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Chapter 1 Introduction

Thermal noise could be a fundamental limit to the sensitivity of LIGO in
the frequency range of a few hundred Hertz and lower. This prediction is based
upon certain models for the loss mechanisms in various substances and how they
depend upon frequency. An accurate experimental description of these processes
is still necessary to obtain a better idea of the future performance of LIGO. The
experiment I propose will attempt to measure the actual mechanical displacement

. due to thermal noise in fused quartz. This should give a better understanding
of loss mechanisms in fused quartz and of the effect of thermal noise in the
performance of precise measurement systems such as LIGO.

Chapter 2 Previous Measurements
of Thermal Noise

Thermal noise is seen in many different types of systems. It arises because the
same mechanisms that cause a system to dissipate energy also cause the system
to fluctuate around equilibrium. A well known example is the Johnson noise of
a resistor where the voltage noise spectral density across a resistor is:

Viermal(f) = 4ksT R

hermal

Another example is the Brownian motion of small particles. In macroscopic
mechanical systems, the effect of thermal noise has never been seen except at
some resonant frequency of the system.
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Some of the earliest precision mechanical measurements were made using
quartz torsion fibre balances. They include the Roll, Krotkov and Dicke! repeat
of the E6tvss experiment and various LaCoste gravimeter experiments to measure
normal modes of the Earth>3. In all of these experiments, noise sources other
than thermal dominated and limited the sensitivity of these instruments.

Another obvious high precision measurement where thermal noise could be
seen is the detection of gravity waves. Acoustic gravity wave detectors can see
the on-resonance thermal noise with their current sensitivities. In interferometric
detectors, the Garching group has seen the thermal noise at the mirror resonance.
No one yet has the sensitivity to observe the off-resonance spectrum. In fact,
LIGO might prove to be the first instrument to study off-resonance thermal noise
in a mechanical system.

The fact that a measurement of the off-resonance thermal noise in a mechan-
ical apparatus has not been effectively accomplished adds another incentive to
proceed with this experiment. While no one doubts the validity of the fluctuation
dissipation theorem, especially since it accurately describes the Johnson noise in
resistors, an experimental study of thermal noise would be a new scientific ob-
servation which also has the bonus of helping to predict the future performance
of LIGO.

Chapter 3 Different Models for the Thermal
Noise in a Harmonic Oscillator

The Fluctuation-Dissipation theorem gives an expression for the thermal noise
in a simple linear system (see Saulson* for a thorough review):

thhcrmal(w) = 4kBTR(w)

or
4kgTo(w
z?hermal(w) = ——w#
where Z = ;2 R(w) = Re(Z) and o(w) = Re(Z7}).

Roll, P. G., R. Krotkov, and R. H. Dicke, Ann. Phys. 26, 442 (1961).
Weiss, R., and B. Block, J. Geophys. Res. 10, 5615 (1965).

Block, B., and R. D. Moore, J. Geaphys. Res. 71, 4361 (1966).
Saulson, P. R., Phys. Rev. D 42, 2437 (1990).
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There are two well known models for the damping term in a simple harmonic
oscillator- aviscous model and an internal friction model. Viscous damping has
a force:

Fdamping = _:357
F =mi + B + kz

Z=ﬂ+i(mw—£)
w
_ B
0= 2
Pt (o= 3)

The damping term for internal friction is:

Fdamping = _k(z¢(w))x
F = mé + k(1 + i(w))z

Z = M + i(mw - E)
w w
I )L
(k — mw?)? + k2g2(w)
The viscous model gives a thermal noise spectrum:
F%(w) = 4kgTp
J:4

2 (w) = (4kBT m

=)

m

For ;‘% <<lor@>>1(Q= E%; and is defined as the number of radians
the system oscillates through before its energy decays by a factor of 1/e) and
w >> w,, the functional dependence of the noise term is:

2 m
z*(w) o e
The internal friction gives:

FYw) = 4kBmegé%
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For ¢ <<lor@Q >>1(Q = ¢) and w >> w,, the functional dependence of
the noise term is:

% (w) &L‘;)

I have measured the Q of various materials here at M.L.T.. The results tend to
indicate that Q remains roughly constant with frequency. This would indicate that
either 8 « ;1,— or #(w) = const. The Debye model for single relaxation processes
has an explicit frequency dependence:

¢(w) =D

wT
1+ (wr)?
where D is the relaxation strength and 7 the relaxation time. One such process
is thermal damping as described by Zener>. The physical interpretation of this
model involves heat transfer across a thin fibre. The heat transfer depends upon
the thermal conductivity of the material while the compression and expansion of
the fibre (which generates the work) depends upon the frequency of the oscillation.
If the period of the oscillation matches the heat transfer time, the dissipation is
maximized.

