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Implicit in this prediction is the assumption that the internal friction in
the pendulum wire is the same as it would be if the wire were not under

operated so that the DC strajn due to the weight of the inertia element can be
altered drastically, without any other effect on the operation of the oscillator.
We can thus examine whether DC strain, by itself, necessarily causes changes
in the internal friction of the spring.

Studies of DC stress effects on interna] friction in metals have a long
history. One well-known mechanism js the motion of stress-induced disjo-
cations, known as the Bordoni relaxation.? Experiments to study this effect
have typically used externally applied DC torques to torsional pendulums;

The Bordoni effect is usually associated with previous cold work of the
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spring. However, the Bordoni relaxation is not the only mechanism that
could produce a DC strain effect on Q. We are especially interested in the
possibility of any effects that might be unavoidably associated with anelas-
ticity itself, even in materials that have not been cold-worked. This is the
reason we have chosen to design our special-purpose beam oscillator.

The following section outlines some elementary ways in which the DC
force of gravity can affect the @ of a mass-spring oscillator. Section III de-
scribes the design of our angle-adjustable beam oscillator. Results of our
measurements are discussed in Section IV. Section V describes some impor-
tant systematic errors. The final section contains a few concluding remarks.

II. DC Force Effect On Damping

A. The Simple Mass-Spring Oscillator

Let’s start by considing a simple oscillator with a mass M and a spring
of constant & as shown in Figure 1. In (a) the oscillator lies on a smooth
frictionless horizontal surface, so the weight My is irrelevant. On the other
hand, in (b) the oscillator is hanging from a “roof”; the weight of the mass
thus produces a stretch of the spring given by

AXo = Mg/k. (1)

Despite such a DC strain, it is an elementary exercise to show that the two
oscillators in Figure 1 have the same dynamics, as long as the internal friction
is neglected. This can be seen from the fact that the two pendulums have
the same kinetic and potential energies, up to an additive constant related
to the elastic energy associated with the DC stretch and to the position of
the mass in the gravitational field.

Internal friction may be introduced by replacing the real elastic constant
k of an ideal Hooke’s Law spring by a complex number with an imaginary
part, such that?

k = ko(1 + ido). (2)

The angle ¢ is called the loss factor; it represents energy dissipation as-
sociated with internal relaxations of the material. It is in general a quite
complicated function of frequency, temperature, geometric shape, state of
defects, DC and dynamic stess and strain, and so on.
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In the Bordoni relaxation theory, the motion of dislocation loops is re-
sponsible for the internal friction. However, in order for this kind of re-
laxation to be significant, Paré’s condition has to be satisfied to provide two
energetically equivalent configurations for a dislocation loop to jump between
during relaxation.* This condition can be fulfilled either by the presence of
a substantial internal stress induced by a large density of defects, or by a
substantial externally applied DC stress in case the internal stress is not big
enough, such as in annealed metals. Figure 2 (reproduced from reference?)
illustrates this effect in a torsional pendulum.

A direct detection of the DC strain effect on the mechanical loss of the
simple oscillator in Figure 1 would require comparing the Q’s associated
with the two configurations (a) and (b). This in turn would require an
ideal frictionless surface in configuration (a). Such a requirement makes the
detection essentially impossible in a normal laboratory on the Earth.

B.  Angle-Adjustable Oscillating Beam

Our angle-adjustable oscillating beam is composed of a short, thin flexure
spring which was connected to a long, thick and heavy rigid beam. The
spring was clamped to a base as shown in Figures 3 and 4. If the spring and
beam were initially set to point directly upward, it would become an inverted
pendulum, as described in reference.’> However, there are four properties of
this beam oscillator which distinguishes it from the other, to serve our special
purpose here:

1. We can adjust the angle o between the vertical direction and the ori-
entation of the clamped end of the spring.

2. The spring is a flat strip, i.e. w > d, where w and d are the width and
the thickness of the spring, respectively.

3. There are no adjustable masses attached to the beam. The moment
of inertia I of the spring/beam system is essentially a constant for all
angular positions.

4. The whole system of spring, rigid beam and clamp can be turned 90 de-
grees to obtain the configuration shown in Figure 5. This configuration
is our equivalent of the ideal horizonta] oscillator of Figure 1(a), while
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the orientation of Figure 4 is like that of Figure 1(b). We achieve this
with a single apparatus, simply by changing its orientation, without
the need to try to construct a frictionless surface to support the mass.

