LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note LIGO-T960004-00- C 1/23/96

CDS Software Development Plan

R. Bork

Distribution of this draft:

California Institute of Technology
LIGO Project - MS 102-33
Pasadena CA 91125
Phone (818) 395-2966
Fax (818) 304-9834
E-mail: info@ligo.caltech.edu
WWW: http://www.ligo.caltech.edu

file Amp_mnt/home/gsparc1/CDS/docs/T960004_Folder/T960004.fm - printed February 23, 1996

LIGO-T960004

TABLE OF CONTENTS
1 Introduction 3
L.1. PrOJECE OVEIVIEW ..ooviiiiiirieciiectieeite it e stseese e seeassnesbaesseesbeessesensessasaenneessnesane 3
1.2. Project DElIVETabIescccooiviiiiiiiiieciienieesetenine et st sse e 3
1.3. Evolution of the SDPcc.cciriiiiiiiitnercrteeeeeeeenteteiere st 3
1.4. Reference Materialscccocoveverencnieenieiercieese ettt 3
1.5. Definitions and ACTONYINSccccevereeeererriereneiierieeesee s 3
1.6. Document PreCedenceooceevuiieiieiiinieriiiiiieee ettt 4
2 Project Organization 4
2.1. Process MOdelcocoviimiiiiniiiertcicctcrecc e 4
2.2, Organizational StIUCUIEccccoceiirieriirrreienierneeeieeeseeesreesneseeserseeseeessesanes 4
3 Management Process 4
3.1. Management ODJECLIVESevvverireerieenierireerreesreeniteeseeee st esaee s sssesaneenns 4
3.2. Risk Managementccceeviicerieriiicnicniciiciecee et 5
3.3. Personnel Safety and Equipment Protectioncccoveiviniinniiniiniiiiiinennnns 5
3.4. Monitoring and Controlling MechaniSmscccecceeeieeriiiiiiiininniiniinne e 5
3.4.1. Formal RevIEWScccccciivriiiiiieiiiiiiieecteeecene i 5
341 I DRR ot 5
3412 PDR ..ottt 5
BALBFDR ..ot s 6
3.4.2. Informal REVIEWSccceevirieriiiieiiriieceteeteereeee et n 6
3.4.2.1 Design Walkthroughsccccocevuieniiivinninnnnniicnen 6
3.4.2.2 Code WalKthroughsc.cccoccerieveeomieniecnicneiciiceeeesieenees 6
3.4.2.3 Component Informal Reviewsccccoovvviiiniiiininininns 6
3.4.3. Software Configuration Managementc...cccccovrviirveenncniinnnieiennens 6
3.4.3.1 Flow of Configuration Controlccoeveviinniinniininnenns 7
3.4.3.2 Configuration Control ToolSccccoveeiriivciiiniiinniiininnnnn. 8
3.4.3.3 Configuration Identificationcccceeveveiinniicniencnnnnnn, 8
3.4.3.4 Handling of Project Mediac..coceiiiiniiiinniniiiiiiieeine 8
3.4.3.5 Enhancements and Changes (Corrective Action) 8
3.4.3.5.1 Software Maintenance Request ... 8
3.4.3.5.2 Corrective Action Processccceeeveiviiiinecnncene. 8

3.4.3.6 Configuration Management Documentation and Reporting .9

4 Technical process 9
4.1. Software Development Life Cyclec.ccocvvviiiiininiiniiiiiniiiiiciccceieneen 9

4.1.1. Conceptual Phasecccccevueveiiiiiiiniicriecitceccieee s 10

4.1.2. Preliminary Design Phasecccooiiiniiiiiniiin 10

LIGO-T960004

TABLE OF CONTENTS
4.1.3. Final Design Phasec.cccccocvevioimnrcciiiicctencceereane 11
4.1.4. Integration and Commissioning Phasecccceciiiininninninnn 12
4.2. Software Development Methodologyccocuvveveieeniiinieniiniiciicciccicnecnnes 12
4.2.1. Software Standardsccccooeveiirnne 12
4.2.2. Design and Development Tools and Techniquescc.ccecevvinninnnns 12
4.2.2.1 CASE and Development ToOISc.cccoeeveeevireneeveecccciiinne. 12
4.2.2.2 Programming Languagescccceceeviriiininieininiiinneeniennen 14
4.2.2.3 Documentation TOOISccccccereiriiriiiiiiiniiiiiinienees 14
4.2.3. Target SYSIEIMScovvieevriirreeererereeeiereieeeeeseeesreesrssssteesseseasssnnesssesens 14
4.2.3.1 Operating SYSLEIMSccccevverriereerrennierirerressresseessneeeesssesseennes 14
4.2.3.2 Hardware ReSOUICESccceerviineericiciiiiiiiiieitcnte e 14
4.2.3.2.1 Development Hardwarecccccoevevemnenniicceninnnns 14
4.2.3.2.2 Target Hardwarecccccooviviiniiiniiniiiiiinnins 14
.24, SECUTILY ..eveieiiiiiiiiieiniee sttt see et erre e ssae s s rar s ae e s ana s s sansensnees 14
4.2.5. CDS Code Directory Structurecccccceeccevceeiiirinneiniininnicrennieinnenennens 15

page 2

LIGO-T96004-00-C

1 INTRODUCTION

This Software Development Plan (SDP) describes the software management and development
process for the Control and Data System (CDS) for LIGO.

1.1. Project Overview

1.2. Project Deliverables

The project objective is to provide all software as necessary to control and monitor the LIGO sys-
tems. This includes the real-time software as necessary to provide automated closed loop control,
networking communications to move data in a distributed computing environment, and operator
services, such as operator displays, alarm management, slow (10Hz or slower) data archival/
retrieval, and system state save and restore capabilities. This does not include high speed (>10Hz)
LIGO data acquistion, which will be covered in a separate document.

1.3. Evolution of the SDP

This is intended to be a living, working document over the lifecycle of the project. It will be
reviewed for accuracy prior to any formal reviews, whenever higher level LIGO management pol-
icies are published to ensure adherence to LIGO standards, and when plan changes are approved
which affect this document.

1.4. Reference Materials

1. CDS Control and Monitoring Requirements Document LIGO-T950054-C
2. CDS Control and Monitoring Conceptual Design LIGO-T950120-C

1.5. Definitions and Acronyms

CDS - Control and Data System

CI - Configuration Index

CIM - Computer Integrated Manufacturing

DRR - Design Requirements Review

EPICS - Experimental Physics and Industrial Control System
FDR - Final Design Review

IFO - Interferometer

PDR - Preliminary Design Review

PSL - Pre-Stabilized Laser

SCCS - Source Code Control System

page 3 of 16

LIGO-T960004-00-C

SDL - Software Development Librarian
SMR - Software Maintenance Request
SNL - State Notation Language

SRS - Software Requirements Specification
STP - Software Test Plan

TBD - To Be Determined

1.6. Document Precedence

In the event of conflict between this document and other LIGO documentation, the order of prece-
dence, for this particular project, shall be:

1. LIGO Project Management Plan

2. LIGO Detector Implementation Plan

3. LIGO Project Cost and Schedule Documentation

4. Reference 1

5. This document

2 PROJECT ORGANIZATION

2.1. Process Model

The basic development process model is described in Section 4 of this document. Exact proce-
dures and management processes will be in accordance with the LIGO Detector Implementation
Plan. Project schedule and milestones are officially maintained by LIGO Project Management.

2.2. Organizational Structure

LIGO interferometers are to be developed as a team effort within the LIGO Detector Group. This
team is made up of members from both the CDS and Interferometer (IFO) sections within the
Detector Group. While CDS will be the primary provider of the software, since the final product
is the detector itself, all members involved share responsibility in its successful development.

3 MANAGEMENT PROCESS

3.1. Management Objectives

The primary goal of this project is to provide quality software which is an integral part of a Detec-
tor Group team effort to provide fully functioning interferometers which meet the requirements of
the LIGO detector. Management objectives toward meeting this goal are:

- Early guidance and planning of the project

- Risk Assessment and Analysis

- Incorporating configuration control procedures

page 4 of 16

LIGO-T96004-00-C

- Establishing standard software procedures and coding areas.

3.2. Risk Management

Risk will be analyzed throughout the project lifecycle in terms of technical, cost and schedule
risks. Risk analysis shall be presented at each review, along with mitigation techniques.

3.3. Personnel Safety and Equipment Protection

The CDS system will be analyzed from the point of view of personnel safety and machine protec-
tion throughout the system lifecycle. Items directly linked to personnel safety will never be
resolved in software as the first line of protection. In those cases, hardware will always be the pri-
mary safeguard, with software systems only employed in a backup and monitoring role.

Equipment protection may be done in software, depending on the outcome of risk analysis and
management decisions. In those cases, the software involved will undergo higher levels of scru-
tiny during the development and test cycles.

3.4. Monitoring and Controlling Mechanisms

Monitoring and control mechanisms shall be in accordance with LIGO project management plans.

As a minimum, software development will be reviewed at the Design Requirements Review
(DRR), Preliminary Design Review (PDR) and Final Design Review (FDR), as called for in the
Detector Implementation Plan. Materials to be presented at each review are described in the fol-
lowing paragraphs. More information on activities leading to these reviews and specified docu-
mentation can be found in Section 4 of this document.

34.1. Formal Reviews

34.11 DRR

A DRR will be conducted prior to the preliminary design phase. Materials to be presented for
review are: ‘
1. SDP (DRAFT)
2. Initial concepts for software and the requirements that will be addressed/implemented in
software to meet the applicable Control Requirements Specification.

3412 PDR

A PDR will be conducted upon completion of the preliminary design phase of a project. Materials
to be presented at the PDR for software are:

1. SDP (Final)

2. Software Requirements Specification (SRS) (DRAFT)

3. Prototype Test Results

4. Preliminary Design

page 5 of 16

LIGO-T960004-00-C

3413 FDR

An FDR will be conducted at the conclusion of the final design phase. Materials to be presented at
the FDR include:

1. SRS (Final)

2. Final Design

3. Software Test Plan (STP)

4. Release 0 code and documentation
Release 0 software is defined in section 4 of this document.

3.4.2. Informal Reviews

The CDS group software developers must work as an integral part of a team with other members
of the CDS and the scientists assigned to the LIGO detectors to provide a tightly integrated, func-
tional product. As part of this interaction, informal reviews will be conducted within the LIGO
team of scientists and engineers.

