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Abstract

Elements of laser frequency and phase error sensing by the reflec-
tion RF sideband technique (sometimes called Pound-Drever method)
and feedback correction of these errors are discussed. The effective
loop transfer function from optical phase to electrical error signal (i.e.
demodulator output voltage) is derived. Phase, frequency, force and
position actuators used commonly in effecting feedback are also char-
acterized. Baseband electronic amplifiers, compensators, and loop
tailoring are to be discussed in Part I

1 Introduction

Laser frequency and phase stabilization to passive optical cavities, and
of optical cavities to one another, have been developed intensively in
the evolution of the 40m prototype interferometer, and are integral
features of planned LIGO interferometers. In this document we hope
to collect observations and elements of theory which may assist in
practical future application of these techniques.
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The laser emits light of frequency wy, = wken/l where k is a large
integer, c is the speed of light in vacuum, n is the mean refractive in-
dex of the material (plasma, glass, crystal, etc.) inside the laser cavity,
and [ is the length of the laser cavity. Either n or [ may be altered, by
naturally occurring forces or by deliberate action, to effect a change
in wr,. A further apparent Doppler frequency shift w} = wrd/c occurs
when the optical path d between the laser and the reference changes
with time. We seek to detect these deviations by comparing the in-
stantaneous laser frequency with the resonant frequency of a passive
optical cavity, and to apply servo feedback to actuators which either
correct the laser or induce the cavity to follow it.

2 Frequency and Phase Sensing

The currently preferred means for sensing the relative frequency or
phase deviation between laser and reference cavity is described in [5].
Consider schematic Figure 1, showing a laser source and a passive
optical reference cavity. The cavity mirrors have (complex) field re-
flectivities r4,72 and transmissions #;,ty; the power reflectivities and
transmissions are thus R; = |r;|? and T; = |t;|2.

2.1 Input Field

Following [6], the phase of the laser field is modulated at a radio
frequency w,, high compared to frequencies at which servo corrections
are required, and also well above the the cavity knee frequency w, =
1/27,, where 7. = 21/¢(1 — /R R;) is the cavity storage time.

The phase modulated laser field can be expanded as

Ep(t) = Epe-iwitdr()tmsinwmi) (1)
= ELe—J'¢L(t){ Jo(m)e~iwrt
+ Jy(m) [eritertem)t _ gmilor—wm)]

+ Ja(m)[-- ]+ -}

where m is the modulation indez and J;(m) is the i*® Bessel function
of the first kind, evaluated at m. By our choice of a high w,, we ensure
that the J; and higher terms in the field will oscillate at a frequencies
outside the resonant passband of the cavity if the fundamental (Jp)
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component is resonant. In subsequent analysis, then, we may approx-
imate the field within the cavity as though only the Jo component
existed in the input field!.

The incident laser mode is not, in general, perfectly matched to the
cavity. Define the modematching parameter [ as the overlap integral
between the laser field’s spatial distribution and the TEMgy mode
of the cavity. 8 = 1 corresponds to a perfectly aligned wavefront
with perfect curvature arriving at the cavity input coupler. Since
the higher spatial modes are orthogonal, there can be no interference
between the field in these modes (which carry 1— 32 of the power) and
that in the proper mode, and we can treat the unmatched portion as
though it were a distinct source of light on our detector whose phase
is inconsequential?.

2.2 Steady-State Cavity Field

Assume we hold wy, = we = the resonant frequency of the cavity for
some period of time, as might a servo system. As long as ¢r,(t) is zero
or varies slowly, on timescales much longer than 7., light builds up in
the cavity by resonance until the internal field of the cavity reaches
the asymptotic value

Eint = BJo(m)AEL, (2)
where we have defined
ae il
1 — |ra]|re]

a cavity matching faéf ‘ 4]. The forward leakage field transmitted
through M2 is Er =(aEin;, and the return leakage field transmitted
through M1 back toward the laser is Eo = t1FE;n;. In addition to
the return leakage, fraction ry Ef, of the input is promptly reflected
by input coupler M1 (of which, as we have described, only BJo((m)
is in the same spatial and temporal mode as Ec ). On resonance

1This is computationally convenient, but by no means necessary. An wy, smaller than
or comparable to the cavity width can also be used [?].