Under the force of gravity, the spring and beam in the orientation of
Figure 4 won’t keep straight at its natural angular position a. Instead, it
will sag by an amout of Aa. If £ is the angular spring constant of the ideal
loss free spring (with dimension of force xlength), then the sag angle Aa can
be found from equation:

Aa = Mgl sin(a + Aa), (3)
: 2k
where M and L are the mass and the length of the rigid rod, respectively.
(In obtaining Eq. 3, small terms involving mass and length of the spring
strip have been neglected, and will be throughout the following derivations.)
For small oscillations #(t) around the equilibrium angle a + Aa, the po-
tential energy V of the system can be written as a sum of flexure elastic
energy Vier = k(Aa + 6)?/2, and gravitational potential energy Vyraw =
MgL cos(a + Aa + 68)/2. After a bit of algebra, this simplifies to

= % (n - M2gL cos(a + Aa)) 6. (4)

It is now easy to derive the equation of motion

I6 + (fc - MQchos(a + Aa)) 0 = Negt, (5)

where N, is an externally applied torque.
Internal friction of the spring is introduced the same way as before by
defining a complex elastic constant

& = ko(1 + ido), (6)

where ko and ¢o are real functions of frequency. The spring loss factor
@0 = ¢o(w, Aa) is in general a function both of the frequency and DC stretch.

The free oscillation solution of Eq. 5 can be written as
'0(t) = Gpezp (—gwt) exp(iwt), (7
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where

w? = % (/co - 2chos(a + Aa)) (8)

1s the resonant frequency at the beam angle a. The angle ® is the loss factor
of the beam oscillator. It is related to the loss factor of the spring as follows:

2
RQl=0= :Lg¢o(w, Aa), (9)

where wf = xo/I is the natural resonance frequency.

It is worth mentioning that when a = 0, we obtain an inverted pendulum
as in reference.® From Eq. 3, Aa = 0 too there, so there is no DC sag at this
angle. The resonant frequency w? = w? is a minimum at this position, and

2
® =& = dofwi, A = 0) 22 - (10)
1]
has its largest gravitational correction wi/w?. Here the subscript “i” refers
to the “inverted pendulum” configuration.
Equations 8 and 9 show clearly how the DC strain influences the oscillator
Q through its appearence in w explicitly and in ¢ implicitly. Since @o itself
is in general also an implicit function of w, the DC effect is very complicated
for an arbitrary angular position. However, there is a particular angle a = ap
with DC sag Aa = Aqg such that

Qo + Aao = g, (11)
at which the situation is much simplified. From Eq. 8 it is easy to see that

w? = w?, and thus
b = @u = ¢o(¢do, Aao). (12)

Here the subscript “y” emphasizes the fact that oscillation is now exactly
along the vertical direction. The loss angle ®, measures the loss factor at the
natural resonant frequency, under the influence of a substantial DC strain,
but with no explicit gravitational effect on the dynamics. It is thus equivalent
to the simple oscillator of Figure 1 (b), without gravitational corrections to
the resonant frequency. We assume here that there is no appreciable change
in & as a result of the DC strain.




But can we also provide a way to measure its counterpart ¢o(wo, Aa = 0)
under no DC strain, without the difficulty of creating a frictionless surface?
The answer is yes. If we turn the whole apparatus in Figure 4 by 90 degrees we
will get the configuration shown in Figure 5. The oscillator will now oscillate
horizontally. The frequency of oscillation will be equal to the natural resonant
frequency wq. Vertical motion is negligible for such a flat strip spring. Even
though the DC gravitational force will still be the same as before, its effect
can be neglected because the following reasons :

1. The force is perpendicular to the oscillation, and

2. The vertical DC sag is negligible due to the large aspect ratio w/d of
the spring.

This horizontal oscillation thus provides us with the way suitable for
measuring the loss factor at the natural resonant frequency without the DC
strain effect :

® = & = do(wo, Aa = 0), (13)

with the subscript “A” denoting the horizontal direction of the oscillation.
This has been achieved without the problem of creating a frictionless surface.