In every case, assume ¢(w) << 1. For w >> w, and w >> 77}, the
functional dependence of the noise term is:

() = (41:51‘) (D::f) %

If w << 71, then the noise has the form:

#w) = (220) (Dutr)

m

If w ~ 77!, then one has:

2 (w) = (UZT) (DwZ‘r)u% (_1 +_(1w1')2>

On the other side of the resonance, w << w,, the relation for w >> 771 is:

0= (50) (o) =

s C. Zener, Phys. Rev. 52, 230 (1937); C. Zener, Phys. Rev. 53, 90 (1938).




and w << 71

- (1) 2)

-1.

() = (221)(Z) (ﬁ%ﬂf)

This experiment will try to measure the thermal noise spectrum on both sides
of the resonance peak. This should give some idea as to the frequency dependence
of the loss mechanisms.

Finally, for w =~ 7

Chapter 4 Optical Design

The optical system is basically a recombined Fabry-Perot interferometer where
a mechanical mode of a thin, common test mirror produces a differential path
length between the two arms (see figure 1). This design should cause the common
mode motion to cancel. By making the two spherical mirrors and the fused quartz
plate where they are mounted thick enough, their resonant frequencies and mass
will be high enough so that their contribution to the thermal noise of the system
will be negligible. The normal modes of the cylindrical shell should primarily be
common mode in nature. By making the walls sufficiently thick, the frequencies
of these modes should be high enough to make their contribution to the thermal
noise negligible.




Figure 1 Sketch of experimental apparatus. The flat, thin mirror on the right is the
one that will be measured. The two small spherical mirrors are optically contacted
to a flat piece of fused quartz. Both the thin, flat mirror and the thick plate of fused

_ quartz are optically contacted to a fused quartz cylinder that holds the assembly together.
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// 4—+ Support Structure
The fore optics is standard for an internally modulated combined Fabry-Perot
system except that the beam splitter is of a special type called a Koster prism.

Figure 2 Fore optics for experiment
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Assuming the system sensitivity is shot noise limited, the calculation for the
sensitivity goes as follows. The losses in the optics are:

loss = (fibre = 0.5)(mode match = 0.9)(Faraday rotator = 0.9)X
(beam splitter = 0.95)(K oster prism = 0.95)%(Pockels cell = 0.8)%x
(photodetector = 0.9) = 0.22

The formula for the noise, including the double pass through the Pockels cell, is:

; hAc
notse = —

87 \| IRTn(loss) X

(ﬁ- K Jo (2T sin (22al)) Jo (2T (1 + cos (2—“;m’)))) 1

K Jy (2T sin (2228))J; (2T (1 + cos (22al))) A(x)a_ﬁﬂ

where I is the intensity of the light, R,T are the reflection and transmission
coefficients of the Koster prism, K is the contrast, J, are the Bessel’s functions
of the first kind, I is the modulation depth, [ is the distance between the Pockels
cell and the cavity, A(z) is the amplitude function of the cavity, ¢(z) is the phase
function of the cavity and z = 4”“’“"'}” length ' pytting in values gives:

1 [(6:62618 x 10347 5)(1.06 x 10~°m) (3 x 10°m/s)
e (0.04W)(0.5)(0.5)(1)(0.22) X

( 1 — K Jo (2T sin (2ad)) Jy(2T'(1 + cos (2—"","‘1)))) 1

KJy (2T sin (22a0))J; (2T (1 + cos (221))) | A(z)252)
=4.1 x 107 em/VHzx
1 — K Jo(2T sin (2ml)) Jy (2T'(1 + cos (2al))) 1
( KJ; (2 sin (22a1))J; (2T (1 + cos (22al))) ) Az)%)

For a mirror loss of 10— and a transmission of 2 x 10~ in the front mirror,
A(z) and ¢(z) are shown in figures 3 and 4.
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Figure 3 log,q (A(z)) vs. x for a mirror loss of 10~ and a transmission of 2 x 10™* in the front mirror.

ry -0.0005 0.0005 001

Figure 4 o(z) vs. x for a mirror loss of 10 and a transmission of 2 x 10~* in the front mirror.
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(see figure 5).