34.2.1 Design Walkthroughs

This is an informal method used to determine the completeness of a design. The designer con-
ducts the review with attendees representing all affected interfaces. This would also be a forum
for the verification of requirements and trade studies.

34.2.2 Code Walkthroughs

Verification of design is the primary goal of code walkthroughs. A secondary goal is to check
compliance with the CDS adopted software style (TBD), which is important for long term mainte-
nance of the code. Code walkthroughs are particularly important for complicated logic, often
found in distributed and/or real-time systems. These walkthroughs will be typically held within
the CDS team.

34.23 Component Informal Reviews

These reviews are frequent, and are intended to allow software to be seen “with a second set of
eyes”. They occur during work in progress to help verify, at each step, functionality and capabili-
ties of the code, such that a long development has not used up a fair fraction of the schedule prior
to a review. They also help ensure that more than one person is familiar with software compo-
nents.

3.4.3. Software Configuration Management

Software configuration management includes the activities of configuration identification, change
control, status accounting, and audits. Baseline software configurations will be provided by the
CDS librarian to LIGO Configuration Control. Pre-baseline development configurations as well
as baseline configuration will be controlled by the CDS librarian. The approved baseline docu-
ments for each component including SRS, STP, and SDP will also be controlled in accordance
with LIGO configuration management procedures.

page 6 of 16

LIGO-T96004-00-C

34.3.1 Flow of Configuration Control

The software and documentation developed for the LIGO detector systems will move through dis-
tinct areas, as shown in the following figure, to help maintain configuration control. The general
flow of software and documentation is:
1. Development Area: Area in which software engineers work on code in progress. This area
has symbolic links to the Release Area, to ensure the developer is using the latest released ver-
sions of software operating systems and tools.
2. Proto/Test Area: Once a developer is satisfied that particular code is ready for release, the
code and documentation is moved into a Prototype/Test area. Here the code is integrated and
independently tested/operated as part of an overall system. Code may move back and forth
between these first two areas as bugs/faults are detected and repaired. Faults/desired correc-
tions are documented with a Software Maintenance Request (SMR) (discussed later), which
travels with the code and is maintained in a database to track the history of software.
3. Software Development Librarian (SDL) Area: This is the repository for all code which has
passed test and is ready for installation. The assigned librarian is then responsible for integra-
tion of all such code and coordinates the update into the Release Area.
4. The Release Area is where all installed LIGO operational systems derive their software.

Further expansion and definition of these areas is covered in the Technical Process section of this
document.

Sftwre Dev. Librarian Area

Development Area

Proto/Test
Release Area
\ AN
\ Proto Operations AN
\ AN

-~ LIGO Release Area

AN

Sftwre Maintenance
Request

B B e e { LIGO Operations ’

Figure 1: Software Configuration Control Flow

page 7 of 16

LIGO-T960004-00-C

34.3.2 Configuration Control Tools

All software, in every area described above, will always be under source code control, using the
Source Code Control System (SCCS), provided as a standard feature in UNIX. In addition, all
code will be tracked via a Microsoft Access database.

34.3.3 Configuration Identification

The configuration identification for each code module will be the revision number assigned auto-
matically by the SCCS. Once the SDL has integrated the various code modules, and it has been
approved by the CDS Task Leader for release, the integrated code will be put under a unified
SCCS revision number and released.

The release numbering scheme shall be a three number convention in the form x.xx, such as 1.23.
The first number shall indicate a major release. Major releases are typically limited to when the
code has undergone major core structural changes or a significant number of enhancements have
been made. The second number is changed when a release has new features/enhancements. The
final number indicates that bug fixes have been made without the addition of particular features.

3434 Handling of Project Media

All CDS documents, source files and build instructions will be locally controlled by the SDL.
Whenever a CDS product is approved and baselined (sent to the Release Area), a copy of all
materials shall also be turned over to the LIGO Integration Group for LIGO Document Control.

34.3.5 Enhancements and Changes (Corrective Action)

3.4.3.5.1 Software Maintenance Request

Once software has left the development area, all requests for enhancements or corrections are
documented in an SMR. An SMR has three basic parts:
1. Problem reporting/enhancement request area submitted by the software end user.
2. Analysis section, wherein the assigned software engineer analyzes the problem/request and
provides recommendations to resolve the request.
3. Resolution Area: Information on how the request/problem was resolved.

A Mircosoft Access database will be kept of all SMR to help trend and monitor software develop-
ment projects, which may point to certain areas which may need closer investigation for future
software releases. Access forms will be electronically available for submission of SMR, along
with Access reports for hardcopies of SMR and database queries.

3.4.3.5.2 Corrective Action Process

Once an SMR is originated, it is submitted to the CDS Task Leader. He/she then assigns both a
priority to the SMR and a person to be responsible for analyzing/resolving the request. Priorities
are assigned according to the following table.

In the event an SMR is a request for enhancements or change in project scope, the CDS Task
Leader will determine if this request must be processed through the LIGO Change Control Sys-

page 8 of 16

LIGO-T96004-00-C

Table 1: SMR Priority Assignment

Priority Description

1 The problem prevents LIGO from operating to its specified per-
formance as a detector.
The problem jeopardizes personnel safety or machine protection.

2 The problem adversely affects either an essential capability spec-
ified in the requirements or the operator’s accomplishment of
that capability, and no work-around is known.

3 Same as 2 above, but a work-around is known which may be put
in place as a temporary solution.

4 The problem causes inconvenience or annoyance but does not
affect a requirement.

5 All others not falling into a category above.

tem prior to further assignment to a software engineer.

Once the SMR has been analyzed and response returned to the CDS task leader, it is reviewed and
assigned for implementation. Here it undergoes the same procedures as apply for new software
development. Upon completion of test, the SMR is completed by the developer and returned to
the CDS Task Leader for closeout.

From date of origin/receipt until closeout, the status of SMR’s will be updated on a weekly basis,
with a status page made publicly available such that end users and management can be kept
apprised of SMR progress.

3.4.3.6 Configuration Management Documentation and Reporting

The primary reporting will be in the form of a Configuration Index (CI). During the design phase,
software components will be identified, which are then tracked thoughout the software lifecycle.
One CI is prepared for each of these components. The CI includes an historical record section,
milestone data, list of associated documentation, and a list of applicable SMR or other project
change requests (including status/disposition).

4 TECHNICAL PROCESS

4.1. Software Development Life Cycle

Software development will follow the standard waterfall life cycle as much as possible. This
cycle is shown in Figure 2: Software Development Cycle. While this outlines the general flow of
development, reiteration between certain phases will occur, for instance, prototype and test may
indicate that requirements need to be changed/updated or new approach taken.

page 9 of 16

LIGO-T960004-00-C

Baseline software dev.
Documentation

I
Conceptual | Prelim Design ; Final Design ;Integrationllnstallation ;
Phase | Phase | Phase | Phase |
| | | |
SDP I | |
Concept ; ! I !
DRR : :
SRS | |
Prelim. Design | |
Prototype | |
Test I I
' I
PDR (
Final Design |
|
I

FDR ——p» Integration —V

Commissioning

v

Maintenance

Figure 2: Software Development Cycle

4.1.1. Conceptual Phase

During the conceptual phase, a plan is developed (this SDP document), along with a conceptual
design. This conceptual design is based on early extraction of requirements from the relevent
DRD, which is an overall system performance specification. The Conceptual Design Phase ends
with a formal DRR.

4.1.2. Preliminary Design Phase

During the premininary design phase, software and electronic engineers will work closely to
develop an overall system design, determining which parts of the system will be implemented in
hardware and which in software. As this develops, requirements will be imposed on the software,
which will be documented in a SRS. These requirements shall be documented in a modular fash-
ion to coincide with a CIM model developed for the particular system, such that design documen-
tation and requirements can be closely coupled, both for ease of review to ensure designs meet
requirements and also to develop a Software Test Plan (STP) which verifies that the software
implementation meets the requirements. An example model, taken from the PSL, is shown in Fig-

page 10 of 16

LIGO-T96004-00-C

ure 3: PSL CIM Model. Lower levels of detail can be found in the CDS PSL DRD.

Site (Level 5) (LIGOSite)

Local Control Unit (Level

(Argon Laser) Q’hase ModulatioxD (Power Stab.) CFrequency Sta@ C Laser Steering)

Figure 3: PSL CIM Model

During this phase, prototype software will also be developed and tested, with emphasis on those
components which are determined to have a higher risk.

At the end of this phase, all design issues should have been resolved and a complete design pre-
sented at a formal PDR.

4.1.3. Final Design Phase

In this phase, any outstanding design issues from the PDR are resolved, and final code implemen-
tation begins. A “Release 0” software package should be completed prior to a FDR at the end of
this phase. “Release 0” is defined as that which meets the minimum requirements to begin instal-
lation and commissioning of LIGO.

“Release 0 shall contain:
1. Code necessary to allow commissioning of the system.
2. Supporting documentation of successful completion of testing defined in the STP.
3. The first set of software system documentation.

page 11 of 16

LIGO-T960004-00-C

4.14. Integration and Commissioning Phase
Software integration and commissioning will proceed through various stages:

1. When moved from the development to the test areas, initial integration will take place.

2. Second level integration and commissioning will occur, where possible, on any systems
deployed to LIGO prototypes, such as the 40 meter lab.

3. If schedule permits, full up CDS systems for the interferometers will be assembled within the
electronics shop areas at the LIGO sites. Here, as much integration and pre-commissioning as
possible will take place prior to final installation.

4. Upon final installation, commissioning will take place in accordance with a LIGO commis-
stoning plan.

4.2. Software Development Methodology

4.2.1. Software Standards

This software will be developed in accordance with the standards of the LIGO CDS group for all
software development projects, as outlined in LIGO document TBD.