III. Apparatus Description

Our angle-adjustable oscillator was constructed from a piece of blue tem-
pered spring steel strip, AISI grade 1095, 6.35 cm (2.5 inches) in width and
0.5 mm (0.02 inches) in thickness. No pretreatment of the spring was per-
formed before the experiment. One end of the spring was clamped to a rigid
aluminum beam of the same width, but 2.5 cm (1 inch) in thickness and 25
cm (10 inches) in length. The other end of the spring was clamped between
two surfaces of a pair of half cylinders also made of aluminum. The whole
cylindrical clamp was then held firmly within an outer aluminum clamp in
the shape of a cube. The structure was in turn bolted onto a table base (See
Figure 4). The net length of the strip spring between the clamps at each end
was 2.0 cm (0.8 inches). By rotating the cylinder clamp, the angle a could
be easily adjusted to satisfy Eq. 11, so that the whole length of the rigid
beam would lie in a horizontal orientation. Our procedure was to adjust the
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angle ay, then fasten the cubical clamp. Then, by turning the cubical clamp
90 degrees we could switch between the two configurations at will. For our
system, the value of Aa was about 14.5 degrees.

We studied this system by observing its free oscillations. The oscillator
was excited by an electrostatic force from a conducting plate placed near the
beam. Motion of the oscillator was registered by a split photodiode illumi-
nated with an infrared LED. Signal currents from the diode were then sent
to a pair of current-to-voltage pre-amplifiers, followed by a differential am-
plifier. A PC-based data acquisition system recorded the whole time series,
The envelope of the free decay was fitted with an exponential, to extract the
loss factor ®.

IV. Results

Besides @, and ®;, we have also measured §;, loss factor of the inverted
pendulum. The measurements were performed at both atmospheric pressure
P =1 atm and at a vacuum of P = 107% torr. Our main results are sum-
marized in Table 1, where the second subscrpts “a” and “v” represent air
and vacuum, respectively. In Figure 6 a typical free damping signal and its
exponential envelope fit are shown.

From the table, a set of facts can be summarized as follows:

1. Resonant frequencies fro and fo, (or f, and fva) are almost equal.
Their deviation is less than 0.2%. This demonstrates the validity of

Eq. 8, w = wp, when a + Aq = /2.

. In both atmospheric and high vacuum pressures, loss factors associated
with free damping under the influence of DC strain are larger than
those measured when Aa = 0. In vacuum ®, exceeds &, by 18%. This
indicates that a DC strain effect exists in our experiment.

- Air friction contributes as much as 40% to the total damping. The
vacuum condition is essential for this experiment.

. In previous work the dependence of the spring loss factor #o(w) on
frequency was mainly parametrized by two models!: frequency inde-
pendent damping (¢ a constant), and velocity damping (¢ proportional




to w.) Here we can test these models by comparing the measured ¥,
with that calculated according to Eq. 10 by means of these models
from the measured natural frequency fi,, the natural loss factor ®,
and the inverted pendulum frequency f;y,. For frequency independent
model we have )

®;, = L’;—’i@}w =42 x 1074,

On the other hand, if velocity damping is assumed, then

®;, = %‘I’}w =3.7x 107,

Comparing them with the measured ®;, = 3.9 x 104, we see that it
prefers neither the velocity nor the frequency independent model, but
something in between. But note that, since the frequency span over
which the comparison was made is not great, the significance of this
result is of limited value.

. Using formulas from reference,® we can calculate the contribution to
loss from the thermoelastic relaxation:

5 _Ed?Ty,  wr
e T e L+ (wr)?

and

where E, a, Ty, c,, b and ;; are the Young’s modulus, coefficient of
thermal expansion, room temperature, specific heat at constant stress,
thickness of the spring and thermal conductivity, respectively. Plugging
in all the numbers relevant to the experiment, we find:

EazTo
Cs

For the horizontal and the vertical oscillations

~3.0x10° and 7T=x19x103s.

Gin ~ 0.9 x 1074,



and for inverted pendulum;:
ben = 0.8 x 1074,

Thermoelastic loss occupies as much as 20 to 30% of total the mechan-
ical losses. B

V. Discussion

The validity of the above results, especially that of the magnitude of the
measured DC stretch effect, depends on whether all external losses, such as
from air friction, friction in the clamp, and recoil damping in the supporting
structure, have been reduced to a degree small enough to be negligible. Un-
fortunately, quantitative estimation of clamp and recoil losses are not easy
to perform for a real mechanical system like ours. Here we give a discussion
of how these problems have been dealt with.

Air damping is easy to eliminate by putting everything into a vacuum
chamber. The pressure reached in our experiments was typically 10-6 to 10-7
torr. However, in most cases no appreciable difference was observed even if
much poorer vacuum (~ 10-2 torr) was used. Therefore we are confident
that air damping in our high vacuum measurements can be neglected.

