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Abstract

We constructed a torsion pendulum in which the dissipation is domi-
nated by internal friction in the nylon suspension fiber. We compare the
measured thermal noise power spectrum with the spectrum predicted from
the méasured admittance via the fluctuation-dissipation theorem. The
agreement between the two is excellent. The spectrum eihibits an ap-
proximately 1/f slope below resonance. We discuss the implications for
interferometric detectors of gravitational waves.
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1. Introduction

In many precision experiments, Brownian motion (also known as thermal noise) is
a fund'amental‘limit to the instrument’s sensitivity. This was recognized early in
the century[l]. The torsion pendulum was a favorite object of study, since it was
the main element in galvanometers, radiometers and electrometers, among other
sensitive instruments. Brownian motion amplitudes were measured with exquisite
precision for a suspended mirror at different pressures [2] and in a galvanometer
with different electromagnetic damping conditions [3]. While it was noted that
the character of the pendulum moi:ion depended on the dissipation, it was proved
that in all cases the r.m.s. amplitude was independent of it; the latter’s value is
determined by the equipartition theorem.

When ‘a measurement involves signals in a broad range of frequencies, the
calculation of the limiting thermal noise has to be done using the fluctuation-
dissipation theorem[4]. The theorem predicts the power spectrum of thermal
noise, when the diésipative part of the admittance is known. In some systems,
like torsion balances in experiments to test the Principle of Equivalence [5], as
well as in the test masses of interferometric gravitational wave detectors [6, 7, 8],

the energy dissipation will usually be due to internal friction in the wires and/or



masses of the pendulums. As a function of frequency, dissipation due to internal

 friction may have a very different behavior from the best known example for

energy. loss, viscous friction. The implications are dramatic: below a resonance,
the thermal noise spectrum has a 1/f law if the dissipation is due to frequency
independent internal friction, as opposed to a constant level if the dissipation is
viscous [10]. For a given @ at resonance, this may change the thermal noise limit
prediction by an order of magnitude (in amplitude) at the signal frequencies.

It is important, then, to have an experiment that shows the Brownian motion
spectrum when the theorem is applied to a system in which the dissipation is
dominated by internal friction. We built such a system with a torsion pendulum,
choosing materials and dimensions such that the internal friction is enhanced to
a point that it is possible to measure the pendulum’s Brownian motion in a table
top experiment. In this paper, we present the experimental results, showing a
comparison of the direct measurement of the Brownian motion spectrum with
the prediction obtained by applying the fluctuation-dissipation theorem to the
measured admittance.

The paper is organized as follows: in Section 2, we review the fluctuation dis-

sipation theorem and its assumptions; in Section 3, we describe the experimental




set up; in Section 4, we present the experimental results; and in Section 5 we

summarize and present conclusions and comments.

2. The Fluctuation-Dissipation Theorem

We follow Callen and Greene’s formulation of the fluctuation-dissipation theorem
[4]. They obtained a relation between the macroscopic, irreversible response of
a driven dissipative system and the spontaneous fluctuations of the extensivg
variable of the system in equilibrium (Brownian motion). For a torsion pendulum,
the extensive variable is the angle § of the pendulum about the vertical axis. The
theorem states that the power spectrum Sp(f) of ‘the fluctuations is related to the
real part of the admittance Y'(f):
Re[Y (f)]

So(f) = kT~ 2™ (2.1)

For a mechanical system with a spring constant, we can describe the dissipation

as the imaginary part of a complex spring constant. The response of the system

9(f) to a driving torque 7(f) is then related by the equation of motion

(=Jw? + k(1 +i8)) 6(f) = (), (2.2)



where J is the moment of inertia of the torsion pendulum, w = 27 f, and ¢ < 1

___is in general a function of frequency. The admittance is then

wd(f) iw

Y= 7(f)  —Jw?+k(l+ip)’ (2:3)

and, taking its real part, the power spectral density of the Brownian motion is

4ksT ¢(f) 1
Jug 2nf Q= GITP R+ ) (24)

Se(f) =

with wi = (2 fo)? = k/J being the natural frequency of the torsion pendulum.
Notice that if the dissipation mechanism is due to viscous friction (force pro-
prtional to velocity), the loss function ¢(f) is linear in frequency (if F' = —~8,
then ¢(f) - 27y f/k). This was the case in the early experiments [2, 3], where
the dissipation was due to air friction and electromagnetic damping. However, if
the energy dissipation is due to internal friction, ¢(f) may have a very different
behavior. For most materials, it will have “Debye peaks” at certain material-
dependent frequencies where a relaxation mechanism becomes important. The
peaks’ frequencies may be decades apart in general, and in between the peaks the

function @(f) is often approximately independent of frequency(9].




