New Folder Name Vibration and Acoustic Requirements for the Laser and Vacuum Equipment Area (LVEA) and Vacuum

CALIFORNIA INSTITUTE OF TECHNOLOGY

Laser Interferometer Gravitational Wave Observatory (LIGO) Project

To/Mail Code: A. Lazzarini/ 51-33

From/Mail Code: R. Savage/ 51-33

Phone/FAX: 395-2122/304-9834

Refer to: LIGO-T950113-05-O

Date: 12/18/95

Subject: Vibration and Acoustic Requirements for the Laser and Vacuum Equipment Area (LVEA) and Vacuum Equipment Areas (VEA) of the LIGO Facilities

A. Broadband Vibration Requirements for the LVEA and VEA Slabs

A1. Definition of the LIGO Standard Power Spectral Density (LSPSD)

$$1 \times 10^{-18} \left[\frac{f}{Hz} \right]^{-6} \frac{m^2}{Hz}$$
; $0.1 Hz \le f \le 1 Hz$

$$1 \times 10^{-18} \frac{\text{m}^2}{\text{Hz}}$$
; $1 \text{ Hz} \le \text{f} \le 10 \text{Hz}$

$$1 \times 10^{-14} \left[\frac{f}{Hz} \right]^{-4} \frac{m^2}{Hz}$$
; $f \ge 10 Hz$

A2. Ground-excited vibrations due to ambient, facility-transmitted noise (background seismic, wind, etc.)

Less than four times the LSPSD

B. Narrowband Vibration Requirements for the LVEA and VEA Slabs (vibrations produced by "powered" facility equipment: motors, pumps, transformers, etc.)

B1. 0.1 Hz < f < 1 Hz

The rms acceleration (RSS of three axes, measured along the vertical and two orthogonal horizontal axes) resulting from each narrowband excitation in the frequency band from 0.1 Hz to 1 Hz must be less than 2.4×10^{-7} m/sec².

B2. 1 Hz < f < 50 Hz

The rms acceleration (RSS of three axes, measured along the vertical and two orthogonal horizontal axes) resulting from each narrowband excitation in the frequency band from 1 Hz to 50 Hz

must be less than 5×10^{-4} m/sec².

B3. f > 50 Hz

The rms displacement (RSS of three axes, measured along the vertical and two orthogonal horizontal axes) resulting from each narrowband excitation at frequencies above 50 Hz must be less than 3×10^{-9} m.

C. Acoustic Requirements Ten Feet Above the LVEA and VEA Slabs

Mean	Sound Pressure Level*
Frequency	(0dB ref: 2 x 10 ⁻⁴ dyne/cm ²)
f > 63 Hz	< PNC-50
f=63 Hz	< 66 dB
f=31.5 Hz	< 64 dB
f=16 Hz	< 61 dB
f=8 Hz	< 57 dB
f=4 Hz	< 55 dB

^{*}The sound pressure levels are expressed in dB in an octave band around a mean frequency.

D. Environmental Effects

At least 95 percent of the time, the vibration and acoustic levels must not exceed the limits specified in sections A, B, and C above. This includes the influences of wind, rain, and other local environmental effects.

RlS:rls

cc:

Chronological File

Document Control Center

CALIFORNIA INSTITUTE OF TECHNOLOGY

Laser Interferometer Gravitational Wave Observatory (LIGO) Project

To/Mail Code: A. Lazzarini/ 51-33

From/Mail Code: R. Savage/ 51-33

Phone/FAX: 395-2122/304-9834

Refer to: LIGO-T950113-05-O

Date: 12/18/95

Subject: Vibration and Acoustic Requirements for the Laser and Vacuum Equipment Area (LVEA) and Vacuum Equipment Areas (VEA) of the LIGO Facilities

A. Broadband Vibration Requirements for the LVEA and VEA Slabs

A1. Definition of the LIGO Standard Power Spectral Density (LSPSD)

$$1 \times 10^{-18} \left[\frac{f}{Hz} \right]^{-6} \frac{m^2}{Hz}$$
; $0.1 Hz \le f \le 1 Hz$

$$1 \times 10^{-18} \frac{\text{m}^2}{\text{Hz}}$$
; $1 \text{ Hz} \le \text{f} \le 10 \text{Hz}$

$$1 \times 10^{-14} \left[\frac{f}{Hz} \right]^{-4} \frac{m^2}{Hz}; f \ge 10 Hz$$

A2. Ground-excited vibrations due to ambient, facility-transmitted noise (background seismic, wind, etc.)

Less than four times the LSPSD

B. Narrowband Vibration Requirements for the LVEA and VEA Slabs (vibrations produced by "powered" facility equipment: motors, pumps, transformers, etc.)

B1. 0.1 Hz < f < 1 Hz

The rms acceleration (RSS of three axes, measured along the vertical and two orthogonal horizontal axes) resulting from each narrowband excitation in the frequency band from 0.1 Hz to 1 Hz must be less than 2.4×10^{-7} m/sec².

