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The quantization of the Interferometer Differential Output (IFO) voltage by the Analog-to-
Digital Converter (ADC) reduces the Signal-to-Noise Ratio (SNR) obtained by optimal filtering
for an astrophysical signal. We calculate the fractional loss of SNR, and show that it is largely
determined by the design of the whitening filter used at the IFO. We show that if three simple
conditions on the whitened IFO output are satisfied, then the SNR loss is small. If the IFO voltage
is perfectly white (in the signal band) then a 6 bit ADC (1) gives SNR loss of less than 0.4% and (2)
has enough headroom (dynamic range) so that the IFO output can be up to eight times the root-
mean-square voltage Vrms before clipping occurs. Our analysis applies to arbitrary astrophysical
searches. As a concrete example, we analyze the SNR loss for a binary inspiral search in the the
November 1994 configuration of the 40-meter prototype.

I. INTRODUCTION

In converting analog signals to digital form one must consider effects which arise due to sampling the signal. The
Nyquist sampling theorem proves that a bandwidth limited signal can be reconstructed from samples taken at twice
the maximum frequency of interest. An additional issue arises because the samples are stored as finite precision
numbers. While the requirement that one may reconstruct the continuous input signal drives the choice of sampling
rate, potential loss in signal to noise for detection purposes is an important factor in determining the accuracy (number
of bits) with which to record the sampled signal.

For the gravitational wave detectors which are currently being built, the following two issues arise:

1. The whitening filters must work well enough to reduce the dynamic range of the IFO voltage so that the there
is very small probability that it exceeds the maximum input level of the ADC. In other words, the signal should
not clip, or should clip very infrequently.

2. The number of bits should be chosen so that the expected signal to noise from a gravitational wave signal is not
significantly reduced by the quantization process.

In section III we present a simple theoretical framework in which to address these issues. Our conclusions may be
summarized by the following three conditions, which may be regarded as requirements for the design of the IFO
whitening filters:

• Loss of SNR
To ensure that the fractional loss ` of SNR is small (for example ` < 0.01) the quantization step size ∆ in volts
must be less than

∆2 < 24`fN min
f∈fsig

|Sv(f)| . (1.1)

Here fN is the Nyquist frequency (half the sample rate) and Sv(f) is the voltage power spectrum (volts/Hz2) of
the whitened IFO. The value of f is that value which minimizes the right-hand-side in the astrophysical signal
band, typically 100 Hz – 2000 Hz.
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• Dynamic Range
To ensure sufficient headroom (dynamic range) in the ADC process (i.e. to prevent clipping) there must be
enough bits b so that

(2b−1∆)2 ≥ N2

∫ fN

0

Sv(f)df . (1.2)

Here N is the safety factor: the ratio of ADC input clipping voltage to the ADC rms input voltage. One would
typically like to have N > 32 to enable careful inspection of transient glitches in the IFO voltage, i.e. for
diagnostic purposes.

• Dithering
The final condition that must be satisfied by the whitening filter is that there is enough power at high frequencies
to adequately “dither” the ADC. This requires that

∫ fN

0

df [1 − cos(2πfτmin)] Sv(f) � ∆2/2 . (1.3)

Here τmin is (less than or equal to) the period of the highest frequency waves of astrophysical interest. It may
safely be taken to be the sample time. In this case, the integral above gives no weight to the IFO voltage output
spectrum at DC, and maximum weight to the spectrum at the Nyquist frequency.

Provided that the IFO whitening filters are designed to satisfy these three conditions, the loss of SNR from the
digitization/quantization process will be small.

II. THE 40-METER PROTOTYPE

It is illustrative to examine these three conditions, which we will derive in the following sections, for the November
1994 configuration of the Caltech 40-meter prototype interferometer. For this system, the sample rate was approxi-
mately 9868 Hz, corresponding to a Nyquist frequency fN = 4934 Hz. Fig. 1 shows a graph of the power spectrum
Sv(f) of the IFO during a period of quiet operation, as well as a line showing the spectrum of quantization noise,
with amplitude Sq(f) = ∆2/12fN = 1.69 × 10−5∆2/Hz.
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FIG. 1. The IFO power spectrum in (ADC counts)2/Hz is shown in red. This may be compared to the expected spectrum
of quantization error ∆2/12fN shown in green. The expected level of quantization noise was also simulated by replacing the
IFO output with uniformly distributed random numbers on the interval (−∆/2, ∆/2), shown in blue. The ratio of the powers
at the indicated point determines our upper bound on the fractional loss in signal to noise ratio.