Thus, if we measure the loss function #(f), the moment of inertia J and the
resonance frequency fy, we can use the theorem to predict the thermal noise power
spectrum. The loss function can be measured by driving the system with a torque

7, measuring the pendulum frequency response

X(F) = 6()/r(f) = (=t + w1 +ig)) (2.5)

and then calculating the loss function as

¢(f) = —Im(x(f))/Re(x(£) x (1 - (f/fo)?)- (2.6)

On the other hand, the Brownian motion can be directly measured, and its
power spectrum Sp(f) can then be compared with the prediction based on the

measurement of ¢(f).

3. Experimental Apparatus

3.1. Torsion pendulum

We use a torsion pendulum as our mechanical system (Fig. 1). The pendulum

mass is a rectangular Al mass, 1x1x2.5 cm, with a.4.94x0.48%0.70 cm Al piece
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glued at the bottom, acting as the inertia arm. A circular mirror is glued to the

front of the pendulum mass. The total pendulum mass is 10.7 gm, and its moment

of ine}"tia with respect to the vertical axis through the center of masss is J =9.92
gm-cm?. The suspension fiber is a polyamide nylon 6 fiber from Goodfellow Inc.,
with a diameter of 150um, and a length of 9.84 cm. The quoted tensile modulus
is £=2.6-3.0 GPa[11]. The measured torsional frequency is fo =125 mHz. If §ve
calculate the shear modulus G from the measured quantities, we obtain G = 1.2
GPa, which is consistent with a Poisson ratio v = .3 aﬁd a tensile modulus of 3.1.

GPa (G = E/(2(1 +v))).

3.2. Optical lever

To measure the angular motion of the pendulum, we used an optical lever (Fig.
2), with the beam of a 7 mW He-Ne laéer being reflected from the mirror glued
to the pendulum, and falling on the center of a vertically split photocell. We then
measure the difference between the currents produced in each half of the photocell,
since this quantity is proportional to the angle through which the mirror rotates.
The lever arrﬁ from the pendulum to the photocell is D=155 cm, fc;ié;d by 8

mirrors into a 30-cm diameter vacuum chamber. The laser and the photocell were



outside the vacuum chamber, but all the optical path except the first and last few
mm was in vacuum. Vacuum was used for two reasons: firstly, the fiber properties
were more stable than in air, where they varied with humidity; and secondly, the
laser beam was more stable, avoiding variations in direction due {';o air density
gradients. However, a rough vacuum was sufficient: measurements were done
with P ~ 1 — 50 mtorr.

The signal was transformed into a voltage and recorded with a HP-3562A
Dynamic Signal Analyzer. The system sensitivity was calibrated by putting the
photocell onto a micrometer base énd, with the pendulum fixed, measuring the
variation of voltage with the photocell position, and then dividing this by D. With
a photocurrent of about ¢ = 0.2mA on each half of the photocell, the sensitivity

of the optical lever was k = 0.2 rad/A.

3.3. Noise sources

The theoretical limiting noise in the optical lever is the shot noise in the pho-
tocurrent: this would be a white noise of amplitude Sp(f) = 4eik? = (2 x

10~1?rad/+v/Hz)?. However, several other noise sources dominate the actual mea-

surement, making shot noise negligible. The limiting noise in the measuring sys-




tem was measured by recording the signal with the pendulum resting on a fixed

_ base. The main contribution to the system noise comeshfromrlraser direction stabil-

ity, or beam “jitter”. This jitter was proved to be lateral (as opposed to angular)
noise, so we made the optical lever arm as long as possible to limit its influence
in terms of angular noise.