2This simplification can be violated if the detector or intervening optics mix spatial
modes, destroying the orthogonality. In this case the mismatched light can introduce
coherent terms, which may carry noise.



this component will be exactly in antiphase with E¢, and, depending
on the ratio |ry|?/.A, may be equal, larger (undercoupled) or smaller
(overcoupled) than E¢.

2.3 Phase Error Signal

Now consider a small perturbation of the laser phase, §¢(t) = ¢o. For
a short time (< 7.) the cavity field is unresponsive constant, so the
two modematched reflected field components are no longer precisely
in antiphase but are now instantaneously offset by relative angle ¢ =
6L — ¢c = ¢o + msinw,t (Figure 2). By the law of cosines, the
squared resultant of the two reflected components is

|ER|? =
B2I(m)|EL|® + |Ec|® — 2B8Jo(m)|EL|| Ec| cos(¢o + m sin w, t3)

2.4 Time Dependence of the Reflected Field

The internal cavity field decays and is replaced by fresh light bearing
the new phase ¢g. Since the input frequency is still wg = w,, the final
state will have exactly the same internal field amplitude as the initial
state. The cavity field phase ¢¢(t) evolves® as

2redo(t) = $L(t) — do(t)
so that the relative phase ¢ = @1, — ¢¢ obeys
2red + ¢ = 27edL . (4)

The Laplace transform solution, which we may regard as the trans-
fer function between the laser field phase and the resulting phase dif-
ference between laser and cavity fields, is simply

#(s) 27,8
ér(s) ~ 1+427s’ (5)
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2.5 Detection and Demodulation

The resultant field Eg, along with the improperly matched and side-
band power totally reflected by the input coupler M1, is directed by
a circulator or Faraday device onto photodiode D1, producing pho-
tocurrent (following Equations 2 and 3)

ip(t) =
Io {1 - B2 + B2 | + B2A%JE — 262 Ao cos( + msinwnt) }

where we have introduced the convenient parameter Iy = enP/hyy, the
D.C. photocurrent measured when the cavity is far from resonance,
for incident laser power P and detector quantum efficiency 7.

In the limits |ry|2 ~ 1 (the input coupler is highly reflective) and
¢ < = (the phase error is a small one), the detected photocurrent
reduces to

LIOJOSN B2A?Jo(m)?
Io

— 232 AJo(m) [cos(m sin wy,t) — @ sin(m sin wpt)]. (6)/9

ja ¢ s <

Again referring to Figure 1, this photocurrent flows through impedance

ZR, is preamplified by an RF preamplifier with voltage gain Ggr and
fed into a mixer. The mixer is simultaneously driven by a sample of
the phase modulation waveform, adjusted in RF phase g by a phase
shifter. The mixer output voltage is integrated by a lowpass filter
whose time constant T’ exceeds the period of the moduluation but is
shorter than the cavity storage time (w;! € T < 7). This gives the
instantaneous error signal voltage

Vo = ~—ZrGrGmSAlo o

T
X %/ sin(m sin wp,t') sin(wmt’ + ®g) dt/,
0

_ngGRGm B2.A cos g Jo(m)J1(m) do (M)

where we include the conversion gain of the mixer G, (generally about
1/2) and a correction factor (4/x) for the property that mixers typ-
ically demodulate by a nearly square waveform, rather than the si-
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nusoid we use in the integration? [7]. We have omitted all terms in
the photocurrent oscillating at frequencies other than wy,; these all
average to zero after the demodulation, but can in practice add noise
and interference to the signal.

Assembling the optical phase response with the photodetection
and demodulation results, the overall transfer function between laser
phase and demodulator output voltage is

Vin _ 8 2 278
S2(8) = ~27RGrGom B A cos B Jo(m)J1(m) (Tﬁﬁ) )

“In principle we should also fold the impulse response of functions Zr and Gy inside the
integral, to allow for RF bandpass filtering which is usually featured by these elements.
It is equivalent, and often more convenient, to compute the frequency responses Gr(s)
and Zg(s) and frequency translate them from w,, to DC, treating them with the other
compensation downstream of the mixer.
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Figure 1: Semi-schematic of a system for laser frequency stabilization.
In this example, the laser’s frequency v is controlled in response to a
phase/frequency error signal derived from the output e; of photodetector
D1. The photocurrent detected by D1 is proportional to the squared modu-
lus of reflected field Egr, which is the resultant of the incident field £ and
the stored field in the cavity E¢ (see Figure 2). Ef is phase modulated at
radio frequency wy,; the Fourier component at w,, in the detected signal e;
is selected out by homodyne RF detection, using a double-balanced mixer
whose reference is derived from the phase modulating oscillator. The result
is lowpass—filtered to remove the images at 2w,, and above, and fed into the
frequency servo as its error signal.