During this (typical) period of interferometer operation, the RMS output value was about 23∆ (i.e., ±23 ADC
output counts). The ADC itself had b = 12 bits and an output range from −2048∆ to +2047∆. Examining each of
the above three conditions in turn, we find:

• Loss of SNR
An upper bound on the fractional loss ` in signal to noise ratio (SNR) for a gravitational wave signal is provided
by

` ≤ max
fsig

∣∣∣∣ Sq(f)
2Sv(f)

∣∣∣∣ = max
fsig

∣∣∣∣ ∆2

24fNSv(f)

∣∣∣∣ , (2.1)

In Fig. 1, the minimum value of the ratio ` in the signal band from 120 Hz to 2000 Hz is 9 × 10−3. Hence, for
this particular stretch of data, no more than 0.9% of the SNR is lost due to quantization error.

• Dynamic Range
The safety factor N is simply the ratio of the rms output voltage to the peak (clipping level) input of the ADC,
which is ±2b−1∆. For this 40-meter data, one finds that:

N =
2b−1∆
Vrms

=
2b−1∆[∫ fN

0
df Sv(f)

]1/2
= 89. (2.2)
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Thus, the IFO can exceed 89 times its rms value without overloading or clipping. In practice, clipping is very
infrequent.

• Dithering
As we will show later, the dithering condition is set by requiring that the output of the ADC changes by more
than a single count over the timescale of interest. It is easy to show that for the spectrum we have shown, that

∫ fN

0

df [1 − cos(πf/fN)] Sv(f) ≈ 100∆2/2 , (2.3)

so this condition is easily satisfied, even when the timescale of interest is the sample time, τmin = ∆t = 1/2fN .

Later, we will return to the November 1994 configuration of the 40-meter prototype, and show some additional details
concerning SNR loss from digitization error.

III. QUANTIZATION PROCESS

In this section we derive some the results which have just been outlined. In particular, we consider the properties
of the IFO voltage and the effects of the analog-to-digital conversion on the recorded signal. During normal operation
the partially whitened∗ IFO voltage v(t) will be a stationary random process. This voltage is passed through an ADC
which determines an output voltage v = Q(v) for the given input voltage v. The function Q(v) is represented in Fig. 2
and maps the real numbers into signed integer multiples of ∆ by rounding; ∆ has units of volts. The number of output
levels available is 2b where b is the number of bits used by the ADC, thus the dynamic range is [−2b−1∆, (2b−1−1)∆].
The error introduced by the quantization process is given by

W (v) = Q(v) − v (3.1)

and lies in the range (−∆/2, ∆/2] as shown in Fig 2.
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FIG. 2. (a) The quantization function Q(v) which maps the analog signal into integer multiples of ∆, the quantization level,
by rounding. (b) The error function which is defined as W (v) = Q(v) − v.

∗The raw voltage is electronically filtered to reduce the dynamic range. This process removes the dominant second-order
correlations from IFO, however the filtered voltage is not completely white.
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Since we have no knowledge of the precise input voltage which produced a given ADC output, it is tempting to
think of the quantization process as the addition of noise to the IFO voltage in such a way that

v(t) = Q[v(t)] = v(t) + W [v(t)] = v(t) + nq(t) , (3.2)

where nq(t) = W [v(t)]. To make progress we must make several assumptions about this noise process which will be
justified a posteriori in the case of the 40m prototype interferometer:

1. nq(t) is a stationary, white random process.

2. nq(t) is uncorrelated with the voltage v(t).

3. nq(t) is uniformly distributed from (−∆/2, ∆/2].

Now, if the sampling rate is 2fN , where fN is the Nyquist frequency measured in Hz, the one-sided power spectral
density of the noise nq(t) can be determined from

∫ fN

0

Sq(f)df =
〈
nq(t)nq(t)

〉
, (3.3)

where
〈
. . .

〉
indicates the ensemble average. Assumption 1 implies that Sq(f) is constant, while the right-hand side is

just the variance of the uniform random variable associated with nq(t). This is

〈
W 2(v)

〉
=

1
∆

∫ ∆/2

−∆/2

v2dv =
1
∆

[
v3

3

]∆/2

−∆/2

=
∆2

12
. (3.4)

Hence, the one-sided power spectral density associated with the quantization noise is

Sq(f) =
∆2

12fN
. (3.5)

Note that the dimension of the power spectrum is Volts2/Hz.
One can also derive a simple relation which the IFO must satisfy in order that the above assumptions should be

valid. Since we are interested in detecting bandwidth limited signals using the interferometer, there is a shortest
timescale of interest. This timescale is related to the maximum frequency fmax of the expected astrophysical signals
by τmin = 1/(2fmax). If, on average, the IFO voltage changes by more than one quantization level on timescales
greater than or equal to τmin, then assumptions 1 and 2 are justified. The mathematical expression of this condition
is