4.2.2. Design and Development Tools and Techniques

4.2.2.1 CASE and Development Tools

The CDS software will be designed and developed based on the present capabilities of the Exper-
imental Physics and Industrial Control System (EPICS) software package, distributed by Los Ala-
mos National Laboratory (LANL). For this project, EPICS will be used “as is” for the bulk of the
activities, except to address those issues where use of EPICS is analyzed as not being able to meet
particular CDS requirements.

Particular tools to be employed from/with the EPICS toolkit are:

1. Microsoft Access for EPICS database generation. An interface has been developed at LIGO to
allow EPICS database generation with the commercial Microsoft Access product. Figure 4: CDS
EPICS Database Tables shows the table layout for this database. The database will automatically
generate EPICS databases, makefiles, and real-time processor startup files based on user entries.

page 12 of 16

91 Jo ¢1 a8ed

Site Table

System Table

Site
Site Code
Site Directory

——— Site

System
System Code
System Directory
DRD

SRS

Test Plan

System Design Doc
Software Design Doc

LCU Table

L. .—p» System

LCU —<
LCU Code
Processor Type
Processor Name

IP Address
Slot 01 Module

Slot. N Module
LCU Directory

EPICS Rev. Table

EPICS db Name
Revision Note

Revision Date
EPICS DB Table e
€0 Revision Author
EPICS db Name
db Release Area
db Release Number [EPICS Record Table
db Author EPICS db Name
EPICS Records
\ Custom Code Table
LCU | Code Rey. Table
Code Module Name — Code Module Name
CM Release Area Revision Note
CM Release Number Revision Date
CM Type (SNL,C,C++ Revision Author
CM Author

Figure 4: CDS EPICS Database Tables

D-00-¥0096.L-ODI']

LIGO-T960004-00-C

2. The Sammi product from Kinesix will be used to develop all operator GUIL. This is an extension
developed by LIGO and is not a part of the general EPICS release.

3. The ARchiver (AR) tool will be used to setup/initiate data archival; the tcl/tk ARchive
Retrieval (ARR) tool will be used to extract and display archived data.

4. EPICS State Notation Language (SNL) will be used to develop real-time sequencing software.

5. The ALarm Handler (ALH) software will be used to develop alarm processing structures, along
with the monitoring, reporting and archiving of PSL alarms.

4.2.2.2 Programming Languages

In those cases were EPICS will not meet a requirement, or other new software needs to be devel-
oped, the ‘C’ language will be used, designed with standard software design tools.

4.2.2.3 Documentation Tools

All documentation will be produced with the LIGO standard publishing packages and tracked
through the CDS database using Microsoft Access. When approved, this documentation will be
reproduced on the World Wide Web.

4.2.3. Target Systems

Target systems are defined as those hardware platforms and software systems on top of which the
CDS software will operate.

4.2.3.1 Operating Systems

Two computer operating systems will be employed in this project:
1. Sun Solaris for code development on Sun workstation targets.
2. VxWorks real-time operating system for all VME based processor targets.

4.2.3.2 Hardware Resources

4.2.3.2.1 Development Hardware

The software development hardware will be Sun workstations.

4.2.3.2.2 Target Hardware

The project involves two types of target hardware:
1. Sun workstations for operator and file services.
2. VME-based processors for real-time control applications.

4.24. Security

Routine log-in procedures requiring user identification and password provides access control to
CDS software areas. These areas will be open to all LIGO personnel for data “read”, but will be
write accessable only by the CDS group members. At minimum, weekly backups of all files will

page 14 of 16

LIGO-T96004-00-C

be maintained in order to prevent catastrophic loss of data.

4.2.5. CDS Code Directory Structure

Figure 5: CDS Software Directory Structure shows the planned layout of the CDS software area.
At the highest level will be a CDS home directory, followed by a site and docs directories. All
CDS documentation will be maintained in the docs area to provide a common reference location.
Each of the LIGO sites (Caltech, MIT, Hanford, and Livingston) will have a site directory.

Below each site area tool release areas (EPICS, Sammi, VxWorks, etc) which contain the latest
releases of CDS software development tools. For each defined LIGO system at a site, there will
also be a system directory, below which all of the application software is kept. Operator GUI will
be contained in the OPI directory below the site level. Though not shown, the OPI directory will
be subdivided into the same development, test, SDL and release areas as shown below the LCU
area.

Below each system directory will be Local Control Unit (LCU) directories, each containing
development, test, SDL and release areas. An LCU is actually a processor target on which the

code is to execute. The development, test and release directories are similar in structure, each con-
taining:

A database directory, which contains the EPICS databases and database compiler.

A makefile, which causes the compilation of all LCU source code.

A target area, where the startup script for the LCU is located, along with all object code.
A source area, where custom i.e. non-EPICS ‘C’ source code is stored.

N

page 150f 16

91 Jo 91 a8ed

CDS Home Directory

¢

Site Directory

EPICS Release Area

Sammi Release Area

System Area OPI Area
VxWorks Release Area l
Sammi Displays
LCU Area
Development Area Test Area SDL Area Release Area
Database Directory Makefile Target Area Source Area
.db Files EPICS Databases Object Code Startup File Custom Code

Link to db2database

Figure 5: CDS Software Directory Structure

0-00-7000961.-ODI'1

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note LIGO-T960004-A - C 2/_1_{22__‘

CDS Software Development Plan and
Guidelines

R. Bork

Distribution of this draft:

ECTRONIC
B Py

California Institute of Technology
LIGO Project - MS 102-33
Pasadena CA 91125
Phone (818) 395-2966
Fax (818) 304-9834
E-mail: info@ligo.caltech.edu
WWW: http://www.ligo.caltech.edu

file /opt/CDS/h/cdsdocs/Global/T960004_Folder/T960004A .fm5 - printed December 1, 1997

LIGO-T960004-A-C

1 Introduction 4
L1, PrOJECt OVEIVIEWeoiivriireicniieriiieieees sttt esne vt se s esess st b esess s nnene s 4
1.2. Project DELVETabIEsccovviviriiiiriieeisicteietetcer ettt 4
1.3. Evolution of the SDPc.ccccoiiiiiiiiiiiieeee et eree et ve e 4
1.4, Reference Materialscccouviieeecireniieieseseeeeseeesse e ssesseseseses s s s sens 4
L.5. Definitions and ACIONYMScccevevvirerenirieeiieieeiesesesseiesessesesseseesseseesesesessens 4
1.6. Document PIECEAENCEc.ccuvuririrrerrrereesieerissieseiccesansasassssssssesesesisssssssesssens 5
2 Project Organization)
2.1. Process MOGELccooviiiieiiniiniiiieieiet ettt sttt S
2.2, Organizational SrUCLUIEc..ccvivvivieeeieeciiieer et este e erts e eee b sbe s 5
3 Management Process S
3.1. Management ODJECLIVESc.cccceriiririerireniiiinieesieese et eras e eee et n st ess v s 5
3.2. Risk Managementc.coceoiiuiiiiiininiininieciesiecesseseesees s s eesssnestasbesreesnasessens 6
3.3. Personnel Safety and Equipment Protectionccccociivivienenccnvearinnuenrensenuenee 6
3.4. Monitoring and Controlling Mechanismsccocoreriminrerineniesininneninsesieneenes 6
3.4.1. FOrmal REVIEWScc.ccuecerieieiiieniiiiecsreesie e e s essess et e e se s snsassens 6
3.4.2. Informal REVIEWSccceeeriiirieiiiniiieresinienreeeetesesvess et et seese s 6
3.4.2.1 Design Walkthroughsc.cccoecviiiinmnnnniinicccnnnnieeeen 6
3.4.2.2 Code WalKthroughscccceceevereresienenenesesesinnssessessessesees 7
3.4.2.3 Component Informal ReViewsccccevveviviiiinenenicnanns 7
3.4.3. Software Configuration Managementccccevevrinieceenenenenennennee 7
3.4.3.1 Flow of Configuration Controlcc.ccceevevenvcninecnvcnennenne. 7
3.4.3.2 Configuration Control ToolSccccevveeeciirieniiininnennennenn, 8
3.4.3.3 Configuration Identificationco.ccevceieeveniienvceinicnenas 8
3.4.3.4 Handling of Project Mediac.ccecenvreernncciiniieninincinens 8
3.4.3.5 Enhancements and Changes (Corrective Action) 9
3.4.3.5.1 Software Maintenance Requestc.c.cceeeeceeneen 9
3.4.3.5.2 Corrective Action Processcocovceeviineervenienneene 9
3.4.3.6 Configuration Management Documentation and Reporting .10
4 Technical process 10
4.1. Software Development Life Cyclecccvccrimvnnininnincniiciecisneens 10
4.1.1. Conceptual Phasecccceererinenceieniniiiiiienenescsicsitseeeesesvessenens 11
4.1.2. Preliminary Design Phasecccccovevminininninnncnicniiiieseseeecnies 11
4.1.3. Final Design Phasecccooevivniniicinnniiniceicniinencnenneesienns 12
4.1.4. First Release Software Developmentccc.covevinininenniniieniinnnnien 12
4.1.5. Integration and Commissioning Phasecccceceeveveinniinnicniincnnin 12
4.2. Design and Development TOOLScccccocevreierieniniiiniciieiiec e, 12
4.2.1. CDS PIOCESSOIS ...oruieiiiiiiiieriesieeiesieesieseestessesnesieessesiseenessreessessessseane 12

page 1 of 31

LIGO-T960004-A-C

4.2.1.1 Development Hardwarecccoeverinnenneninrecenenennerinennens 12
4.2.1.2 Target Hardwareccccovevveiericenimnnieinneneeneeeneseesesaenens 12

4.2.2. CASE and Development TOOIScccouevercerenininnrereecnsiensessenseseenens 12
4.2.3. Programming Languagescccceveiereneininniiisensnneneesesessnenans 13
4.2.4. Documentation TOOLSccccceevuieiieniiiieriesieieccreere e 13
4.2.5. Operating SYSIEIMSccuriererenreieriunienenienieseainssessessesesssessaesaeesses 13
4.2.6. COMPILELSeoviviiiiiiininieieiieisietee ettt sttt bt a s aseses 13
4.2.7. Human-Machine Interfacesccocevviercenienieniiniiniesieeneeeriisnenns 13
4.2.7.1 General CoNtrolscccoeveevevecieriesiesieneireereereeeeeeseenseere e 13

