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Abstract

Two pieces of high grade fused silica were tested in a Fizeau in-
terferometer to determine the magnitude and spatial distribution of
refractive index inhomogeneity and birefringence. The data was used
as input to a Monte Carlo simulation of LIGO-scale mirrors, and it
is shown that if index inhomogeneity and birefringence are limiting
factors, then interferometer contrast will lie between .989 and .999.

1 Introduction

Refractive index inhomogeneity and residual birefringence in thick glass
blanks are a result of residual stresses left from the annealing process.! The
goal of this experiment was to measure the magnitude and spatial charac-
teristics of the refractive index inhomogeneity and residual birefringence of
two pieces of fused silica. The technique was to pass a nearly flat wavefront
through each piece, and to measure the phase variation of the resultant
wavefront interferometrically.

2 Test pieces

Two blanks of Corning 7940 grade OA fused silica were tested. This is
Corning’s finest grade of fused silica. It is produced via a vapor deposition
process. Corning's specifications An = 1.0 x 10~8 for refractive index inho-
mogeneity and 5 nm/cm for the intrinsic birefringence. Both samples were

M. Burka, On the LIGO Receiver Mirrors, unpublished LIGO memo, and references
therein.




annealed a second time by Corning to reduce the intrinsic birefringence to
1 nm/cm.

One piece was 4.5 inches in diameter by 1.5 inches thick, the other was
4.0 inches in diameter by 3.5 inches thick. The latter piece had a one inch
diameter hole drilled through its center for reasons unrelated to this exper-
iment. Both surfaces of each blank were polished flat to a surface quality of
A/50 peak-to-valley (A=6328 angstroms). The polishing was done by Zygo
Corporation.

3 Procedure

The blanks were tested with a Zygo Mark IV Fizeau interferometer.?:3 A
schematic of the interferometer is shown in Figure 1. A spatially filtered
Helium-Neon laser beam (A = 6328 A) is linearly polarized with a polariz-
ing beamsplitter. The orthogonal component is not used. After reflection
from a folding mirror the polarization is changed to circular with a A/4
plate. For our linear polarization measurements it was converted back to
linear polarization with a polarizer inserted into the intererometer by hand.
Some light is reflected from the back of the transmission element, the rest
propagates through-the test piece to a reflector. The reflectance of the re-
flector is equal to that of the transmission element (both are uncoated, and
reflect about 4% of the incident light), and the light which is reflected prop-
agates through the test piece a second time and recombines with the light
reflected from the transmission element. The test piece is tilted slightly so
that light reflected from its surfaces does not interfere.

The interference pattern is imaged onto a 244 x 388 pixel CID array. A
neutral density filter served to keep the pattern intensity within the dynamic
range of the array, and a zoom lens allowed variable magnification. The
optical path shown at the far left of Figure 1, with the alignment reticle,
was used only to align the optical components, and did not play a role in the
measurements. In the measurement process, the position of the transmission
element is changed in quarter-wavelength steps. The resultant interference
patterns can be manipulated to yield an array of optical path differences.*

Thirty “shots” were recorded. Table 1 is a listing of them. The shots
were taken with circularly polarized light, except where a linear polarizer

*Bruce E. Truax, Surface Characterization and Testing, SPIE vol. 680, 1986.
3Moshe Schaham, Precision Optical Wavefront Measurement, SPIE vol. 306, 1981.
*ibid.




orientation is described.

