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We treat the shot noise of a light source modulated in power as a non-stationary random
process. The spectrum of such modulated shot noise, although it is still white, is shown to
contain correlations between different frequency components. In addition, the noise is not
equally distributed in phase. These effects can deteriorate the shot noise limited sensitivity of
modulated interferometers. Maximizing the signal-to-noise ratio (SNR) introduces constraints
on both the mc.:siation and demodulation waveforms. The sensitivities obtained with several
commonly used modulation schemes are calculated and new modulation strategies are proposed
to realize good SNR. We apply the results to the case of laser interferometer gravitational wave
detectors where it is essential to reach a shot noise limited sensitivity. By taking into account
the additional noise contribution from the modulated shot noise we reduce the 3dB discrepancy

between the measured sensitivity of the Garching prototype detector and the theoretical shot

noise limit to about 1.5dB.

I. INTRODUCTION

The goal of gravitational wave (GW) detection places
extremely high demands on the sensitivity of interfer-
ometric measurements. The existing prototype detec-
tors are able to measure path length fluctuations be-
tween two orthogonal arms with a sensitivity on the or-
der of 101 m/v/Hz in linear spectral density.!~* Some
of these measurements have been within a few dB of the
theoretical shot noise limited sensitivity of the optical
setups. These highly sensitive arrangements employ in-
ternal phase modulation. As a consequence the output
light power exhibits a time dependence containing the
harmonics of the modulation frequency, and the associ-
ated shot noise is non-stationary.

The standard shot noise formula assumes constant
light power and is not suited without some modification
if the detected light power is time dependent.’ The ob-
ject of this paper is to describe the effect of the modu-
lation on the shot noise, derive its frequency spectrum,
and apply the results to signal detection in modulated
interferometers.

It would be tempting to assume that modulated shot
noise can be described as a white noise source with a vari-
ance proportional to the time-averaged light power. We
will see, however, that the shot noise characteristics de-
rived by appropriate consideration of the non-stationary
random process alter this conclusion. Although it will be
shown that the noise spectrum is indeed white (frequency
independent) with a variance given by the mean light
power, this spectrum differs from stationary white noise
in two important ways. First, the modulated shot noise
contains correlations between different frequency compo-

nents. Secondly, the noise is not equally distributed in
phase. In fact, the noise for a modulated interferometer
may be anomalously high in the signal quadrature. These
subtle differences in the noise statistics significantly affect
the optimal demodulation strategy.

The mathematics used in this paper can be generally
applied to the problem of signal detection in any type of
non-stationary noise. The noise power spectrum is de-
rived directly from the time domain correlation function.
We limit, however, the discussion to the special case of
modulated laser light. :

IIq. MODULATED INTERFEROMETERS

Interférometers with phase modulation of the interfer-
ing beams provide an example of oscillating output light
power, and thus of time dependent shot noise. Typical
cases are two-beam interferometers, e.g. of the Michelson
or Mach-Zehnder type, and Fabry-Perot cavities used in
the rf reflection locking technique.®7 For the latter it is
not the interference inside the cavity that is interesting,
but the interference between the phase modulated light
reflected off the front mirror and the unmodulated light
leaking out of the cavity.

Let us consider the simple case of a Michelson inter-
ferometer, as it is used in GW prototype detectors. A
schematic diagram of the operational principle is shown
in Figure 1. The phase difference between the two arms
is modulated with an electro-optical phase modulator
(PC,) at a frequency much higher than any anticipated
GW signal frequencies. The signal is recovered by phase
sensitive demodulation (PSD) and also is used as a feed-
back signal to lock the interferometer to a dark fringe.
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FIG. 1. Internal modulation in a simple Michelson inter-
ferometer, BS being the beam splitter, M the Mirrors, PC the
electro-optic modulators, PD the photodiodé, PSD the phase
sensitive demodulator, and SA the servo amplifier.

The light power at the output of an ideal Michel-
son interferometer near the dark fringe is given by
P,sin?(6¢/2), where P, is the input light power and
6¢ is the phase difference between the two arms. This
phase difference is the sum of the internal phase modula-
tion m(t) and a signal s(t). The function s(t) represents
the unmodulated phase difference between the interfer-
ing beams due to the signal to be measured, e.g. mirror
motion or gravitational waves.