〈
(v(t) − v(t + τmin)2

〉 � ∆2 . (3.6)

By assumption v(t) is a stationary random process, therefore we can expand the left hand side and express it in terms
of a simple integral involving the voltage power spectrum. The final condition is that

∫ fN

0

df [1 − cos(2πfτmin)] Sv(f) � ∆2/2 . (3.7)

Notice that if the (whitened) IFO voltage was perfectly white, i.e. Sv(f) = S0 a constant, this is equivalent to saying
that the RMS voltage V 2

rms = fNS0 should be much greater than the square of the quantization level ∆2.
Provided that the dithering condition Eq. (3.7) is satisfied, then the assumptions above are valid. In this case, it

follows from Eq. (3.2) that the power spectra of the signal and the quantization noise add in quadrature, so that

Sv(f) = Sv(f) + Sq(f) = Sv(f) +
∆2

12fN
. (3.8)

This relation makes it easy to analyze the effects the ADC quantization process; the digitization of the signal may be
modeled as an additional independent noise source in the IFO.
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IV. LOSS IN SIGNAL TO NOISE

In the previous section, we characterized the effects of ADC quantization as an additional source of IFO noise. If
the dithering condition is satisfied, this noise appears as an independent white noise source, which adds in quadrature
to the other noise sources in the IFO. We will now estimate the loss in expected signal to noise due to quantization
noise which occurs when using matched filtering to detect a gravitational wave signal. The strain at the detector is
determined by

h̃(f) = R(f)Ṽ (f) (4.1)

where R(f) is the complex transfer function, having units of strain per Volt, and a tilde indicates the Fourier transform.
Denote the Fourier transform of the postulated signal by h̃T (f), and the one-sided power spectrum of the IFO strain
h by Sh(f) = |R(f)|2Sv(f). The expected signal to noise ratio from optimal filtering is then given by

(
S

N

)2

= 4
∫ fN

0

|h̃T (f)|2
Sh(f)

df . (4.2)

We wish to compare the signal to noise that would be obtained in the absence of quantization effects

(
S

N

)2

opt

= 4
∫ fN

0

|h̃T (f)|2
|R(f)|2Sv(f)

df (4.3)

to that obtained using the quantized ADC output. Provided that the dithering condition Eq. (3.7) is satisfied, the
noise due to quantization will be independent of the IFO noise, so the power spectra of the two processes add in
quadrature. Thus the SNR obtained with the quantized ADC output is

(
S

N

)2

quant

= 4
∫ fN

0

|h̃T (f)|2
|R(f)|2Sv(f)

df

= 4
∫ fN

0

|h̃T (f)|2
|R(f)|2[Sv(f) + Sq(f)]

df

≈ 4
∫ fN

0

|h̃T (f)|2
|R(f)|2Sv(f)

[
1 − Sq(f)

Sv(f)

]
df , (4.4)

where Sq(f) is given by Eq. (3.5). Now the fractional loss in signal to noise ratio ` is given by

(S/N)quant

(S/N)opt
≈ 1 − ` , (4.5)

where

2` =

∫ fN

0
|h̃T (f)|2

|R(f)|2Sv(f)
Sq(f)
Sv(f)df∫ fN

0
|h̃T (f)|2

|R(f)|2Sv(f)df
≤ max

fsig

∣∣∣∣Sq(f)
Sv(f)

∣∣∣∣ . (4.6)

The notation max
fsig

indicates the maximum over the bandwidth of the signal. Using Eq. (3.5) we arrive at the compact

expression

` ≤ max
fsig

∣∣∣∣ ∆2

24fNSv(f)

∣∣∣∣ (4.7)

This result shows that the fractional loss is signal to noise ratio is bounded above by the largest relative magnitude
of the quantization noise spectrum to the partially whitened IFO voltage spectrum in the signal band. In particular,
for narrow band signals ` is the fractional loss in signal to noise. It makes intuitive sense that the most significant
effect should occur where the whitened noise floor most closely approaches the quantization noise floor.