| Shot | Piece | Description
WFA 3.5” | Full aperture - no polarizer
WFB | 3.5” | Full aperture - rotated 180° about vertical
WFC 3.59” Full aperture - rotated approx. -135° about axis
WED | 3.5” | Polarizer at 0° (vertical)
WFE | 3.5” | Polarizer at 45°
WFF 3.5” | Polarizer at 90°
WFG | 3.5” | Polarizer at 90°
WFH | 3.5”7 | Polarizer at 135°
WFI 3.5" | Polarizer at 157.5°
WFEJ 3.5” | Polarizer at 180°
WFK 3.57 No polarizer
WGD | 3.5” | No polarizer - 6X zoom
WFN 1.5” | Full aperture - no polarizer
WFO 1.5” | Polarizer at 0°
WFP 1.5” | Polarizer at 45°
WEFQ 1.57 Polarizer at 90°
WFR 1.5” | Polarizer at 135°
WEFS 1.5 | Polarizer at 157.5°
WFT | 1.5” | Polarizer at 180°
WFU 1.5" | No polarizer - rotated 180° about vertical
WFV 1.5” | No polarizer - 6X zoom
WFW | 1.5 | No polarizer - 6X zoom shifted about 0.25 inch
WFEX 1.57 | Polarizer at 0° - zoom approx. 4X
WFY 1.57 Polarizer at 45° - zoom approx. 4X
WFZ 1.5" | Polarizer at 90° - zoom approx. 4X
WGA | 1.5 | Polarizer at 135° - zoom approx. 4X
WFL | Empty | Empty cavity - no polarizer
WEFM | Empty | Empty cavity - polarizer at 0°
WGB | Empty | Empty cavity - polarizer at 0° - zoom approx. 4X
WGC | Empty | Empty cavity - polarizer at 90° - zoom approx. 4X
Table 1. Index of test shots




4 Data analysis

The raw data were in the form of a phase value for each pixel in the array.
These phase values represented the phase of the wavefront which traversed
the SiO, blank (twice) relative to the planar reference wavefront. Pixels
which imaged regions outside of the test sample were turned off, as were
. pixels for which there was too little light intensity for an accurate phase
determination. The data phasefronts contain a linear tilt which was removed
by subtracting linear phase gradients in each of two orthogonal directions.
The gradient parameters were determined by minimizing the variance of the
resultant phasefront.

Table 2 lists the peak-to-valley and r.m.s. variations in the wavefronts.
A few conclusions can be drawn from Table 2. First, the r.m.s. phase values
of the empty cavity measurements are smaller than the measurements with
samples; this indicates that we are seeing a signal above the background
noise of the interferometer. Second, the r.m.s. phase value measured for a
given sample varies by about a factor of two between measurements. The
first four shots listed (WFA, WFB, WFC, WFK) are all of the same sam-
ple with circular illumination. Some of this difference may be attributable
to thermally induced inhomogeneity, since the pieces were handled between
shots. We were able to see thermally induced inhomogeneity on the live
monitor during the test when the parts were handled. The rest of the dif-
ference may be due to vibration or other noise sources inherent in the test
system. A third conclusion to be drawn is that the thick piece of glass
distorts less than the thin piece.

Figures 2 and 3 portray wavefronts after two passes through the 3.5 inch
and 1.5 inch thick pieces, respectively. In each figure, the upper plot is
a three-dimensional contour, and the lower plot is a two dimensional slice
across the center of the part. Figure 2 is from shot WFA, Figure 3 is from
WFEN. The wavefront distortion in these plots is due to the sum of refractive
index inhomogeneities and surface figure errors, but birefringence is averaged
out, because they were taken with circularly polarized light. Figure 3 shows
a circular symmetry to the distortion of the wavefront which traverses the
thin piece.