4.2.7.2 Additional HMIccccooiivininiininceeeiiescsneseesvenreeveceene 13

4.2.8. Data Archival and Retrievalccovveverneniiiniiinieniccecieniecnceen, 13
4.2.9. Alarm Managementcccceeeerierrenenenenesesnnnesesesseeseessesesresiens 14
4.2.10. Save and RESLOTEccceeverieeieerieiiieececriesiesaenerese e esseeseesvesvesnsens 14
4.2.11. System DIiagnoStiCsccceceveeerieririeriereneeessestnseeeseeesessessessesessenesses 14
4.2.12. Application Programmer’s Interfacecccccevvvrcreneecennnnneeneennennnes 14
4.3, SECUIILY covivviiiiinieieirenieisie sttt ettt et e bt e e s be bbb e e ss st e e s bt sbesb e s eeenens 15
4.3.1. Writing files on to CDS SYSLEMScccceverurrerrerirrenienieesrenseseesinensenseses 15
4.3.2. Interaction with CDS PIrOCESSEScccevrmiriiiiiieneniirinsnciiiseeseeiennes 15
4.4. Software Development GUIAEINESc.covvrverenininiiiieeeesessnene e 15
4.4.1. INrOdUCHION ...ovveiiiiiiiiciiecieerteeieestr et saeeere e sta e aessree s e seeesbaesanaennes 15
4.4.2. File Organizationc.ccccoccevereiiininecienrcniiniiseeeeseseeeesse st eenenssnees 15
4.4.2.1 File CONLENLSoevvieevrerireeiiieiiesireestieeianeenseesieessseesssensanessaenns 15

4.4.2.2 Source File Layoutcccooveniniiiniininenccniiicnenenenne 16

4.4.2.3 Header File Layoutccccccecvviviniininncncncniiiiicnicncnens 16

4.4.2.4 Header File Guardc..occoevieniieeiienienniseecseeeressae e 17

4.4.2.5 PrOLOZ ..ooviiiririiteicceectitt sttt st st sb e e 18

4.4.3. Naming CONVENLIONScccoveveerieriirierienrereneeseiassessessessesnsssesaessessesses 20
4.4.3.1 EPICS RECOIAS ...ceovvviriiriinierenieesieeieaesaesseessessreeeaennessesanes 20
4.4.3.2 Conventions within C/C++ Softwareccccoevevercvenniirinenns 21
4.4.3.2.1 Descriptive Namesc.cccovvrververniecsiiniinenscnsunnns 21

4.4.3.2.2 Valid Charactersccovrviervrrccieririeniiennenensesseens 21

4.4.3.2.3 File NAIMEScocveereiriiieriecrenitenee e sreseesinesseseeesss 21

4.4.3.2.4 Function Namesccecceeernivrnininenncnnencnennenennnes 21

4.4.3.2.5 NAMESPACESceeeverrerveiiiririinieneesiseiessseienesssssenss 21

4.4.4. Style GUIAEINESccveviiiiieeieeiie et et e et cice e e sabae e 21
44,41 LINES coveeieiriiieeeieitectesteeiestessesieesseessesssesieessesasesssssnessseseaenees 22
4442 Line Lengthcccccoovvininiiniieiciniiiiieccn e 22
4.4.4.2.1 Statements Per Linecccccoevviviieniineninineenieenne 22

4.4.4.3 COMIMENLS ...ceeeevvieveerererireasieeressreesieesoreesnrensreessssesssanssnessasens 22
4.4.4.3.1 Automated Documentation Comments 22

4.4.4.3.2 Code Block Commentscc.ccceeveevminierinicinnennnne 22

4.4.433 Blank LiNescccccccevvieniriiinienensieniennecieseesreenne 22

4.4.4.4 FOrMAattiNgcceveeriviiririeninneenieniesieeessiesnsssesssssisesssseenses 22
4.4.4.4.1 Spacing Around Operatorsccoevvvevirirvrnnenns 22

4.4.4.4.2 Indentation and Bracesc.ccceeervuiviriicnniinnnnn. 23

page 2 of 31

LIGO-T960004-A-C

4.4.4.4.3 Pointer and Reference Positioncocccvevveverevennne. 24

4.4.4.5 STAEINENLS ..ovvviveriiiiiireiireeeeecreessteeieeessessseessressseeessesssesssseons 24
4.4.4.5.1 Control Statementsovvveeevvveeisvririsrerssiseessssnecesns 24
4.4.4.5.2 Conditional Statementsccoeeeeremvveiereerireenenns 24
4.4.4.5.3 Include Statementsccveevvevreereeriniiisnienseeenennes 24

4.4.4.6 DeClarationsccccceermvevvreireenvensueessesiiseesseeeiseosssssssesssssenns 25
4.4.4.6.1 Variable Declarationccceeevvveeerineceiceiineeeennns 25
4.4.4.6.2 External Variable Declarationcccccccoovvenevieennn. 25
4.4.4.6.3 Numeric Constant Declarationc..c.coovvveeerennns 26
4.4.4.6.4 Enumerated Type Declarationcccecvrennrnnene. 26
4.4.4.6.5 Struct and Union Declarationccceceeeeevivneeennn. 26
4.4.4.6.6 Class Declarationcccceecovveeeriicnneeeniereeisssiineenne 26

4.4.5. Recommended Programming Practicesc.ccceonvviernicieninecncnnns 27
4.4.5.1 Placement of Declarationscceccueeeveevveveersniunnneeeceisinnneenns 27
4.4.5.2 SWitCh SLAtEMENLSooevvvieiiiiieeeeiiiiie e rtre e erae e e erarees 27
4.4.5.3 Return Statementsc.cc.eeiviiiiereeiniiiiieonireeecreinneseennsrseseessnens 27
BA.5.4 CASES woveeiiiiiiieeeiirriiieeeiiissssstiieeeessressisrttereresenseressanretenreseansas 27
B 4.5.5 LALEIALS .ovevveieneeieiiiitiieiecctiecccsrte e s sieee e e sire e e s eeaabbae e s areeeaeans 27
4.4.5.6 Explicit Initializationccccecceevernerniencnnecirinnenncnieneinnens 27
4.4.5.77 Constructs t0 AVOIdccceeevieeiiiiiiiiiiicccieir s ccseseeeesenans 28
4 4.5.8 MACTOS ..uvvveeirrieiiinrireeieiiteeiestrereeseisessesssssasesssssssenessssasessssses 28
4.4.5.9 Debug Compile-time SWitChc.cccoevvvvinininiiiinninciiiin 28
4.4.5.10 Memory Managementccccouvermneciniiinincninniessenens 28
4.4.5.11 CONSIMUCLOLS ...ocvviivveererrrrisreeirreeeensneesssiecessesssrneosssnssesssssenes 28
4.4.5.12 DESIIUCLOTS ...eoeiiuvieeeeeiiiieeiiirteeeestiiieeseiirtteesassanesseesresesenssnes 28
4.4.5.13 Argument Passingc..cccoceviniiiniinininiiinn 29
4.4.5.14 Default Argumentsccceeceevieniereniciieninenniecierennenneens 29
4.4.5.15 Overriding Virtual Functionscccccceiiiinninnininiinnn, 29
4.4.5.16 Const Member FUNCHONSccooecvvvvvieeeeeirieiiiinrereeeeeeessnenans 29
4.4.5.17 Referencing Non-C++ Functionsccceeeveiiiiiinicnnnnnnn, 29
4.4.5. 18 NULL POINEL ..veccvvververiiivirreenrireecreeisineeceiesesesresesssesesseessnes 29
4.4.5.19 Enumerated TYPES ...c.ccccevmririiniiininicniiieiineie s 29
4.4.5.20 Terminating Stream Outputcccoveriiiviieniiniiniininneiienn 30
4.4.5.21 Object Instantiationceevvininiiininininiiinie, 30
4.4.5.22 Encapsulation ... 30

page 3 of 31

LIGO-T960004-A-C

1 INTRODUCTION

This Software Development Plan (SDP) describes the software management and development
process for the Control and Data System (CDS) for LIGO.

1.1. Project Overview

1.2. Project Deliverables

The project objective is to provide all software as necessary to control and monitor the LIGO sys-
tems. This includes the real-time software as necessary to provide automated closed loop control,
networking communications to move data in a distributed computing environment, and operator
services, such as operator displays, alarm management, slow (10Hz or slower) data archival/
retrieval, and system state save and restore capabilities. This does not include high speed (>10Hz)
LIGO data acquistion, which will be covered in a separate document.

1.3. Evolution of the SDP

This is intended to be a living, working document over the lifecycle of the project. It will be
reviewed for accuracy prior to any formal reviews, whenever higher level LIGO management pol-
icies are published to ensure adherence to LIGO standards, and when plan changes are approved
which affect this document.

1.4. Reference Materials

1. CDS Control and Monitoring Requirements Document LIGO-T950054-C
2. CDS Control and Monitoring Conceptual Design LIGO-T950120-C

1.5. Definitions and Acronyms
CDS - Control and Data System

CI - Configuration Index

CIM - Computer Integrated Manufacturing
DRR - Design Requirements Review

EPICS - Experimental Physics and Industrial Control System
FDR - Final Design Review

IFO - Interferometer

PDR - Preliminary Design Review

PSL - Pre-Stabilized Laser

SCCS - Source Code Control System

page 4 of 31

LIGO-T960004-A-C

SDL - Software Development Librarian
SMR - Software Maintenance Request
SNL - State Notation Language

SRS - Software Requirements Specification
STP - Software Test Plan

TBD - To Be Determined

1.6. Document Precedence

In the event of conflict between this document and other LIGO documentation, the order of prece-
dence, for this particular project, shall be:

1. LIGO Project Management Plan

2. LIGO Detector Implementation Plan

3. LIGO Project Cost and Schedule Documentation

4, Reference 1

5. This document

2 PROJECT ORGANIZATION

2.1. Process Model

The basic development process model is described in Section 4 of this document. Exact proce-
dures and management processes will be in accordance with the LIGO Detector Implementation
Plan. Project schedule and milestones are officially maintained by LIGO Project Management.