B2. 1 Hz < f < 50 Hz

The rms acceleration (RSS of three axes, measured along the vertical and two orthogonal horizontal axes) resulting from each narrowband excitation in the frequency band from 1 Hz to 50 Hz

must be less than 5×10^{-4} m/sec².

B3. f > 50 Hz

The rms displacement (RSS of three axes, measured along the vertical and two orthogonal horizontal axes) resulting from each narrowband excitation at frequencies above 50 Hz must be less than 3×10^{-9} m.

C. Acoustic Requirements Ten Feet Above the LVEA and VEA Slabs

Mean	Sound Pressure Level*
Frequency	(0dB ref: 2 x 10 ⁻⁴ dyne/cm ²)
f > 63 Hz	< PNC-50
f=63 Hz	< 66 dB
f=31.5 Hz	< 64 dB
f=16 Hz	< 61 dB
f=8 Hz	< 57 dB
f=4 Hz	< 55 dB

^{*}The sound pressure levels are expressed in dB in an octave band around a mean frequency.

D. Environmental Effects

At least 95 percent of the time, the vibration and acoustic levels must not exceed the limits specified in sections A, B, and C above. This includes the influences of wind, rain, and other local environmental effects.

RIS:rls

cc:

Chronological File
Document Control Center

FAX COVER PAGE CALIFORNIA INSTITUTE OF TECHNOLOGY

LIGO Project, 51-33 East Bridge Laboratory, Pasadena, California 91125 818-395-2129, Fax 818-304-9834

TO:	RAI WEISS
ORGANIZATION:	
FAX NUMBER:	
VOICE NUMBER:	
DATE:	
FROM:	ALBERT LAZZARINI
ORGANIZATION:	
FAX NUMBER:	
VOICE NUMBER:	
REFER TO:	
SUBJECT:	
NUMBER OF PA	AGES FAXED INCLUDING THIS COVER SHEET:

NOTE:

CALIFORNIA INSTITUTE OF TECHNOLOGY

Laser Interferometer Gravitational Wave Observatory (LIGO) Project

To/Mail Code: A. Lazzarini/ 51-33

From/Mail Code: R. Savage/ 51-33

Phone/FAX: 395-2122/304-9834

Refer to: LIGO-T950113-05-O

Date: 12/18/95

Subject: Vibration and Acoustic Requirements for the Laser and Vacuum Equipment Area (LVEA) and Vacuum Equipment Areas (VEA) of the LIGO Facilities

A. Broadband Vibration Requirements for the LVEA and VEA Slabs

A1. Definition of the LIGO Standard Power Spectral Density (LSPSD)

$$1 \times 10^{-18} \left[\frac{f}{Hz} \right]^{-6} \frac{m^2}{Hz}$$
; $0.1 Hz \le f \le 1 Hz$

$$1 \times 10^{-18} \frac{\text{m}^2}{\text{Hz}}$$
; $1 \text{ Hz} \le \text{f} \le 10 \text{Hz}$

$$1 \times 10^{-14} \left[\frac{f}{Hz} \right]^{-4} \frac{m^2}{Hz}$$
; $f \ge 10 Hz$

A2. Ground-excited vibrations due to ambient, facility-transmitted noise (background seismic, wind, etc.)

Less than four times the LSPSD

B. Narrowband Vibration Requirements for the LVEA and VEA Slabs (vibrations produced by "powered" facility equipment: motors, pumps, transformers, etc.)

B1. 0.1 Hz < f < 1 Hz

The rms acceleration (RSS of three axes, measured along the vertical and two orthogonal horizontal axes) resulting from each narrowband excitation in the frequency band from 0.1 Hz to 1 Hz must be less than 2.4×10^{-7} m/sec².

B2. 1 Hz < f < 50 Hz

The rms acceleration (RSS of three axes, measured along the vertical and two orthogonal horizontal axes) resulting from each narrowband excitation in the frequency band from 1 Hz to 50 Hz

must be less than 5×10^{-4} m/sec².

B3. f > 50 Hz

The rms displacement (RSS of three axes, measured along the vertical and two orthogonal horizontal axes) resulting from each narrowband excitation at frequencies above 50 Hz must be less than 3×10^{-9} m.

C. Acoustic Requirements Ten Feet Above the LVEA and VEA Slabs

Mean	Sound Pressure Level*
Frequency	(0dB ref: 2 x 10 ⁻⁴ dyne/cm ²)
f > 63 Hz	< PNC-50
f=63 Hz	< 66 dB
f=31.5 Hz	< 64 dB
f=16 Hz	< 61 dB
f=8 Hz	< 57 dB
f=4 Hz	< 55 dB

^{*}The sound pressure levels are expressed in dB in an octave band around a mean frequency.

D. Environmental Effects

At least 95 percent of the time, the vibration and acoustic levels must not exceed the limits specified in sections A, B, and C above. This includes the influences of wind, rain, and other local environmental effects.

RIS:rls

cc:

Chronological File
Document Control Center