" |_Shot | Piece [ Mag | Pol | é@m, (rad) | 65—y (rad) |
WFA | 3.57 1X C 4.2x107% | 2.8x 1071
WFB | 3.5 1X C 4.0x 10~% | 2.0x 10T
WFC | 357 1X C 5.6 x 10~ | 3.2x 10°!
WFK | 3.5” 1X C 59x 102 | 3.7x 10°T
WFD | 3.5” 1X 0 5.5x10-% | 3.7x 107!
WFE | 3.57 1X | 45 | 7.0x107% | 4.5x 10!
WFF | 3.57 1X | 90 | 5.6x10-* | 4.9x 10°1
WFG | 3.57 IX | 90 | 5.5x1072% | 4.7x 10~
WFH | 3.5” 1X | 135 | 6.4x107°% | 4.6x 10~1
WFI | 3.57 1X | 157.5] 7.1x10~% | 4.5x 10~1
WFJ | 35" 1X | 180 | 7.8x10-% | 4.1x 10~T
WGD | 3.5” 6X C 1.1x 1072 | 1.0 x 1077
WFN | 1.57 1X C 1.0x 10"t | 5.9 x 101
WFO | 1.57 1X 0 8.8 x 10~% | 6.2 x 10~}
WFP | 1.57 1X | 45 1.1x 107! | 7.5x 101
WFQ | 157 1IX | 90 | 9.7x10°% | 6.9x 10°!
WFR | 157 1IX | 135 | 9.5%x10"% | 6.9 x 10-!
WFS | 1.57 1X | 157.5] 9.1x 1072 | 6.9 x 10~!
WFT | 1.57 1X | 180 | 8.9x10~? | 6.2x 10-!
WFU | 157 1X C 1.0x 10-T | 7.3 x 10~
WFV | 1.57 6X C 1.6x 102 | 1.3x 10°!
WFW | 1.57 6X C 1.1x10% | 2.4x 10
WFX | 1.57 4X 0 2.4x 107 | 2.9 x 10T
WEY | 157 4X | 45 | 2.7x10% | 2.8 x 10~!
WFZ | 1.57 4X | 90 | 2.5x10°% | 2.9x 107!
WGA | 1.57 4X | 135 | 2.2x107% | 2.9x 10~
WFL | Empty | 1X C 22x107% | 1.2x 107!
WFM | Empty | 1X 0 22x107° | 1.4x 107}
WGB | Empty | 4X 0 1.5x10-7 | 1.9x 10°1
WGC | Empty | 4X | 90 | 1.6x 10-% | 2.0 x 10~}
Table 2. Phase distortion of test shots

We wish to estimate the possible contribution of surface figure error to
the phasefront distortion. Figures 4 and 5 show the results of 3-flat tests
performed on surface 1 of the 3.5” blank and surface 2 of the 1.5” blank.
A 3-flat test is a method for determining the absolute flatness of a line
along the diameter of the surface without having to rely on the flatness of a




reference flat.® Since the parts were polished together, surface 1 of the 3.5”
blank should be similar to surface 1 of the 1.57, and the surfaces 2 should
likewise look the same. In these figures, the r.m.s. and peak-to-valley values
are expressed in terms of half-wavelengths, so the surfaces conform to a 5%
specification in the r.m.s. value of the figure error. Also, both parts are
slightly thinner toward the edges.

The peak-to-valley optical phase distortion due to surface 1 of the 1.5”
part is given by

0167 x (1.46 — 1)
= 2.3x107? rad.

6¢p—v

where the factor of (1.46 — 1) is the difference in refractive index of glass and
air. Surface 2 of the 3.5” part is slightly worse with a §¢,.., = 3.0 x 10~2
radians. The r.m.s. phase distortions of the two measured surfaces are
about the same at d¢,ms = 6 X 103 radians. Both surfaces contribute to
the wavefront distortion, though their contributions are incoherent. These
surface distortions are about an order of magnitude lower than the peak-
to-valley and r.m.s. distortions measured on transmission, and shown in
Table 2. Therefore, the transmission measurements are measuring volume
inhomogeneity, and not just surface effects.

Autocovariance functions were generated for the wavefronts shown in
Figure 2 and 3. The functions were generated from cuts across each sample,
in the x- and y-directions. The autocovariance function is given by

1 X T
w(r) = 5 2 H9)ela+ =) (1)

=0

where ¢(q) is the phase of the ¢** pixel along a line, 7 is the lag distance, 7q
is the pixel spacing, and N is the number of pixels along the line. Figure 6
shows autocovariance plots for the 3.5” sample. On each plot is printed the
variance é and a correlation length a which is the length at which the auto-
covariance drops to 1/e of the variance. Figure 7 contains the corresponding
Fourier transforms. The variances of the different cuts vary by a factor of
two. The correlation lengths range from 1.1 cm to 1.5 cm. Figures 8 and 9
contain autocovariance plots and their transforms for the 1.5” piece.