2.2, Organizational Structure

LIGO interferometers are to be developed as a team effort within the LIGO Detector Group. This
team is made up of members from both the CDS and Interferometer (IFO) sections within the
Detector Group. While CDS will be the primary provider of the software, since the final product
is the detector itself, all members involved share responsibility in its successful development.

3 MANAGEMENT PROCESS

3.1. Management Objectives

The primary goal of this project is to provide quality software which is an integral part of a Detec-
tor Group team effort to provide fully functioning interferometers which meet the requirements of
the LIGO detector. Management objectives toward meeting this goal are:

- Early guidance and planning of the project

- Risk Assessment and Analysis

- Incorporating configuration control procedures

page 5 of 31

LIGO-T960004-A-C

- Establishing standard software procedures and coding areas.

3.2. Risk Management

Risk will be analyzed throughout the project lifecycle in terms of technical, cost and schedule
risks. Risk analysis shall be presented at each review, along with mitigation techniques.

3.3. Personnel Safety and Equipment Protection

The CDS system will be analyzed from the point of view of personnel safety and machine protec-
tion throughout the system lifecycle. Items directly linked to personnel safety will never be
resolved in software as the first line of protection. In those cases, hardware will always be the pri-
mary safeguard, with software systems only employed in a backup and monitoring role.

Equipment protection may be done in software, depending on the outcome of risk analysis and
management decisions. In those cases, the software involved will undergo higher levels of scru-
tiny during the development and test cycles.

3.4. Monitoring and Controlling Mechanisms

Monitoring and control mechanisms shall be in accordance with LIGO project management plans.

34.1. Formal Reviews
All CDS designs proceed through a three stage review process:

* Design Requirements Review (DRR)
* Preliminary Design Review (PDR)
* Final Design Review (FDR)

All reviews are of complete CDS subsystems, which includes electronics as well as the software
necessary to meet requirements.

3.4.2. Informal Reviews

The CDS group software developers must work as an integral part of a team with other members
of the CDS and the scientists assigned to the LIGO detectors to provide a tightly integrated, func-
tional product. As part of this interaction, informal reviews will be conducted within the LIGO
team of scientists and engineers.

34.21 Design Walkthroughs

This is an informal method used to determine the completeness of a design. The designer con-
ducts the review with attendees representing all affected interfaces. This would also be a forum
for the verification of requirements and trade studies.

page 6 of 31

LIGO-T960004-A-C

3422 Code Walkthroughs

Verification of design is the primary goal of code walkthroughs. A secondary goal is to check
compliance with the CDS adopted software style (TBD), which is important for long term mainte-
nance of the code. Code walkthroughs are particularly important for complicated logic, often
found in distributed and/or real-time systems. These walkthroughs will be typically held within
the CDS team.

34.2.3 Component Informal Reviews

These reviews are frequent, and are intended to allow software to be seen “with a second set of
eyes”. They occur during work in progress to help verify, at each step, functionality and capabili-
ties of the code, such that a long development has not used up a fair fraction of the schedule prior
to a review. They also help ensure that more than one person is familiar with software compo-
nents.

3.4.3. Software Configuration Management

Software configuration management includes the activities of configuration identification, change
control, status accounting, and audits. Baseline software configurations will be provided by the
CDS librarian to LIGO Configuration Control. Pre-baseline development configurations as well
as baseline configuration will be controlled by the CDS librarian. The approved baseline docu-
ments for each component including SRS, STP, and SDP will also be controlled in accordance
with LIGO configuration management procedures.

3.43.1 Flow of Configuration Control

The software and documentation developed for the LIGO detector systems will move through dis-
tinct areas, as shown in the following figure, to help maintain configuration control. The general
flow of software and documentation is:
1. Development Area: Area in which software engineers work on code in progress. This area
has symbolic links to the Release Area, to ensure the developer is using the latest released ver-
sions of software operating systems and tools.
2. Proto/Test Area: Once a developer is satisfied that particular code is ready for release, the
code and documentation is moved into a Prototype/Test area. Here the code is integrated and
independently tested/operated as part of an overall system. Code may move back and forth
between these first two areas as bugs/faults are detected and repaired. Faults/desired correc-
tions are documented with a Software Maintenance Request (SMR) (discussed later), which
travels with the code and is maintained in a database to track the history of software.
3. Software Development Librarian (SDL) Area: This is the repository for all code which has
passed test and is ready for installation. The assigned librarian is then responsible for integra-
tion of all such code and coordinates the update into the Release Area.
4. The Release Area is where all installed LIGO operational systems derive their software.

Further expansion and definition of these areas is covered in the Technical Process section of this
document.

page 7 of 31

LIGO-T960004-A-C

Development Area Sftwre Dev. Librarian Area

Proto/Test
Release Area
\ N
: \ N

AN
\ .’ N

- ’ LIGO Release Area

Sftwre Maintenance

Request

----------------------- { LIGO Operations ’

Figure 1: Software Configuration Control Flow

3432 Configuration Control Tools

CVS is to be used to provide configuration control.

34.3.3 Configuration Identification

The configuration identification for each code module will be the revision number assigned auto-
matically by the CVS. Once the SDL has integrated the various code modules, and it has been
approved by the CDS Task Leader for release, the integrated code will be put under a unified CVS
revision number and released.

The release numbering scheme shall be a three number convention in the form x.xx, such as 1.23.
The first number shall indicate a major release. Major releases are typically limited to when the
code has undergone major core structural changes or a significant number of enhancements have
been made. The second number is changed when a release has new features/enhancements. The
final number indicates that bug fixes have been made without the addition of particular features.

3.4.3.4 Handling of Project Media

All CDS documents, source files and build instructions will be locally controlled by the SDL.
Whenever a CDS product is approved and baselined (sent to the Release Area), a copy of all mate-
rials shall also be turned over to the LIGO Integration Group for LIGO Document Control.

page 8 of 31

LIGO-T960004-A-C

3.43.5 Enhancements and Changes (Corrective Action)

3.4.3.5.1 Software Maintenance Request

Once software has left the development area, all requests for enhancements or corrections are
documented in an SMR. An SMR has three basic parts:
1. Problem reporting/enhancement request area submitted by the software end user.
2. Analysis section, wherein the assigned software engineer analyzes the problem/request and
provides recommendations to resolve the request.
3. Resolution Area: Information on how the request/problem was resolved.

A Mircosoft Access database will be kept of all SMR to help trend and monitor software develop-
ment projects, which may point to certain areas which may need closer investigation for future
software releases. Access forms will be electronically available for submission of SMR, along
with Access reports for hardcopies of SMR and database queries.

3.4.3.5.2 Corrective Action Process

Once an SMR is originated, it is submitted to the CDS Task Leader. He/she then assigns both a
priority to the SMR and a person to be responsible for analyzing/resolving the request. Priorities
are assigned according to the following table.

Table 1: SMR Priority Assignment

Priority Description

1 The problem prevents LIGO from operating to its specified per-
formance as a detector.
The problem jeopardizes personnel safety or machine protection.

2 The problem adversely affects either an essential capability spec-
ified in the requirements or the operator’s accomplishment of that
capability, and no work-around is known.

3 Same as 2 above, but a work-around is known which may be put
in place as a temporary solution.

4 The problem causes inconvenience or annoyance but does not
affect a requirement.

5 All others not falling into a category above.

In the event an SMR is a request for enhancements or change in project scope, the CDS Task
Leader will determine if this request must be processed through the LIGO Change Control Sys-
tem prior to further assignment to a software engineer.

Once the SMR has been analyzed and response returned to the CDS task leader, it is reviewed and
assigned for implementation. Here it undergoes the same procedures as apply for new software

page 9 of 31

LIGO-T960004-A-C

development. Upon completion of test, the SMR is completed by the developer and returned to
the CDS Task Leader for closeout.

From date of origin/receipt until closeout, the status of SMR’s will be updated on a weekly basis,
with a status page made publicly available such that end users and management can be kept
apprised of SMR progress.

3.43.6 Configuration Management Documentation and Reporting

The primary reporting will be in the form of a Configuration Index (CI). During the design phase,
software components will be identified, which are then tracked thoughout the software lifecycle.
One Cl is prepared for each of these components. The CI includes an historical record section,
milestone data, list of associated documentation, and a list of applicable SMR or other project
change requests (including status/disposition).

4 TECHNICAL PROCESS

4.1. Software Development Life Cycle

Software development will follow the standard waterfall life cycle as much as possible. This cycle
is shown in Figure 2: Software Development Cycle. While this outlines the general flow of devel-
opment, reiteration between certain phases will occur, for instance, prototype and test may indi-
cate that requirements need to be changed/updated or new approach taken.

page 10 of 31

LIGO-T960004-A-C

I
Conceptual | Prelim Design; Final Design ; Software ; Integrati_on/ ;
Phase | Phase | Phase | Dev. | In;t:llatmn |
ase
! ! i I |
SDP | | | |
Concept ; ! | ! !
DRR | ' '
Prelim. Design ! : |
Prototype ! '
Test | ' |
I l |
| i |
PDR ! : :
Final Design i | l
FDR I [
Rev1.0 software dev. :
Documentation|
- Integration —v
Commissioning
Maintenance

Figure 2: Software Development Cycle

4.1.1. Conceptual Phase

During the conceptual phase, a Design Requirements Document (DRD) is developed for each
LIGO CDS subsystem. This DRD is for the entire subsystem and does not differentiate between
electronics/hardware and software. A subsystem conceptual design is also developed from these
requirements and documented in a conceptual design document. This phase ends with a formal
Design Requirements Review (DRR).