Figure 5 A(O)%o vs. transmission in front mirror for a loss of 107*.
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The maximum of this function occurs for T = 2L and has the value:

A(O)&P(zq _ 2L/1-L
9z " T 9 _4L+3L2-2V1- Lvi-3L

For perfect contrast (K = 1), 2—“’c=L' << 1 and modulation index I" < 1, the term

(\/1 — KJo(2T sin (22ad))Jy (2T (1 + cos (Lu;ml))))

K Jy (2T sin (2al)) J; (20(1 + cos (22=l)))

reduces to:

11 %ml
— 2 — — — — -_— m
1-=2 <sr2 aT I‘),x c




For a mirror loss of 10™* — 10735, the sensitivity is 8 x 10~!18—8x 10~2° ¢m /v Hz.
A loss of 10~ is well within the capability of mirror coatings so that the sensitivity
of 10717 cm/v/Hz required for the experiment to work seems possible.

The beams from each arm are recombined and locked on a dark fringe. Since
the size of the cavity is fixed (= 10cm) by the pieces optically contacted with each
other, the locking technique has to adjust for the overall and differential length of
the cavity. The overall resonant frequency can be changed by tuning the MISER.

The differential length between the two arms is planned to be changed by
differentially heating the quartz cylinder. A temperature difference of about 5°C
between the two parts of the cylinder where the beams are located will provide a
change in the differential length equal to :’4‘-. This can be achieved by heating the
top part of the cylinder with a light source to a temperature about 20°C higher
than the ambient temperature. Since the radiaitive cooling from the surface of
the cylinder is about 3 times larger than the heat flow across the circumference
of the cylinder, a temperature gradient between the top and bottom occurs. The
time constant for this to take place is about 40 minutes. The slight tilt in the
end pieces that this introduces produces a negligible change in the contrast. The
inherent thermal fluctuations in the heating of the cylinder will contribute an
effective, but insignificant differential length change noise source.

The alignment of the cavity is tricky, but can be accomplished by moving
each beam until it goes through the part of its respective spherical mirror that is
normal to the flat, thin mirror. Each beam has to move in the plane parallel to
the end of the cylindrical cavity. By rotating the cylinder around its symmetry
axis, one can obtain one degree of freedom. The other comes from moving the
point where the beam spot hits the Koster prism.

Chapter 5 Normal mode Analysis
of a Thin Plate
For a thin circular plate, the general form of the normal modes is:
Z(r,0) = (Jx(sr) + dIi(kr)) cos (k6)
The boundary conditions for the edge rigidly clamped are:

Z(r=r,)=0
0z
B lrere =0
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Solving these equations give the following:

Ji(kro) Ingp1(kro) + Ix(k10) Jr41(k10) =0
- —Ji(kr,)
Ii(&ry)

The roots of these equations are given for some values of k£ (number of radial
nodes) and n (number of circular nodes) are given in table 1. The shape of

Table 1 xr, and b for clamped edge

n | k=0 k=1 k=2 k=3
0 3.19622 46109 5.90568 7.14353
0.0557128 0.0152162 0.00523458 0.00201321
. 1 6.30644 7.719927 9.19688 10.5367
-0.0023015 -0.000608146 -0.0017531 -0.0000565
2 9.4395 10.9581 12.4022 KTy
0.00110987 0.0000254845 0.0000675364 b

the second lowest mode is displayed in figure 6. This is the mode that will be
measured.
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Figure 6 Second lowest order mode (n=0, k=I)

The frequencies of these modes are given by:
9 ER?  (kr,)*

©vE 12(1 - 02)p ri

E =17.2 x 10" dynes/em?
o=20.16
p=22g/cm?