The birefringence information was analyzed by subtracting phasefronts
measured with light linearly polarized in one direction from phasefronts

*See Daniel Malacara, ed., Optical Shop Testing, 1978.




with light linearly polarized in the orthogonal direction. A benefit of this
subtraction procedure is that it eliminates any contribution due to surface
figure error from the measured birefringence. This is because the orientation
of each part was maintained during each shot as the plane of polarization
was varied. Thus, each of the two phasefronts in any subtracted data set
contain the same phase distortion due to surface errors, and that surface
effect is cancelled.

Figures 10 and 11 show phasefronts from the 3.5” piece in vertical and
horizontal light, respectively, and Figure 12 shows the relative phasefront,
i.e., Figure 11 subtracted from Figure 10. The notched area in the fore-
ground of Figure 11 represents an area for which the interferometer did not
record data, possibly because the light intensity on the interferometer CID
array was near its detection threshold for the shots taken through a linear
polarizer. The variance of the difference phasefront shown in Figure 12 is
5.7 x 1073 rad?. The peak-to-valley is .52 radians. Figure 13 shows a dif-
ference phasefront for the same glass sample made from shots polarized at
45° and 135° from vertical. It’s variance is 7.8 x 10~3 rad?, and its peak-
to-valley is .48 radians. The mean values of the phasefronts in Figures 12
and 13 are 6.2 x 10~2 and 3.3 x 103 radians, respectively, but caution must
be used in the interpretation of these mean values. While they might rep-
resent a uniform bii'efringence over the entire sample, they might also be
artifacts of the algorithm used to remove the tilt from the wavefronts. The
Zygo interferometer does not give one an absolute reference phase, so the
determination of a non-varying birefringence from the subtraction of two
phasefronts is difficult.

The 3.5” sample shows quite a bit of structure in the birefringence plots
near the hole. This could be the result of stress induced during the drilling
process, although the last annealing of the part was done after the hole was
drilled.

Figures 14 and 15 are phasefronts from the 1.5” piece in vertical and
horizontal light. Figure 16 is the difference in the phasefronts. the peak-to-
valley of the phasefront in Figure 16 is .27 radians, less than either of the
phasefronts in Figures 14 and 15. This is a result of the subtraction of the
high index region around the edge of the piece. The variance of the difference
phasefront is 1.2x 1073 rad?, and the mean value is 2.7x 10~3 radians. Figure
17 is a difference phasefront of the same sample from shots taken in light
polarized at 45° and 135° from vertical. It’s variance is 6.8 x 10~* rad?,
mean is —3.6 X 10~3 radians, and peak-to-valley is .23 radians. The periodic
structure in Figures 16 and 17 is indicative of a periodic, non-isotropic stress




in the material.

Although Figures 12, 13, 16, and 17 show pixel-by-pixel phasefront dif-
ferences, we averaged groups of four pizels together when computing the
autocovariance functions of the difference phasefronts. This was done to
minimize the effect of any registration error in the subtraction process. The
autocovariance functions of the 3.5 inch piece are shown in Figures 18 and
19. Figure 18 was computed from the difference of the phasefronts mea-
sured in vertically and horizontally polarized light. Figure 19 was computed
from the difference of the phasefronts measured in light polarized at 450 and
135° from vertical. In both sets of figures, “columns™ are vertical (0°) cuts
through the data, and “rows” are horizontal cuts. Figures 20 and 21 are
the corresponding power spectra. There is a very noticeable periodicity in
the vertical direction. The magnitude is polarization-dependent, which is
why it shows up in these difference phasefronts, but not in Figures 6 and 7.
This periodicity is quite visible in Figures 16 and 17, and barely visible in
Figures 14 and 15.

Figures 22 through 25 show the autocovariance functions and power
spectra computed from the difference phasefronts of the 1.5” substrate. The
unidirectional periodicity which is visible in Figures 16 and 17 appears as
the periodicity in the columnar autocovariance functions and the peak in
the corresponding power spectra. The spatial frequency of the periodicity
is slightly greater than 0.5 cm™!, and the peak amplitude of its Fourier
component varies across the part. This variability is evident in Figures 16
and 17.