The goal is to ascertain the operating characteristics for the whitening filters and the ADC in order to ensure that
the fractional loss in signal-to-noise is below some pre-determined value `max. Let us first consider the ADC. Eq. (4.7)
determines that the quantization levels in the ADC satisfy
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∆2 < 24`maxfN min
f∈fsig

|Sv(f)| . (4.8)

Now, it remains to establish how many bits are needed in order to achieve this value. To avoid overloading the ADC
and clipping the IFO, the total dynamic range should be some factor N times the RMS voltage of the IFO, thus we
must have enough bits so that

(2b−1∆)2 ≥ N2V 2
rms = N2

∫ fN

0

Sv(f)df . (4.9)

We will refer to N as the safety factor. Combining Eqs. (4.8) and (4.9) gives

22(b−1) ≥ max
fsig

∣∣∣∣ N2V 2
rms

24`maxfNSv(f)

∣∣∣∣ . (4.10)

It is useful to consider a simple example at this point. Suppose that the (whitened) IFO voltage was perfectly white
in the signal band, so that V 2

rms = fNSv(f), and that we require a maximum fractional loss in SNR `max = 2−8, then
with a safety factor N = 8 one should use at least b = 6 bits in the ADC. This shows that remarkably little loss in
SNR occurs due to quantization noise provided the assumptions made in section III hold (see below for justification).

V. THE 40M PROTOTYPE (CONTINUED)

The most subtle result here concerning the dithering condition Eq. (3.7). It is interesting to compare the results of
the theoretical model introduced above to those obtained by directly analyzing the data from the 40m interferometer.
The ADC used during the data collection run in 1994 had 12 bits.
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FIG. 3. The function f(τ ) =
〈
(v(t)−v(t+ τ )2

〉
in units of (ADC counts)2 for a quiet stretch of data from the prototype 40m

interferometer. The lower graph is zoomed in by a factor of 10 on the upper graph. It is clear that the condition in Eq. (3.6),
with ∆ = 1.0 is well satisfied even at for τ = (2fN )−1 ≈ 10−4 sec .

We have verified that the condition given in Eq. (3.6) [or equivalently in Eq. (3.7)] is indeed satisfied for the data
taken during the 1994 observation run with the 40m prototype; a graphical representation of this result is given in
Figure 3.

The bound on fractional loss in signal to noise ` and the safety factor N are presented in Table I. Moreover, the
actual loss in signal to noise for compact coalescing binary chirp signals is also presented for comparison. The results
demonstrate how well one does with only 12 bits of ADC provided the whitening filters are reasonably good.

Data file Safety factor N `max ` (120Hz ≤ fsig ≤ 2000Hz)
19nov94.1 96.9 ± 2.4 7.2e-02 1.1e-02
19nov94.3 75.0 ± 17.4 2.1e-02 4.4e-03

TABLE I. The safety factor and fractional loss in signal to noise for the 40m prototype interferometer. based on the
assumptions in section III Each quantity is computed from the first locked segment of data in the listed files. The error
estimate for N corresponds to (< N2 > − < N >2)1/2 over the entire locked segment. The losses in signal to noise are typical
values.
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VI. SIMULATIONS

Finally, the validity of the above assumptions has been checked in the following simple numerical experiment.
Correlated (colored) Gaussian noise was generated using double precision accuracy. This noise was then quantized
using the quantization function shown in Fig. 2, and the error W (t) was recorded. The result of binning up 131072
samples is shown in Fig. 4. A χ2-test on the resulting distribution determined it to be uniform with probability 0.92.
Moreover, the quantization noise is white, and

〈
W (t)W (t + τ)

〉
is approximately stationary.
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FIG. 4. Simulated Gaussian noise, with the power spectral density of the 40m prototype was quantized as describe above
with ∆ = 1. The quantization noise from 131072 samples was binned into 20 bins in the range (−0.5, 0.5], and averaged (divided
by 131072/20). The results shows that this noise is indeed uniformly distributed throughout the interval.

VII. CONCLUSION

The theoretical framework presented above is quite general. Provided the dithering condition in Eq. (1.3) is satisfied,
and the dynamic range condition Eq. (1.2) is satisfied with a reasonable safety factor, then Eq. (1.1) gives a bound
on the loss of Signal-to-Noise ratio due to the digitization process. These three conditions should be satisfied by the
design of the whitening filter. Provided that this filter is well-designed, and the IFO has a fairly white spectrum,
even a small number of bits (say ten) is sufficient to ensure very small loss of SNR. It is the quality of this whitening
filter that ultimately determines the loss in signal to noise. Thus, the whitening filters should be designed to keep the
broadband noise as flat as possible.

For chirp signals from compact coalescing binaries we have shown that the actual loss in signal to noise is generally
an order of magnitude smaller for data taken with the 40m prototype interferometer than the bound given in Eq. (1.1).
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For other broadband signals the upper bound still applies; however the loss in signal to noise will be smaller than this
bound in general.

For narrow-band sources the fractional loss in signal to noise due to quantization noise is equal to the bound in
Eq. (4.7). Computing ` for data taken with the 40m prototype in 1994 indicates that there are frequencies (between
120 Hz and 2000 Hz) where ` = 0.07. Given the difficulty in detecting weak periodic signals, it is desirable to reduce
this number as much as possible in the final design of the interferometric detector
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