4.1.2. Preliminary Design Phase

During the premininary design phase, software and electronic engineers will work closely to
develop an overall system design, determining which parts of the system will be implemented in
hardware and which in software. Components of the resulting design which are determined to be
technical risks are then prototyped during this design phase. The resulting designs and prototype
tests are then documented in a preliminary design document, which is formally reviewed at the
Preliminary Design Review.

page 11 of 31

LIGO-T960004-A-C

4.1.3. Final Design Phase

In this phase, any outstanding design issues from the PDR are resolved, and final code designs are
documented. The subsystem under design is then reviewed, along with any electronics, in a Final
Design Review.

4.1.4. First Release Software Development

During this phase, a Release 1.0 software package is developed. Release 1.0 is defined as that
which meets the minimum requirements to begin installation and commissioning of LIGO.
Release 1.0 shall contain:

1. Software Test Plans (STP) which exercise the software and ensure all requirements are met.
2. Code necessary to allow commissioning of the system.

3. Supporting documentation of successful completion of testing in accordance with the STP.
4. The first set of software system documentation.

4.1.5. Integration and Commissioning Phase

Software integration and commissioning will proceed through various stages:

1. When moved from the development to the test areas, initial integration will take place.

2. Second level integration and commissioning will occur, where possible, on any systems
deployed to LIGO prototypes, such as the 40 meter lab.

3. If schedule permits, full up CDS systems for the interferometers will be assembled within the
electronics shop areas at the LIGO sites. Here, as much integration and pre-commissioning as
possible will take place prior to final installation.

4. Upon final installation, commissioning will take place in accordance with a LIGO commis-
sioning plan.

4.2, Design and Development Tools

4.2.1. CDS Processors

4.2.1.1 Development Hardware

The software development hardware will be Sun workstations.

42,12 Target Hardware

The project involves two types of target hardware:
1. Sun workstations for operator and file services.
2. VME-based processors for real-time control applications.

4.2.2, CASE and Development Tools

The CDS software will be designed and developed based on the present capabilities of the Exper-
imental Physics and Industrial Control System (EPICS) software package, distributed by Los Ala-
mos National Laboratory (LANL). For this project, EPICS will be used “as is” for the bulk of the

page 12 of 31

LIGO-T960004-A-C

activities, except to address those issues where use of EPICS is analyzed as not being able to meet
particular CDS requirements.

4.2.3. Programming Languages
In those cases were EPICS will not meet a requirement, or other new software needs to be devel-

oped, the ‘C’ language will be used, designed with standard software design tools.

4.2.4. Documentation Tools

All documentation will be produced with the LIGO standard publishing packages and tracked
through the CDS database. When approved, this documentation will be reproduced on the World
Wide Web.

4.2.5. Operating Systems

Two computer operating systems will be employed in this project:
1. Sun Solaris for code development on Sun workstation targets.
2. VxWorks real-time operating system for all VME based processor targets.

4.2.6. Compilers

Compilers for C and C++ will be provided. However, for direct connection of software to CDS
real-time data, only C code will be supported. This is due to the fact that all data interface routines
presently available to provide data connections to EPICS channel access are written in C. There
are no plans to provide C++ or Fortran versions of this API software.

4.2.7. Human-Machine Interfaces

4.2.7.1 General Controls

For purposes of both developing HMI and providing the primary interactive runtime HMI, the
SAMMI product from Kinesix and the standard EPICS extension Motif Editor and Display Man-
ager (MEDM) will be supported.

4.2.7.2 Additional HMI

Additional HMI will be supported for various purposes. At present, xmgr is used for plot displays,
as an example. As analysis software and other special purpose software is developed within
LIGO, the CDS will incorporate and support those packages which become defacto standards.

4.2.8. Data Archival and Retrieval

The bulk of the LIGO data will be acquired and archived by the DAQS, as described in LIGO
T970136-00-C. The control and monitoring systems will be provided access to this data and data
archival/retrieval software tools via CDS networks.

page 13 of 31

LIGO-T960004-A-C

4.2.9. Alarm Management

Alarm enunciation, display and logging will be provided using the EPICS alarm manager (ALM).
ALM allows for:

* The definition and structuring of alarm trees via an ascii editor using ALM keywords and

guidelines. |
* Alarm enunciation and display of the alarm tree. |
* Alarm logging and playback. |
* Defining and displaying operator guidance along with the alarm states.
* Defining and allowing operator execution of real-time processes to deal with alarm conditions.

4.2.10. Save and Restore

Save and restore provides the capability to take “snapshots” of CDS control settings/readings to
allow resetting control parameters to the same configuration at a later time. The Back-Up and
Restore Tool (BURT) of EPICS will be used to provide this functionality.

BURT provides:

* Collection and storage to user defined files of system setpoints and readings. Data to collect is

defined by the user in ascii files using BURT keywords and structures.

Resetting of setpoint parameters on demand from the operator. |
Viewing and modification capabilities prior to resetting values.

Concatenation of multiple back-up files.

Basic math routines to adjust back-up settings prior to resetting the real-time systems.

4.2.11. System Diagnostics

The initial set of diagnostics will be those provided with the VxWorks and Unix operating sys-
tems, along with the EPICS tools. The EPICS tools include:

* VxWorks command line interrogation, such as listing of records, records attached by SNL
code, and status of I/O drivers.

* Probe: An X window tool which provides display of values from EPICS record fields.

In the longer term, GUI interfaces will be built onto the system to provide:

» Status of all CDS software modules.

» Status of all CDS IYO modules.

* Status of all CDS networks.

* Status of all CDS mass storage systems.

4.2.12. Application Programmer’s Interface

To provide connection of CDS data to code developed by other user’s, the primary API will be the
CA call libraries and the EZCA libraries. Both provide embeddable C calls to allow access to
EPICS data via CA. CA libraries provide the most versatility in asynchronous callbacks, but
require a higher level of programming skills. EZCA provides easier to use function calls, but is
more limited in its capabilities. Instructions for use of these libraries are provided in the EPICS
manual set.

page 14 of 31

LIGO-T960004-A-C

4.3. Security

4.3.1. Writing files on to CDS systems

Routine log-in procedures requiring user identification and password provides access control to
CDS software areas. These areas will be open to all LIGO personnel for data “read”, but will be
write accessable only by the designated CDS group members (code release areas are restricted to
the CDS software librarian). At minimum, weekly backups of all files will be maintained in order
to prevent catastrophic loss of data.

4.3.2. Interaction with CDS processes

The design of the CDS allows setpoint adjustments and readback information to be accessed from
all processors connected to the CDS network. To prevent unauthorized/inadvertent adjustments to
the control system from other processing systems, only CDS computers will be connected directly
to this network. Information (read only) will be provided to systems outside of the CDS network
via a CDS/General computing firewall computer. This machine will require remote login and
passwords and will only be authorized to provide monitoring information. This computer will not
be privileged to allow adjustments to interferometer parameters or software.

4.4. Software Development Guidelines

4.4.1. Introduction

The purpose of these coding standards is to facilitate the maintenance, portability, and reuse of
custom C and C++ source code developed for LIGO CDS systems. Most of the standards in this
section were taken directly from the Coding Standards for C, C++, and Java developed by the
Vision 2000 CCS Package and Application Team. Additions are primarily made to the Naming
Conventions and Prolog sections.

4.4.2. File Organization

44.2.1 File Contents

Files should be used to organize related code modules, either at the class (for C++) or function(for
C) level. The following table identifies the contents of individual files for each language:

Table 2:
File Contents c C++
class declaration (header) n/a X
class definition (source) n/a X
main function X X
function(s) X X

page 15 of 31

LIGO-T960004-A-C

Table 2:

File Contents C C++

globals X X

44.22 Source File Layout
Source files should contain the following components in the order shown:

File contents C C++

Table 3:
File Contents C C++
prolog X X
package imports n/a X
system #includes X X
application #includes X X
external functions X X
external variables X X
constants X X
static variable initializations X X
public methods n/a X
protected methods n/a X
private methods n/a X
functions X X

When its possible to put a needed #include line in the source file instead of in the header file, do
so. This will reduce unnecessary file dependencies and save a little compile time.

4.4.2.3 Header File Layout

Header files should contain the following components in the order shown (note that Java does not
use header files):

Table 4:

File Contents C C++

file guard X X

page 16 of 31

LIGO-T960004-A-C

Table 4:

File Contents

D)
<+
+

prolog

system #includes

application #includes

#defines

macros

external functions

external variables

constants

structs

AR A R A R A R A e R R R o A R A el D)

forwrd declarations

g
0

class declaration

2
)

public methods

2
)

protected methods

2
)

private methods

2,
o

inline method definitions

T Il BT Bl B el I el Bl Bl Bl B B IS Bl e

>

functions

(C++) Small inline methods may be implemented in the class definition.

4.4.2.4 Header File Guard

* (C,C++) All header files should contain a file guard mechanism to prevent multiple inclu-
sion. This mechanism is implemented as shown by the following lines:

#ifndef MeaningfulNameH /1 first line of the header file
#define MeaningfulNameH // second line of the header file
‘ // body of the header file
#endif / MeaningfulNameH // last line of the header file; note comment

page 17 of 31

LIGO-T960004-A-C

44.2.5 Prolog

All software developed for CDS systems shall have a prolog which follows the format shown on
the following page. This prolog is to include:

NowvswN =

8.

9.
10.

Code module name

A brief description of the software and its function.

Any arguments required.

A revision history.

List of documentation references.

Author information.

Code compilation and runtime specifications, including:

* Compilation information

* Runtime target information

* Any additional software (not included within this code file) necessary to link/run the soft-
ware.

Checkoff list that code has met standards: lint, ASCII, POSIX; also, if this software does not

meet standards, comments stating the reasons should be included in this section.

Known bugs, limitations, cavaets

Copyright information

page 18 of 31

LIGO-T960004-A-C

/*
/*
/* Module Name: framew.c

/*

/* Module Description: 40m Data Acquisition System.
/* FrameBuilder (FB)

/*

/* Module Arguments:

/*

/* Revision History:

/*Rel Date Engineer Comments

/*1.0 14Mar97 R. Bork First Release.