Figure 2: Phasor diagram of the optical field components striking detector
D1 in Figure 1. The common overall time dependence e/2™* has been sup-
pressed so we can view the field vectors in a stationary frame. The detector
photocurrent is proportional to the squared modulus of reflected field Eg,
which is the resultant of the incident field rE; and the stored field in the
cavity tE¢, where r and t are, respectively, the amplitude reflectivity and
transmission of M1. E}, is phase modulated at radio frequency w,, by peak
angle m, the modulation indez, that is, EL(t) = Eoexp[jm sin(wnt)]. The
squared resultant field Er contains a Fourier component at w,, proportional
to the phase difference ¢ between the cavity and laser fields.




3 Feedback Actuators

A Optical Phase and Frequency Noise
Terminology

Deviations of the laser frequency or phase are usually expressed in
terms of the difference between the laser parameters and those of an
“ideal” laser, whose output field E;(t) = Egsin(27vpt) is a perfect sine
wave with phase ¢ = 0 at time ¢ = 0. The actual laser’s deviation
from this standard can then be expressed either in terms of frequency,
as in

E(t) = Egsin[27(vo + 6v(t)) 1],

or as phase fluctuations, as in
E(t) = Egsin(2nvet + 6¢4(1)).

The two measures of deviation are related by

5(t) = 2 /0 su(t') dt

and are effectively interchangeable, although we will mostly use the
frequency deviation for convenience. The fractional frequency devia-
tion is defined as y(t) = (v(t) — w)/vo. In practice, since time and
frequency measurements are intrinsically relative, we will often define
the resonant frequency of a reference cavity as vg for simplicity, ne-
glecting the intrinsic noise of the reference with respect to “absolute”
time or frequency.

Random variations of the laser phase or frequency are described
by statistical measures which relate the characteristic timescale of the
typical deviations to their magnitude. One common time-domain
measure, the Allan variance, o2(t), describes the typical amount by
which the fractional frequency y wanders between two measurements
as a function of the time 7 between the measurements, and is typically
employed in the description of accurate clocks [1]. A more accessible
measure from the standpoint of control system analysis, and the typ-
ical quantity measured in the laboratory, is the frequency—domain
power spectral density or PSD of y, S,(f).




The power spectral density® of the random process y(t) is defined

as
2

.1 /T —2mi
Sy(f) = Jim = ‘ [ vyermitar

and is usually estimated in the laboratory by squaring and averag-
ing together several successive discrete Fourier transforms §( f) of the
variable y(t) to approximate the infinite integral [2]. If, as in this case,
the variable y is dimensionless, S, has units of Hz~!. One straighfor-
ward interpretation of this quantity is as follows: if the signal y(t) is
passed through a bandpass filter of width Af at center frequency fo,
the mean squared output of the filter will be y2 = §y(fo) Af, where
the bar denotes a time average. The RMS value of the filter output

is thus ypars = 1/Sy(fo)Af. Another quantity often mentioned is the

spectral density of the raw frequency v, S,(f) = v§Sy(f), which has
the confusing units of Hz2/Hz. Finally, to add a bit more confusion,
the typical quoted quantity is actually the square root of the PSD,
which I call the RPSD (for “root power spectral density”). The RMS
value measured is thus the RPSD multiplied by the square root of
the filter bandwidth. An example RPSD spectrum of frequency noise
from an argon ion laser is shown in Figure 3.

SHere we use the conventional single-sided power spectrum, that is, we define frequency
f to be positive.
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Figure 3: Typical frequency noise RPSD of a large-frame argon ion laser
(running single—frequency, single mode) for fluctuation frequencies up to 2.5

kHz.
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B Properties of Optical Cavities
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