(kro)2 b
f =266 x 104—’%—— Hz r,hincm

(/]

For the second lowest order mode, the frequency is:

f = 5.66 x 105;'}1{,: r,hincm

o
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To determine the thermal noise in the normal mode, one must normalize. In
generalized coordinates,

2(r,0,8) =YY Ak Ruk(r)O(6)gnk(t)

n=0 k=0
dnk(t) + W2 (1 + Gnk(w)) gk (t) = Qui(t)
ro 27
Qui(®) = [ [ F(r,8,8) Ak Roi(r)O4(6)rdbdr
/]

f(r,0,t) = pressure
nk(r) Jk(’cuk"') + bnka('cnkr)
04(0) = cos (k6)

ro 27

Ao [ [ ph(AnkRar(r)0K(0) Prdoar =1
0 0

An explicit damping term in the form of an internal friction, ¢(w), is included. If

a force F is applied at 7, 6, then a solution of the above system of equations is:
. Qnk = FAppRui(r)04(0)

F Ani Rk (r)O(6)
nk ~ w? + g7, (whwiy
F(Aui Rar(r)O1(6
2(7‘0) ZZ (02()2())
n=0 k=0 "k —w+ z¢n (w)wnk

Recalling that the thermal noise in a mechanical system is:
4kpTo(w)

w?

dnk = wz

2
Zthermal (w) =

and combining the above gives

2(w) = 4kpT E Z cos? (k0)(Ji(kukr) + bnka(fcnkr))

~phu n=0 k=0 Mak

¢nk (w) w?nk
2
(W2 = w?)" + P (w) Wiy
KnkTo

1
My = n_z— / (Jk(u) + b,,klk(u))zu du
nk
0
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Table 2 gives some values for M,;/r2. By putting in the values for fused quartz

Table 2 Mar = L,

Kuk Y"

J ) (Ju(u) + br I (u))* u du

n | k=0 k=1 k=2 k=3

0 |0.10887 0.067164 0.0498746 0.0394756
1 ]0.0506907 0.0404892 0.0336565 0.0287584
2 10.211237 0.0289387 0.124823

and doing some simplification, one has a workable form for the thermal noise
contribution of a specific mode:

2 /ey _ 381 X 10715 cos? (k)(Jx(Knkr) + butJe(Anir))?
an(f) hf rg (L_zg.b.) X
$(w)

2
(167 x 10 el — 2,36 x 104 8L ) 4 279 x 101092 i

in em?/Hz, for ro,r,hincm, fin Hz

The parameters that determine the size of the mirror are chosen to give a
resonant frequency between 1 and 20 kHz. There is a trade off here because a
low resonance frequency (below 1 kHz) is more easily excited by acoustic and
seismic noise. A high resonance frequency implies a bigger mass for the mirror
which decreases the effect of the thermal noise. There are two ways to achieve a
resonant frequency in this range and each has a problem associated with it. The
mirror can be made thin which causes problems in the manufacturing process
since a certain aspect ratio is necessary in order to obtain a good surface figure.
The surface figure is constrained by two different factors. The mirror will be
optically contacted which requires a minimum surface figure error. Also, the
high finesse of the optical cavities demands a very small loss in the mirror which
constrains the surface figure. The other dimension that can be changed is the
diameter. Practical considerations limit this size.

Standard industry practice uses a 9:1 aspect ratio for a mirror to have a surface
figure of A/10. For a frequency of 10 kHz, the diameter of the mirror will be
10”. This is too large. A reasonable size for the diameter is about 4”. Since
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the surface figure is only important over the area that is optically contacted and
over the beam spot (which is small), the aspect ratio and surface figure can be
relaxed somewhat. The numbers that I will use are a diameter of 4” (actually 4.5”
including the surface that is optically contacted) and a thickness of 1/4”. This has a
resonance frequency of 14 K Hz for the second lowest mode. Using ¢(w) = 1073
or Q = 10° gives the curve in figure 7. The spot on the mirror is chosen to be at
the maximum displacement point or at r = 0.38r,. If the predicted sensitivity of
this experiment does reach the conservative calculated value of 10~17 em/vHz,
then the off resonance thermal noise should be seen.

Figure 7 Plot of thermal noise in second lowest order mode log,, (cm/ vH z) vs. frequency (Hz)
for ¢(w) = 1075, The horizontal line shows the predicted sensitivity of 10~'" cm/v/Hz.
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One of the important characteristics of this experiment involves determining
the shape of the off-resonance thermal noise curve. Figure 9 shows four different
plots that describe:

$(w) = 1073, 1078, (1021)"1, (103_0_;_)—1

2n 2%
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The last two expressions are similar to viscous damping force with a Q = 105, 108
at 1 kHz. It is clear that there are substantial differences between the two models
at frequencies above and below the resonance.