/*

/* Documentation References:

/* Man Pages:

/* References:

/*
/* Author Information:
/* Name Telephone Fax e-mail

/% Rolf Bork . (818)3953182 (818)5440424 rolf@ligo.caltech.edu
[*

/* Code Compilation and Runtime Specifications:

/* Code Compiled on: Sun Ultra Enterprise 2 running Solaris2.5.1
/* Compiler Used: Heurikon's gcc-sde

/* Runtime environment: Baja47 running VxWorks 5.2 Beta B.

/* Additional code objects required: fb.db fb.o FrameL.o

/*

/* Code Standards Conformance:

/* Code Conforms to: LIGO standards. = OK

/* Lint. TBD

* ANSI TBD
r* POSIX TBD
J*

/* Known Bugs, Limitations, Caveats:

/* 1) Only frames 17 fast ADC channels due to network limits
/* 2) No timestamps pending receipt of GPS

/% 3) Not all frame fields filled in, only data for now

/*

U,

/*

/* LIGO

/*

/* THE LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY.

/*
/* (C) The LIGO Project, 1996.
/*

/*

/* California Institute of Technology

/* LIGO Project MS 51-33

/* Pasadena CA 91125

/*

/* Massachusetts Institute of Technology

/* LIGO Project MS 20B-145

/* Cambridge MA 01239

/*

/*

page 19 of 31

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

LIGO-T960004-A-C

4.4.3. Naming Conventions

4.4.3.1 EPICS Records

All EPICS database records used within LIGO systems are to have a unique name based on the
following standard guidelines.

HVE:MX-CP5_PT134

I I A | | I
Site 4
System

Subsystem
Assembly
Device/Signal

Examples are:
H1:PSL-FSS_PC112 (Hanford IFO 1 : PSL subsystem - Freq. Stab. Servo _ Signal Name

HVE:MX-CP5_PT134 (Hanford Vacuum Equip. : X arm mid station subsystem - Cryopump
5 _ pressure transducer 134

Where:

1. First field (prior to ‘") is the site/system designator:
» First character is a letter designating the site:
* H for Hanford
* L for Livingston
* C for Caltech
* M for MIT
* Next character set represents the system:
* A number (1-6) for an interferometer
* VE, for vacuum equipment system
* PM, for PEM system
* Third character is a ‘:” (colon), used as a division character for name searches.
2. Second field (preceded by “:” and ended with ‘-’) is the subsystem designator. The following
are examples:
* MX =X arm mid station
* PSL = PreStabilized Laser
* LSC =Length Sensing & Control
» ASC = Alignment Sensing & Control
3. Third field is the assembly designator (preceded by ‘-’ and terminated in ‘_’. In the examples
given FSS would be the Frequency Stabilization Servo and CP5 would be cryopump number
5.
4. Final field is the signal designator. In the second example, PT134 is pressure transducer 134.

page 20 of 31

LIGO-T960004-A-C

4.4.3.2 Conventions within C/C++ Software

4.4.3.2.1 Descriptive Names

Names should be readable and self-documenting. Abbreviations and contractions are discouraged.
Shorter synonyms are allowed when they follow common usage within the domain.

4.4.3.2.2 Valid Characters

All names should begin with a letter. Individual words in compound names are differentiated by
capitalizing the first letter of each word as opposed to separating with an underscore. The use of
special characters (anything other than letters and digits), including underscores is strongly dis-

couraged.

4.4.3.2.3 File Names

Filenames should only contain one period, to separate the file extension. Reserved file extensions
are:

.c // C source code

.cpp /1 C++ source code

.0 /1 Object files

.h // Header files

.db // EPICS database files

.alh // EPICS alarm handler files

.adl // EPICS MEDM files

.dctsdr // EPICS database drivers

st /I EPICS State Notation Language source code

4.4.3.2.4 Function Names

Function names should preferably be an action verb. Boolean-valued functions (those that have
two possible return values) should use the "is" prefix as in "isEmpty()".

All functions must be prototyped, with the prototypes residing in header files.

4.4.3.2.5 Namespaces

Namespace collision should be minimized without introducing cryptic naming conventions by
using the C++ namespace.

44.4. Style Guidelines

The primary purpose of style guidelines is to facilitate long-term maintenance. During mainte-
nance, programmers who are usually not the original authors are responsible for understanding
source code from a variety of applications. Having a common presentation format reduces confu-
sion and speeds comprehension. Therefore, the following guidelines are specified based on the
principles of good programming practice and readability. In the cases where two or more equally
valid alternatives are available, one was selected to simplify specification. In the future, automated
tools may be used to apply style guidelines to source code files.

page 21 of 31

LIGO-T960004-A-C

44.4.1 Lines

44.4.2 Line Length

All lines should be displayable without wrapping on an 80-character display. If wrapping is
required, try to break at an operator, and start the next line with the operator vertically aligned. For
example:

cout << "This is an example of a line which must be wrapped, value ="
<< value << endl;

4.4.4.2.1 Statements Per Line

Each statement should begin on a new line.
4443 Comments

4.4.4.3.1 Automated Documentation Comments

For comments meant to be extracted by an automated documentation tool, follow the Java con-
vention of using the standard C comment delimiters with an extra asterisk on the first one, as
shown:

/**

* This is a module, class, function, or instance variable comment
* that will be extracted by an automated documentation tool,
*/

This will provide a consistent look across all source code files, and should facilitate creation ofau-
tomated documentation tools. Such comments should be used to describe classes, methods, and
global or instance variables.

4.4.4.3.2 Code Block Comments

Code block comments should precede the block, be at the same indentation level, and be sepa-
rated by a blank line above and below the comment. Brief comments regarding individual state-
ments may appear at the end of the same line, and should be vertically aligned with other
comments in the vicinity for readability.

* (C) Code block comments should use the standard C comment delimiters /* and */.

* (C++) Code block comments should use the single line comment delimiter //.
4.4.4.3.3 Blank Lines
Use a single blank line to separate logical groups of code to improve readability. In source files,
use two blank lines to separate each function.

4444 Formatting

4.4.4.4.1 Spacing Around Operators

Spacing around operators and delimiters should be consistent. In general, insert one space before
or after each operator to improve readability. Use spaces inside of the parentheses around the
argument list. Do not use a space within empty argument lists () or non-dimensioned arrays [].

page 22 of 31

LIGO-T960004-A-C

* (C++) Do not use spaces around the scope operator ::.
* (C++) Do not use spaces around the member access operators . and ->.

if (value==0) { // right

if (value==0){ // not recommended
void dolt(int v); // right

void dolt(int v); // not recommended
value = object->GetValue(); // right

value=object -> GetValue(); /! wrong

4.4.4.4.2 Indentation and Braces

The contents of all code blocks should be indented to improve readability. A single tab or four
spaces are recommended as the standard indentation. Braces should be placed to show the level of
indentation of the code block, with the open brace at the end of the statement which starts the
block, and the close brace indented to match the statement.

int main() {
doSomething();
}

struct MyStruct {
int x;
inty;

}

if (value==0) {
doSomething();

}else if (value==2) { // note position of cascaded if statement
doSomething?2();

} else {
doSomething3();

}

while (value <300) {
doSomething();

}

do {
doSomething();
} while (value < 300) // note: ending brace and control on same line

switch (value) {
case 1;
doSomething();
break;
case 2:
case 3:
doSomething?2();
break;
default:
break; // final break required

}

page 23 of 31

LIGO-T960004-A-C

4.4.4.4.3 Pointer and Reference Position

All declarations of pointer or reference variables and function arguments should have the derefer-
ence operator * and the address-of operator & placed adjacent to the type, not the variable. For
example:

char* text; /l right
char *text; // not recommended
char* doSomething(int* x); /l right
char *doSomething(int *x); // not recommended

4.4.4.5 Statements

4.4.4.5.1 Control Statements

All control statements should be followed by an indented code block enclosed with braces, even if
it only contains one statement. This makes the code consistent and allows the block to be easily
expanded in the future. For example:

if (value==0) { /l right
doSomething();
}
if (value == 0) doSomething(); // wrong - no block, not indented

if (value == 0)
doSomething(); // wrong - no block
4.4.4.5.2 Conditional Statements

Conditional statements found in if, while, and do statements should be explicit based on the data
type of the variable being tested. For example:

int value = getValue();

if (value==0) { // right
doSomething();

)

if (tvalue) { /[wrong - not explicit test
doSomethingElse();

}

bool value = getValue(); // could be RWBoolean too.

if (!value) { // right
doSomethingElse();

}
4.4.4.5.3 Include Statements

For both source and header files, #include statements should be grouped together at the top of the
file after the prolog. Includes should be logically grouped together, with the groups separated by a
blank line. System includes should use the <file.h> notation, and all other includes should use
the "file.h" notation. Path names should never be explicitly used in #include statements (with the
exception of vendor library files such as Motif), since this is inherently non-portable. For exam-
ple:

page 24 of 31

LIGO-T960004-A-C

#include <stdlib.h> / tight
#include <stdio.h> 1/l
#include &I1tXm/Xm.h> /

#include "meaningfulname.h"
#include "/proj/uti/MeaningfulName.h" // wrong - explicit path,

#include <stdlib.h> // out of order,
#include </usr/include/stdio.h> /! path for system file,
#include "Xm/Xm.h" // local include of library file

4.4.4.6 Declarations

4.4.4.6.1 Variable Declaration

Each variable should be individually declared on a separate line. Variables may be grouped by
type, with groups separated by a blank line. Variable names should be aligned vertically for read-
ability. There is no required ordering of types, however some platforms will give optimal perfor-
mance if declarations are ordered from largest to smallest (e.g., double, int, short, char).

int* a; // right

intb; 1/

intc; /

double d; /

double ¢; //

double a; // right

int b; /!

double d; // acceptable - not grouped by type

int b; 1/

int* a; /Il

double e; /]

intc; I

int* a, b, c; // wrong - not individually declared, not
// on separate lines

int* a, // wrong - not individually declared

b, /"

c; "
The two preceding examples are prone to error; notice that a is declared as a pointer to integer and

b and c are declared as integers, not as pointers to integers.