Other modes of the system (swinging and rocking pendulum modes) are ob-
served through misalignments: these other modes should produce a vertical dis-
placement of the laser spot on the photocell (which ideally should not produce
any signal), while the torsional mode produces a side to side displaceinent. How-
ever, the other pendulum modes are always strongly excited by seismic noise, and
therefore they do appear in the spectrum. The pendulum is designed such that
their frequencies appear at least a decade away from the torsional frequency (the
pendulum frequency is 1.5 Hz, and the rocking modes are at 6 Hz and 8 Hz).

To estimate the extraneous noise other than Brownian motion affecting the
measurement, we constructed two kinds of monitor signals. We split the laser
beam befofe it hit the pendulum mirror, sending the light we picked off to another
split photocell; this signal measured the laser noise, due to lateral and angular

displacements, as well as intensity fluctuations. The signals from the main photo-




cell and this monitor photocell were measured simultaneously, and the coherence
between these signals measured the ratio of signal to laser noise as a function of
frequency. The noise measured in the monitor photocell was equivalent to a flat
spectrum Sp(f) = (1.4 x 10'9rad/\/1_-1—z)2 between 0.3 and 10 Hz, rising with a
1/f power law below 0.3 Hz. The signal in the monitor photocell did not have
any significant coherence with the signal in the main photocell, showing that the
laser noise was not a significant fraction of the signal observed.

We monitored another sort of noise by using a quadrant photocell instead of a.
dual one at the output of the optical lever, allowing us to measure simultaneously
the vertical and horizontal displacement of the laser spot. If the photocell is per-
fectly aligned with the presumably orthogonal directions of the pendulum /rocking
and torsional modes, then these measurements should only show correlations for
spot oscillations in some particular oblique direction (as happens when the laser is
warming up, for example) or for laser intensity fluctuations. However, all modes
can be observed in both signals, their ratio measuring the photocell misalignment
with the modes. Even if the photocell is aligned with the vertical, it could happen
that due to asymmetries in the pendulum mass, the normal modes are not aligned

with gravity. In either case (principal axes or photocell misalignment), the corre-
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lation of the vertical spot displacement signal with the horizontal signal measures

the coupling of non-Brownian noise into the horizontal signal. If the coherenceis

sufficiently high, it allows for a subtraction of the noise from the signal, but even

if not, it allows an estimate of the non-Brownian noise affecting the measurement.

3.4. Frequency response measurement

In order to excite the pendulum and measure its frequency response, we put two
thin Al plates on opposite sides of the pendulum, facing the inertia arm (Fig. 1).
A constant DC voltage Vp ~ 50V plus a small AC voltage Vin (t) was then applied
to the plates, which acted as capacitors with the inertia arm, and then produced
a torque whose variation was linear in V;,(t). (The total torque is proportional
to (Vo+ Vin(t))? .) We then measure the response of the pendulum to the applied
voltage Vin(t). Notice that in order to measure the loss function ¢(f) using the
formula 2.6, we don’t need the calibration constants of angle and torque with
voltage, since we only have to measure the phase angle of the response, which is
equal to the phase of Vou:(f)/Vin(f). This is very convenient because the torque
vs. voltage ccsnstant depends on the distance between the inertia arm and the

plates, which in turn depends on the equilibrium position, making it difficult to
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measure precisely.

4. Experimental Results

4.1. Frequency response

- We first measure the frequency response of the pendulum to the voltage applied to
the capacitor plates (Fig. 3). The amplitude of the frequency response (Fig. 3a)
shows the shape corresponding to 2.5, from which we can measure f = ( 125.5+.5).
mHz, while from the phase angle of the frequency response we can calculate the
loss function using 2.6 (Fig. 3b). The function ¢(f) shows a clear negative slope,
which might be due to the presence of an amorphous glass transition (“c relax-
ation”), whose Debye peak is at a few mHz or lower at room temperature. (This
is highly dependent on sample crystallinity and humidity.) Our measured ¢(f) is
consistent with the published data for polyami@e Nylon 6 [12]. For convenience,

we can represent the measured loss function with a linear relation é(f) vs. log(f):

¢(f) = (—2.8log(f/1Hz) + 4.7) x 107%, 2mHz < f < 400mHz  (4.1)
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(Note that this is an approximation valid only for the frequency range measured.)

We_then have all necessary “macroscopic” measurements to use the fluctuation-

dissipation theorem and predict the Brownian motion spectrum, given by eqn.