Figure 8 Plot of thermal noise in second lowest order mode log,, (cm/\/ H z) vs. frequency (Hz). The
top curve is ¢(w) = 10~5; the next is ¢(w) = (104£) ", then ¢(w) = 10~%; the bottom curve
is $(w) = (10°£)~". The horizontal line represents the predicted sensitivity of 10~'7 cm/v/H.
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- The two spherical mirrors and the plate upon which they are attached do
contribute to the thermal noise being measured, but not significantly. A spherical
mirror 1” in diameter and 1/2” thick has its lowest order mode at 214 kHz. Each
spherical mirror contributes uncorrelated noise from this mode. Since the plate is
much thicker than the thin mirror, it has a much higher resonant frequency (55.6
kHz for a thickness of 1” and diameter of 4”) for the mode that will contribute to
the thermal noise. Figure 9 shows a plot of the thermal noise contribution from
different parts of the interferometer.
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Figure 9 Plot of log,, (cm/\/E) vs. frequency (Hz). The bottom curve is the
contribution from a spherical mirror. The next one up is the contribution from the
thick plate. The horizontal line represents the predicted sensitivity of 10™7 em/v/Hz.
Finally, the top curve is the signal that will be measured. In all cases, ¢(w) = 107>,
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Another source that can introduce an error in the signal is the first flexural
mode in the cylinder. It is excited by ground motion through the wire loop that
suspends the cylinder (see figure 10).



Figure 10 First flexural mode of cylinder excited by wire suspension.

J L LSS

For a shell with an inner diameter of 4”, wall thickness of 1cm and length
of 10 cm, the lowest frequency of this mode is 10 kHz. The coupling between
the vertical motion at the wire to the tilting motion at the ends of the cylinder is
about 1. Taking into account the position of the beam spots and the differential
nature of the measurement gives a factor of 1.6 for the coupling of the vertical
motion at the wire to the actual signal being measured. An optimistic spectrum
for the ground noise in the lab is:

() = 13- e/ VEE

At 10 kHz, this gives a value of 1072 cm/+/Hz which is too large until one
considers the filtering effect of the wire suspension.

The numbers given above for the dimensions of the cavity give it a mass
of 700 g. Making the length of the wires 10 cm and their diameter (0.074 mm)
which is five times the yield strength for tungsten (4 x 100 dynes/cm?) gives
a resonant frequency of 23.3 Hz to the suspension. At 10 kHz, this offers an
isolation of 5 x 10~% which makes the noise 7 x 10~!8 cm/+/Hz. This is just
below the predicted sensitivity of the apparatus. An isolation stage can further
reduce this until it becomes negligible.

Another source of excitation for this mode is the thermal noise in the wire
suspension. A quick calculation shows that it is not important. For the wire
dimensions given above, the noise contribution at 10 kHz (assuming ¢(w) =
2 % 105 ) is 8 x 10~2° ¢m/+/Hz which is not significant.
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Cost Estimate

O00doo0oooo

]
O
a
a
a

1 Flat 4.5” diameter mirror....................... $2500" «—
2 Curved 1” diameter mirors..................... $4500°
1 Plate for mounting small mirrors............ $1000"
1 Fused Quartz cylinder.............oovoue.......... $4000* <
Optical Contacting..........ceceveeemrerereeversesnne $5000* <—
1 K3Ster PriSm.....cccecuruereeereeeereereeeeseeeereenenns $4500" <«
SUD-TOMAL......o.coereenmreeensnnnrssrenssrsssesnennenes $21500"
1 MISER
40 MWt seenns $12000
300 MWt eenns $22000

2 Pockels Cells

1 Polarising beam splitter

1 Faraday Rotator

2 Photodetectors and electronics
Miscellaneous lenses
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To: R. Vogt
From: R. Weiss (c/o DHS) 22 Feb 91
Subject: J. Kovalik’s PhD experiment

Robbie,

This is the proposal to the MIT physics department for Joe Kovalik’s experiment on
thermal noise. Comments from the science team are welcome.
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