyac and ~ H,, one can find that the error of the measurement % is equal to

f xdx dy (<Ey)Hvac.x + Evac,,v <HI> dr)
[ dxdy (Ey){(Hy)

Here (E,) and (H,) are the mean values of the y-component of the electrical field and the x-component of
the magnetic field respectively, Evacy and Hygc,x are the same components of the fields of quantum vacuum
fluctuations. The integration is over the plane z = 0. The calculations give formula (7) for %, where the
operators a({2) are equal to

$=-

|

i)z

Here |k|* = k* = k2 +,k§. + k%, w = ke, 2= w — wp. In this paper we assume Vo /ws+ Jwo/w=2.

The transmitted beam induces the force — f dxdy (P.) acting on the mass in the x-direction. The mean
value of this force is equal to zero and its fluctuational part is F=—[dxdy ((Ey)Hvac,: + Evac.y(H;)). From
this formula expression (8) is obtained. -

The diffraction friction is a classical (not a quantum) effect and to calculate it one should take into account
only mean fields. Let us assume that the slit moves uniformly with velocity V along the x-direction. In the
frame of reference where the slit is at rest the incident wave moves not perpendicularly to the slit but at a
small angle ~ V/c and one can write down the expression for the transmitted wave. Returning to the laboratory
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¢ lar potential reference frame one can obtain the formula for the y-component of the vector-potential (A,) (here and below
{ we keep only terms linear to ~ V/c and drop the terms ~ (V/c)?),

2We Ak Ak,
(An) =1/ 22 (1 Fiay) (1 +iay)
0 x y

AR (x = X — V(1 —z/c))? Akly? e
2(1 +iax) 2(1 +iay) '

(15) xexp(—iwo(t~—z/c) — (19)
Calculating the fields (E,), (H,) one can obtain the expression for the force of the diffraction radiation

bed by the proportional to V,
:ribed by

WAK?
F. = /dxdy(( W(H) +oc) = 2%y amsy (20)
2w0
(16) This formula gives an expression for the coefficient & of the diffraction friction.

To obtain the term proportional to V' in formula (10) let us substitute the expression for the fields (E,),
(H,) into (17). Then one obtains
ky. (k')]
bk )) = J xdxdy ((Ey)(H}) +c.c.) ARz

[ dxdy ((E,)(H}) +c.c.) =4 w? X. (2D

We see that this effect and the diffraction friction are close to each other and they are derived from the same
(17 basis formula (19).
To obtain formulas (12) and (13) let us express F from (8) and substitute it into (10),

: ional t
oportional to cAk2z (1) _mz(t)c

w

Q= %(1) + X, (1) + X(t) + X(2) (X + 28X + 0 X). (22)

}
Using that § = WAK2/4mw3 one can simplify this formula, substitute it into (11) and integrate by parts,

T

~ -omponent of B = / d: &(1) <;‘c(t) +X(1) — Z(I)C(X 26X + w?, X))
Qtum vacuum

a

t. where the
T T

=/dr @(r)[fc(r)+xs(t)]+/ dt X(D){@(1) ~[$(1) +20¢ (1) +wpp(1) 1} —28¢X|] — X |5 +S XI5,
0 0

mz(t)c

#(1) = P(1). (23)

Requiring the second integral in the right-hand side of (23) to be equal to zero one can obtain the differential
equation, of which the solution is condition (12). _Conditions (13) are obtained if one requires the three last
M&a.be equak:ta-zer. Here.we use. that. &(0)wplyz= O-Lihis follows from (12)- if:the -function @ is limited

( 1’8j

)x{.meﬁmmnd”é(OT— B(TY=0)"TtTs wonh emphasmnc that"X in (23) Tncludes the back action
H.)). From disturbance and also the free evolution due to the nonzero initial conditions.

In this case the value B is equal to B = fOT dt (1) [2(1) + X;(t)]. The measurement error ¥ decreases with

2 into account increasing W and the signal displacement X; does not depend on W until the diffraction friction coefficient

«ction. In the _(which is proportional to W) is small. In the free mass approximation this means 87 < 1. In the opposite

o slit but at a case X, = F,/m8T ~ 1/W decreases with increasing W faster than the error ¥ ~ 1/v/W. Therefore the

the laboratory signal-to-noise ratio has a maximum about 6T ~ 1 and formulas (14) are obtained.
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