2.4 (Fig. 4).

4.2. Thermal noise power spectrum

The actual measurement of Brownian motion was carried out by recording the
time series (t) for few hours at a time, with the pendulum undisturbed by external
influences. A typical portion of a tirﬁe record is shown in Fig. 5. We collected
about 30 hrs worth of data, in 10 different time records. With all the data, we
first make a histogram of the signal amplitude, sampled at a fixed time interval
and filtered through a bandpass 1mHz—1Hz; the data shows a Gaussian histogram
(Fig. 6) with a root-mean-square value (the only parameter in the Gaussian)
\/@2—) = 7.8 x 107® radians. This value is within a‘few percent (about the error
in the calibration constant) of the value predicted by the equipartition theorem:
(6%) = kpT/Jwd = (8.2 x 10~®rad)?; this confirms that we are indeed observing
Brownian motion. |

With the data taken, we calculate the power spectral density: we divide the
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time record in smaller portions (typically 400 s long), take the power spectrum
(the squared modulus of the Fourier transform) of each portion, then average
them.to obtain the mean .power spectrum. We can thus resolve frequencies from
2.5 mHz up to 2 Hz (Fig. 7).

At frequencies below the resonance, a 1/f power law was the general case
observed down to abouﬁ 10-20 mHz,. but sometimes sharper departures from the
1/f power law could be observed. This effect varied from day to day, making
the lower frequency bins not stationary. The effect also diminished when the air
conditioning in the room was turned off, so it seemed to be related to temperature
fluctuations or air currents.

At frequencies above resonance, the swinging pendulum mode appeared at
1.5 Hz, and the coherence between the monitor signal measuring the vertical
laser spot motion and the main signal increased: a coherence of 0.4 to 1 was
consistently observed between 200 mHz and 2 Hz. When the coherence was aBove
0.8, we take the difference between the original signal and the appropriately scaled
noise measurement, and calculate the power spectrum again. Since the signals are
correlated, the resultant power spectrum is smaller in the frequency band analyzed

(0.15-1Hz). The rms value in this band can be reduced by as much as 40% in
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some cases. Notice however, that this procedure then adds all the uncorrelated

noise in the vertical and horizontal signals, for example the laser noise and shot

noise, limiting the system sensitivity.

4.3. Comparison of prediction with measured spectrum

The mean power spectrum and the prédiction from the ﬁuctﬁation—dissipation
theorem are plotted in Fig. 8, showing excellent agreement over the decade from
20 mHz to 200 mHz. The point size in the measured power spectrum points reflect
the standard statistical error in the ensemble of rﬁeasurements, while the error
bars in the prediction line represent the margin for a 95% confidence level for the
fitted function ¢(f). We also draw what would have been the prediction if we
had measured the @) at resonance (@ = 96) and had assumed that the internal
friction obeyed a viscous friction model.

Note that there are no free parameters in the comparison between the predicted
and measured spectra; the two spectra are derived from completely distinct sets

of measurements, and each has its own independently fixed scale.
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5. Discussion

It should be no surprise, perhaps, that we found a Brownian motion spectrum that
agrees with the prediction of the fluctuation-dissipation theorem; the latter has
béen a central part of our understanding of fluctuation phenomena for the past
several decades. Sfill, the importance of the theorem has only recently come to be
fully appreciated in the segment of the experimental physics community devoted
to preciéion mechanical measurements and gravitational physics[13],[10]. This is
especially true because internal friction phenomena display a rich repertoire of
behavior, seldom well-represented by a simple model of viscous friction. It can
be crucial to an experiment if the thermal noise power spectrum has a 1/f or
steeper slope below resonance, instead of the white power spectrum that comes
from viscous friction.

In principle, knowledge of the functional form of the friction law should not
even be required. If we are interested in the Brownian motion noise at a given
frequency f, it is only necessary to know the strength of the dissipation, ReY (f),
at that particular frequency. Reliance on understanding the form of ¢(f) comes
from the fact that our most sensitive measuring instruments have often been

constructed in such a way that the dissipation at the signal frequency is difficult
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to measure directly. As a proxy, it has been standard practice to measure the

dissipation at the frequencies at which it is easy to do so, by measuring the

quality factor @ of a resonance. This can be used to extrapolaite to the required
quantity if and only if we know the functional form of ¢(f).