Figures 26 and 27 are histograms of the difference between the z— and
y—components of refractive index for the two blanks. As discussed above,
the offset from zero of the peaks in these two blanks may be an artifact of
the lack of a reference phase in the data, but the width of the histogram
distribution is an accurate reflection of the variability of the birefringence
across the part.

5 Effect of inhomogeneity and birefringence in
interferometers

The inhomogeneity and birefringence of fused silica blanks will result in
distortion of the wavefront propagating through an interferometer, which
leads in turn to loss of contrast and power. This section presents the results
of numerical calculations of the contrast which can be expected in LIGO if




inhomogeneity and birefringence are the limiting factors.

5.1 Direct calculation

Data from the 3.5 inch blank could not be used directly in a contrast cal-
culation, because the blank has a hole through its center. The 1.5 inch
blank has no such restriction, and the calculation assumes two blanks, one
represented by the horizontal polarization and vertical polarization phase-
fronts (WFO and WFQ), and the other by the 45° and 135° phasefronts
(WFP and WFR). A circularly polarized Gaussian beam of 2.15 cm waist
radius was assumed to make two passes through one of these blanks, and an
identical beam was assumed to traverse the other. The contrast expected
from the two blanks was calculated. Table 3 displays the result of these
calculations. The second column shows the contrast one would expect from
the 1.5 inch blank data, and the third column shows the contrast one would
expect if the thickness and wavelength were scaled to 10 cm and half micron,
respectively. This scaling assumes that column inhomogeneity and birefrin-
gence scale linearly with thickness, a conservative assumption. The first row
shows the contrast expected from a blank representing the 0°-90° data and
a blank representing the 45°-135° data. The isotropic index inhomogeneity
cancels out in this calculation, so the contrasts represent degradation due
to birefringence only. The second row shows contrasts from the same two
blanks, but with one rotated 90° about the optic axis. Both inhomogeneity
and birefringence contribute to the loss of contrast in this example. The
third and fourth rows show contrasts from the two blanks with one shifted
by one and three cm relative to the other.

Contrast | Contrast
with scaling
0°-90° vs 45°-135° 0.999 0.988
0°-90° vs 45°-135°, 45°-135° rotated 90° 0.996 0.960
0°-90° vs 45°-135°, 45°-135° shifted 1 cm 0.998 0.980
0°-90° vs 45°-135°, 45°-135° shifted 3 cm 0.985 0.927

Table 3. LIGO contrasts derived from 1.5 inch sample.

It is worth bearing in mind that the 1.5 inch blank has a large refrac-
tive index inhomogeneity, and the contrast limits due to inhomogeneity and
birefringence we may expect in LIGO are not as severe as Table 3 implies. If
the same calculation were possible with the 3.5 inch blank, better contrast
would result.




5.2 Monte Carlo simulation

A monte carlo simulation of LIGO-scale mirrors has been carried out to
determine what the loss of contrast is likely to be in LIGO. Data from
the 3.5 inch test blank was used to determine the parameters for a model,
and computer-generated mirrors were used to estimate the possible range of
contrasts.

The mirrors were modeled to have a Gaussian distribution of refractive
index inhomogeneity.® The model is a two-dimensional grating in which the
wave vector components are given random phases. The relative strength
of the wave vector components is given by the surface factor, which is the
Fourier transform of the autocovariance of the inhomogeneity. The surface
factor is a2

g(k) = réa’e™ (2)

where § is the phase variance, a is the correlation length, and % is the
wave vector of the Fourier component of the inhomogeneity. An isotropic
inhomogeneity distribution was generated first, then a birefringence distri-
bution was added, using the same model with different parameters. Vertical
and horizontal were maintained as the principal axes of the birefringence
throughout.