Recoil damping can occur if there exist other resonant frequencies of the
system (oscillator and the supporting structure) close to the main resonant
frequency. This can be seen from a formula derived in reference!:

Qatalf) = Q2 al(fo) + Q;i(ﬁ)u(fl,—fi%, (19)

where fo and f; are the main and its nearby resonant frequencies, respec-
tively; Qext is the quality factor of the nearby external resonance, and g is
the ratio of the oscillator mass to the modal mass of the recoiling system. A
quick check of the power spectra of the horizontal and vertical oscillations
in Figure 7 (with the system driven by ambient seismic noise) tells us that
there are several resonances nearby the 2.5 Hz main frequency in the horizon-
tal case. But the resonances are essentially absent in the vertical situation.
From this observation we can infer that the recoil effect, if any, would have
increased the value of @}, more than &,,.
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The magnitude of extra damping in the horizontal oscillation caused by
recoil from the first nearby resonance peak can be roughly estimated if we
. assume a value of  relevant for the system. From Figure 7(a) we find f; ~ 6.8
Hz. Q~'(f1) can also be estimated by the ratio between Af, the full width
of the peak at the half-power points, and f;. In this way we find Q~!(f;)
~ 0.01. The mass of the oscillating beam is about 1 kg, and the mass of the
whole system is > 100 kg. Given the possibility that not all of the parts of
the system have participated in the recoil, we assum g = 1/20. Putting all
the numbers into the second term in equation 14, we obtain

QB 3 x 107,

(ff - 13

which is about 10% of ®;,,,.

Friction in the clamp did have a significant effect in an early stage of our
experiment. At first the spring was clamped between the smooth flat surfaces
of the two aluminum half cylinders. It turned out to give very substantial
damping, for the horizontal oscillation in particular. As shown in F igure
8, this clamp produced as much as four times more damping in horizontal
oscillation than in the vertical orientation.

The reason behind this was not difficult to find. Since the surfaces were
smooth, the area of contact between the clamp and the spring was large. The
stress of the clamp was not strong enough to provide a firm hold of the spring.
In the orientation used for vertical oscillations, gravity helped to preload the
spring firmly against one side of the clamp; we did not have the benefit
of this effect when the beam was arranged to oscillate horizontally, so the
problem was evident then. The problem was solved by cutting a sharp edge,
or “tooth”, along the front edge of each of the two cylinder surfaces (tooth
thickness < 1.5 mm). These two teeth bit into the spring tightly enough
so that the previous substantial loss in horizontal oscillation was eliminated.
The sign of the difference in loss factors now indicates a real DC strain effect.

In our measurements, both the recoil and clamp losses would tend to
mask a DC strain effect, by increasing the horizontal losses more than the
vertical losses. It is our belief that this bias is small; this is demonstrably so
in the case of recoil loss, although in the case of friction in the clamp it is
hard to be certain. It is a generic difficulty of experimental investigations of
internal friction that the effect of mounting the sample can never be proven
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to be negligible in all cases. Often, the best one can do is recognize additional
friction above the measurements with the highest Q.

VI. Conclusions

This experiment reveals that a DC strain can indeed increase the internal
friction of a steel spring subjected to no pretreatment, although the observed
effect was not large considering the large angle (nearly 15 degrees) through
which the spring was bent. A thorough study of the situation in proposed
designs for gravitational wave test mass suspensions would be prudent.
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Pressure Horizontal vertical Inverted
Res. Freq.(Hz) | f1a=2.5285 | f,a=2.5250 | f;,=2.2312
P=1 atm. ‘ )
® x 104 &, =54 Bpa =5.7 | Py =54
Res. Freq.(Hz)} | fav = 2.5206 | fo, = 2.5253 | fiy = 2.2336
P=10"° Torr.

®x 10 &, = 3.3 ®,, = 3.9 ®,, = 3.9

Table 1: Summation of measured data.




Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure T:

Figure 8:

Figure Captions

Two configurations of the simplest pendulum. (a) No DC forced stretch. (b) DC
forced stretch AX,.

Effect of a static bias stress o, and vibration amplitude ¢, on the internal friction
spectrum (f~ 1Hz) of aluminium neutron irradiated at 77K, deformed in torsion 0.8%
and annealed at 273K. (From Fantozzi etc. 1982)

Schematic diagram of an angle adjustable beam pendulum.

Vertical oscillation of the beam pendulum

Horizontal oscillation of the beam pendulum .

A typical free damping signal and its envolop fitting. The detailed sinusoid expenan-

tial decaying wave is squeezed too much to be seen.
Power spectrums of (a): horizontal oscillation; and (b): vertical oscillation.

Damping signals with bad clamp. (a)Vertical oscillation; (b)Horizontal oscillation.
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