The significance of correcting the earlier, less sophisticated, estimates of Brow-
nian motion comes from a combination of two circumstances: inappropriate use
of viscous friction models, and the use of quality factors measured at resonant fre-
quencies substantially above the signal frequencies of interest. As shown in Fig. 8,
this situation yields estimates of the level of the Brownian motion spectrum that
are systematically low, substantially so if the ratio between resonance frequency
and signal frequency is large. Recent recognition of this situation has led to in-
creased attention being paid to the role of Brownian motion in the noise budgets
both of torsion pendulum experiments and of interferometric gravitational wave
detectors.

In the latter, the noise term whose importance has grown is the Brownian
motion associated with the motion of the surfaces of the.test masses with respect

to their centers of mass. It is for these degrees of freedom that the resonances

used to estimate the dissipation are substantially higher (~ 10 kHz or above)




than the signal frequencies (10 Hz to 1 kHz), the circumstance that leads to over-

optimistic predictions when viscous friction models are used inappropriately. The -

fused silica test masses are examples of systems in which the relevant measure of
dissipation, ReY'(f) at the signal frequency, is difficult to determine. However, a
variety of measurements support the hypothesis that the loss angle #(f) is roughly
independent of frequency over the relevant frequency band in fused silica [14],[1’5].

This allows better founded, if less optimistic, estimates to be made.

Strong circumstantial evidence for the picture we have been sketching, and

for its relevance to gravitational wave detection, cornes from recent work at the
Mark II 40-meter interferometer at Caltech[16]. A previously unalterable band
of the 40-meter interferometer’s noise power spectrum was reduced substantially
when composite test masses whose resonances had poor Q values were replaced by
monolithic fused silica masses with much better quality factors. The component
of the noise spectrum that was reduced had the 1/f functional form expected
from constant loss angle ¢. The only incomplete part of the explanation is the
usual inability to measure ¢(f) vs. f, or alternatively ReY (f) at the frequencies
of interest. Note also that the dissipation in the old composite test masses was so

large that it is unlikely that it is connected with whatever dissipation mechanisms
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will set the fundamental limits in gravitational wave interferometers.

A new method has been proposed that should allow the internal friction to

be measured at the relevant frequency scales in fused silica test masses[17). The
technique involves time domain measurements of relaxation of masses 1-100 ms
after the release of a mechanical stress. If successful, it should finally allow Brow-

nian motion of the test mass surfaces to be predicted in the straightforward way

called for by the fluctuation-dissipation theorem, as illustrated in the body of the

present paper.
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Figure 3b: frequency response (loss angle)
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Figure Captions

ﬁiguré 1: The toréion pentiulum and the driving plates.

Figuré 2: Optical levér schematic. The totél optical path, from the pendulum -
mirror to the measuring photocell is 155 cm (folded in the vacuum chamber by
mirrors M1-8).

Figure 3: Frequency response measurement: magnitude and loss angle (equs.
2.5 and 2.6). The solid line in Fig. 3a is a fit to the amplitude according to eqn.
2.5, and the solid lines in Flg 3b are a linear fit (eqn. 4.1) and its 95% confidence
level interval.

Figure 4: Thermal noise spectrum predicted from the frequency response
measurement, using the fluctuation-dissipation theorem (eqn. 2.4).

Figure 5: Portion of a typical time record of angular Brownian motion of the
torsion pendulum.

- Figure 6: Histogram of the amplitude of 30 hours of time records, sampled at
a 5.12 Hz frequency (273,000 points). The lower figure shows the count fraction
p;‘— Bin, with. positive and negative angles folded into 9/ Hrms)z. The error bars

are the statistical error (1/4/n) and the bin width chosen for the histogram.

Figure 7: Power spectral density of Brownian motion, averaged over 30 hrs




of time records. The point size represents the measurement statistical errors.
Figure 8: Comparison between the predicted BroWnian motion power spec-

trum in Fig. 4 (asterisks) and the measured power spectrum in Fig. 7 (filled

circles'). There are no adjustable parameters in the comparison. The dotted line

would be the prediction of the fluctuation-dissipation theorem using a viscous

friction model with the same Q at resonance.
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