4.4.4.6.2 External Variable Declaration

All external variables should be placed in header files. In general the use of global variables is dis-
couraged. Use the following method to allow external variables to be created only once while
using a single declaration. In the header file which declares the global variable, use a flag to cause
the default action on inclusion to be referencing of an externally created variable. Only in the
source file that wants to actually create the variable will this flag be defined.

In the header file MeaningfulName.h,

#ifdef MeaningfulNamelnit // the flag is called MeaningfulNamelnit
#define EXTERN // create the variable (only in main.cpp)
#else

#define EXTERN extern // just a reference (default)

#endif

EXTERN ErrorLogger errorLog;

#undef EXTERN

page 25 of 31

LIGO-T960004-A-C

All of the source files should include this header file normally:

#include meaningfulname.h
while the following should appear only in the source file where you actually want to declare the
variable and allocate memory for it (typically in main.cpp):

#define MeaningfulNamelnit
#include meaningfulname.h
#undef MeaningfulNamelnit

4.4.4.6.3 Numeric Constant Declaration

Use only the uppercase suffixes (e.g., L, X, U, E, F) when defining numeric constants. For exam-
ple:

const int value = A73B2X; // right, hexadecimal constant
const double evalue = 1.2E9; // right, scientific notation constant
const float fvalue = 1.2e9; // wrong, lowercase e

4.4.4.6.4 Enumerated Type Declaration

(C++) The enum type name and enumerated constants should each reside on a separate line. Con-
stants and comments should be aligned vertically. Following is an example of a valid enum decla-
ration:

enum CompassPoints { // Enums used to specify direction.
North =0, /"
South =1, n"
East =2, "
West=3 /"

|5

4.4.4.6.5 Struct and Union Declaration

The struct type name and structure members should each reside on a separate line. This format
separates the members for easy reading, is easy to comment, and eliminates line wrapping for
large numbers of members. Each struct should have a one-line description on the same line as the
type name. Each member should have a comment describing what it is, and units if applicable.
Members and comments should be aligned vertically. Following is an example of a valid struct
declaration:

struct MeaningfulName { // This is a struct of some data.
int firstinteger; // This is the first int.

int secondInteger; // This is the second int.
double firstDouble; // This is the first double.
double secondDouble; // This is the second double.

¥
4.4.4.6.6 Class Declaration

(C++) All class definitions should include a constructor, (virtual) destructor, copy constructor and
operator=. If the class has a pointer, provide a deep copy constructor (i.e., allocates memory and
copies the object being pointed to, not just maintains a pointer to the original object). If any of
these four are not currently needed, create stub versions and place in the private section so they

page 26 of 31

LIGO-T960004-A-C

will not be automatically generated, then accidentally used. (This protects from core dumps.) All
classes should have public, protected, and private access sections declared, in this order. Friend
declarations should appear before the public section. All member variables should be either pro-
tected or private. It is recommended that definitions of inline functions follow the class declara-
tion, although trivial inline functions (e.g., {} or { return x;

void incrementValue(); // Increment value.
private:
int value; // The value.

|5
44.5. Recommended Programming Practices

4.4.5.1 Placement of Declarations

Local variables can be declared at the start of the function, at the start of a conditional block, or at
the point of first use. However, declaring within a conditional block or at the point of first use may
yield a performance advantage, since memory allocation, constructors, or class loading will not be
performed at all if those statements are not reached.

4.4.5.2 Switch Statements
Specify a break statement after every case block, including the last one unless multiple labels are
used for one selection of code. It is recommended that a default case always be defined.

4.4.5.3 Return Statements

Where practical, have only one return from a function or method as the last statement. Otherwise,
minimize the number of returns. Possibly highlight returns with comments and/or blank lines to
keep them from being lost in other code. Multiple returns are generally not needed except for
reducing complexity for error conditions or other exceptional conditions.

44.54 Casts

Avoid the use of casts except where unavoidable, since this can introduce run-time bugs by
defeating compiler type-checking. Working with third-party libraries (e.g., X or Motif) often
requires the use of casts. When you need to cast, document the reasons.

4.4.5.5 Literals

Use constants instead of literal values wherever possible. For example:

const double PI = 3.141259; /l right
const char APP_NAME = "ACME Spreadsheet 1.0"; // right
area = 3.141259 * radius * radius; // not recommended
cout << "ACME Spreadsheet 1.0" << endl; /I not recommended

4.4.5.6 Explicit Initialization

In general, explicitly initialize all variables before use.

It is very strongly recommended that you initialize all pointers either to O or to an object. Do not
allow a pointer to have garbage in it or an address in it, that will no longer be used.

page 27 of 31

LIGO-T960004-A-C

4.4.5.7 Constructs to Avoid
The use of #define constants is strongly discouraged, using const is recommended instead.

The use of #define macros is strongly discouraged, using inline functions is recommended
instead.

The use of typedef is discouraged when actual types such as class, struct, or enum would be a bet-
ter choice.

The use of extern (e.g., global) variables is strongly discouraged. The exception is for programs
which benefit from having a small number of object pointers accessible globally via extern. The
use of goto statements is not allowed.

4.4.5.8 Macros

All arguments to macros should be enclosed in parentheses to eliminate ambiguity on expansion.
For example:

#define MAX(X, y) ((X)> (M) ?2X): (¥))

4459 Debug Compile-time Switch

Code used only during development for debugging or performance monitoring should be condi-
tionally compiled using #ifdef compile-time switches. The symbols to use are DEBUG and
STATS, respectively. Debug statements announcing entry into a function or member function
should provide the entire function name including the class. For example:

#ifdef DEBUG
cout << "MeaningfulName::doSomething: about to do something" << endl;
#endif

4.4.5.10 Memory Management

(C++) Use new and delete instead of malloc/calloc/realloc and free. Allocate memory with new
only when necessary for variable to remain after leaving the current scope. Use the delete [] oper-
ator to deallocate arrays (the use of delete without the array operator to delete arrays is unde-
fined). After deletion, set the pointer to zero, to safeguard possible future calls to delete. C++
guarantees that delete O will be harmless.

4.4.5.11 Constructors

(C++) All constructors should initialize all member variables to a known state. This implies that
all classes should have a default constructor (i.e., MyClass();) defined. Providing a deep copy con-
structor is strongly recommended. If the programmer wishes to not fully implement a copy con-
structor, then a stub copy constructor should be written and placed in the private section so no one
will accidentally call it.

4.4.5.12 Destructors

(C++) All classes which allocate resources which are not automatically freed (e.g., have pointer
variables) should have a destructor which explicitly frees the resources. Since any class may
someday be used as a base class, destructors should be declared virtual, even if empty.

page 28 of 31

LIGO-T960004-A-C

4.4.5.13 Argument Passing

(C++) If the argument is small and will not be modified, use the default pass by value. If the argu-
ment is large and will not be modified, pass by const reference. If the argument will be modified,
pass by reference. For example:

void A::function(int notChanged); /I default: pass by value
void B::function(const C& bigReadOnlyObject) // pass by const reference
void C::function(int notChanged, int& result); /I pass by reference

4.4.5.14 Default Arguments

(C++) Where possible, use default arguments instead of function overloading to reduce code
duplication and complexity.

4.4.5.15 Overriding Virtual Functions

(C++) When overriding virtual functions in a new subclass, explicitly declare the functions vir-
tual. Although not required by the compiler, this aids maintainability by making clear that the
function is virtual without having to refer to the base class header file.

4.4.5.16 Const Member Functions

(C++) It is recommended that all member functions (example: func(...) const {...}) which do not
modify the member variables of an object be declared const. This allows these functions to be
called for objects which were either declared as const or passed as const arguments.

(C++) It is recommended that all member function parameters be declared const (example:
func(const int i){...}) when possible.
4.4.5.17 Referencing Non-C++ Functions

(C++) Use the extern "C" mechanism to allow access to non-C++ (not just C) functions. This
mechanism disables C++ name mangling, which allows the linker to resolve the function refer-
ences. For example:

extern "C" {

void aFunction(); /1 single non-C++ function prototype
}

extern "C" {

#include "functions.h" /I library of non-C++ functions

}
4.4.5.18 NULL Pointer

(C++) Use the number zero (0) instead of the NULL macro for initialization, assignment, and
comparison of pointers. The use of NULL is not portable, since different environments may
define it to be something other than zero (e.g., (char*)0).

4.4.5.19 Enumerated Types

(C++) Use enumerated types instead of numeric codes. Enumerations improve robustness by
allowing the compiler to perform type-checking, and are more readable and maintainable.

page 29 of 31

LIGO-T960004-A-C

4.4.520 Terminating Stream Output

(C++) Use the iostream manipulator endl to terminate an output line, instead of the newline char-
acter \n. In addition to being more readable, the endl manipulator not only inserts a newline char-
acter but also flushes the output buffer.

4.4.5.21 Object Instantiation

(C++) Where possible, move object declarations and instantiations out of loops, using assignment
to change the state of the object at each iteration. This minimizes overhead due to memory alloca-
tion from the heap.

4.4.5.22 Encapsulation

(C++,Java) Instance variables of a class should not be declared public. Open access to internal
variables exposes structure and does not allow methods to assume values are valid.

(C++) Putting variables in the private section is preferable over the protected section, for more
complete encapsulation. Use get and set methods in either protected or public if needed.

page 30 of 31

LIGO CDS Maintenance Request Form

Impact on other systems:

Bug/Change Request No.:

Problem Report.

Raised by: Date: System: Sub-system:

Problem is: hardware-bug[] software-bug[] change-request{] new-requirement [] other []

Description:

Priority: [[]1) Safety issue or prevents Ligo operation [[]4) Inconvenience/annoyance
[[]2) Affects essential capability, no work-around available [[]5) Other (Minor)
[[]3) Affects essential capability, temporary work-aound available

Analysis.

Done by: Date:

Estimated time to implement:

Fix.
Done by: Date:

Description:

Time Taken: Problem tested and signed off by:

Date:

CIT/MIT LIGQRC DS dup

Form CDS-CR-01

	Intro
	Project Organization
	Management Process
	Technical Process
	December 1997 - Copy