The correlation lengths used in the model were chosen to mimic those
seen in the data from the 3.5 inch blank. Various cuts through the measured"
phasefront show correlation lengths of refractive index inhomogeneity in the
1 to 2 c¢m range, and 1.75 cm was used in the model. 3.5 cm was used as
the birefringence correlation length.

The choice of amplitude of inhomogeneity and birefringence is more dif-
ficult. Only two samples of glass were measured, and the thinner has a
greater amplitude of inhomogeneity, indicating some problem in its manu-
facture. Thus, we do not know how inhomogeneity scales with thickness. If
the inhomogeneity and birefringence are truly random in three dimensions,
and if the correlation length along the optical axis is less than the blank
thickness, then the inhomogeneity ought to scale with the square root of the
thickness. This was chosen for one of two trials. For the other, the more
conservative assumption of linear scaling of inhomogeneity and birefringence
with thickness was used.

In the 3.5inch (8.9 cm) blank, the rms inhomogeneity was measured to be

8See Elson and Bennett, Relation between the angular dependence of scattering and the
statistical properties of optical surfaces, J. Opt. Soc. Am., v.69, n.1, January 1979
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.06 radians, and the rms birefringence was .08 radians. These numbers were
multiplied by the ratio of the LIGO wavelength to the test wavelength. The
LIGO mirror thickness was taken to be 14 cm, so the rms amplitudes were
multiplied by the ratio of thicknesses in one case, and by the square root of
that ratio in the other. For the linear scaling model, the rms inhomogeneity
was .12 radians, and the birefringence rms was .17 radians. For scaling with
the square root of thickness, the rms inhomogeneity was .10 radians, and
the birefringence rms was .12 radians. These numbers are summarized in

Table 4.
3.5inch | Vd x Ve x VI
Data | Model Model
(rad) (rad) (rad)
Rms inhomogeneity .06 A2 10
Rms birefringence .08 A7 12
Table 4. Comparison of data and Monte Carlo models.

Figure 28 shows the profile of a wavefront generated in this simulation.
Figure 29 shows autocovariance functions and power spectra for the hor-
izontal and vertical diameters of the same blank. The projection of the
refractive index ellipsoid of each pixel into the horizontal direction was used
in Figure 29. The gross features of the autocovariance functions and their
Fourier transforms match those of the test data.

To calculate the contrast in a LIGO made with such mirrors, ten dis-
torted wavefronts were generated corresponding to two passes of a 2.15 cm
radius, circularly polarized Gaussian beam through ten mirrors generated
according to the same model. The only difference between the ten simulated
mirrors was in the random phases assigned to the Fourier components of the
inhomogeneity. The maximum and minimum intensities from all possible
pairs of the ten wavefronts was then calculated by summing and squaring
the phasefronts. Phase difference information between the horizontal and
vertical components of the electric field was maintained. The contrast was
then calculated to be the difference between maximum and minimum inten-
sities divided by their sum. For each set of ten mirrors there are forty-five
possible combinations. Figure 30 shows histograms of the resultant con-
trasts for the two trials. For inhomogeneity scaling linearly with thickness,
the range of contrasts is .989-.999 with an average value of .996. For scaling
with the square root of thickness, the range is .991-.999 with an average
value of .998. _

Beyond the value of the contrast derived, this result is significant because

11




it indicates that different pairs of mirrors can give different results, even
though the mirrors are statistically similar. The orientation of the mirrors
in a given pair around the interferometer optic axis may also affect the
contrast. A simulation using inhomogeneity data only (no birefringence)
shows this to be the case.

A contrast estimate was made for the forty meter prototype with mono-
lithic mirrors. In this case, the rms inhomogeneity was taken to be .11
radians, and the rms birefringence was taken to be .12 radians. The resul-
tant range of contrasts was found to be .992-.999 with an average value of
.998. However, the extrapolation of the Zygo data to the small spot sizes
of prototype interferometers is not as sound as it is for LIGO spot sizes,
because the pixel spacing is only three times smaller than the spot radius,
and fine structure which might affect prototypes more than LIGO does not
appear.

12
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