In addition to this ideal output, we also include a con-
stant background light power P_;  to describe the effect
of imperfect fringe contrast. In the limit of small mod-
ulation and weak signals, m(t) < 1 and s(t) € m(t), the
light power at the interferometer output can be written
as

min

Pt)= }—;‘l [m*(2) + 2m(t)s(z)] + P,
= f;ﬂ [720) + ams) + ¥ W20 . ()

The first term describes the oscillating light power caused
by the internally modulated path difference. The second,
much smaller term is proportional to both the signal and
the modulation. The signal is amplitude modulated at
the modulation frequency w,, whereas the (much larger)
first term is oscillating at twice this frequency. This
makes it possible to separate the small signal contribution
using phase sensitive demodulation as will be described
later. In the last term, b? is the ratio of the background
light to the increment in average light power due to the
modulation. This term introduces a constant noise back-
ground which for an ideal interferometer would be zero.

However, in practical situations this term is never totally
negligible, and the amplitude of the modulation is usually
chosen relative to this background light power.

III. MODULATED SHOT NOISE

A. Time domain

Consider a measurement of the power P(t) of a mod-
ulated light source over short time slices of length At
during an observation time T'. The time slices are un-
derstood to be short relative to the modulation period so
that the average light power in each interval can be ap-
proximated by the value P(t), constant during At. The
observation time T is chosen to be an integer multiple of
the modulation period and the length of the time slice.
The shot noise during each time interval is found by con-
sidering the statistical fluctuation in the photon number.
Assuming that the arrival times of all the photons are
uncorrelated, the statistics for each time interval follow
the Poisson distribution. The associated noise in each
time slice is then described by a random variable P, (t)
with zero mean and a variance proportional to the aver-
age photon count in each time interval. The correlation
function of the noise can be written as

POPE)> = 2o PO 6y @

where hv is the energy of each photon and the Kronecker
delta expresses the fact that photons in different time
slices are uncorrelated. This treatment assumes that the
light field is in a single-mode coherent state, in which
case the second order coherence g(*)(t) is unity.®

The shot noise described by Eq. (2) is delta-correlated
in the time domain but is non-stationary because the
variance is time dependent. We will see that this pro-
duces correlations in the frequency domain which are not
present in thegstandard case of unmodulated shot noise.
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B. Frequency domain
1. Amplitude dependence

The discrete Fourier transform of a single member
P, (%) of the ensemble of noise realizations over the finite
observation time T is defined by

T/2

> Pt)e ™ At. (3)

t==T/2

~ 1
Pn(w) = 'f

The variable ¢ is an integer denoting the time slice (of
length At) and w is also understood to be an integer
multiple of 2#/T, running over positive and negative fre-
quencies. In the limit of At— 0, this equation is simply

- the complex Fourier series expansion for the noise real-

ization for an observation time T .



The frequency components 'ﬁn (w) are also random vari-
ables with zero mean. The correlation function of these
components can be derived using the definition Eq. (3),
and the time domain correlation function Eq. (2) which
collapses one of the sums:

p D 2 : o0l
<Pn(w)P;(w,)> = % Z(Pn(t)Pn(t’)>e—twteaw t

= h?” {%ZP(t)e"(‘”“‘”’)‘At}. (4)

These formulae can also be treated in the continuous
sense by letting the time slices become infinitely thin.
The term in the curly brackets then is the Fourier series
expansion of the modulated light power P(t). The noise
correlations in the frequency and time domains can be
written in the following compact forms:

<P ()P ()> = % Blw—-u") )
and
<P.(8)P.(t')> = hv P(1) 6(t — 1'). (6)

The frequency domain description is of course still dis-
crete but the frequency resolution Af = 1/T can be
made as high as desired by lengthening the observation
time.

The expectation value of the squared noise spectrum
is given by Eq. (5), setting w = ',

<AB @I = B B0 = X FE, ™

where the bar denotes the average over the observation
time. Thus, we see that the spectrum of the shot noise,
Eq. (7), is frequency independent or white with a value
proportional to the average light power. This result jus-
tifies the intuitive notion mentioned in the introduction
that the average light power produces a shot noise with
a white spectrum. However, Eq. (5) reveals that the
modulation introduces correlations between different fre-
quency components of the noise. The frequencies con-
tained in the Fourier expansion of the time-dependent
light power P(t) give the separation between these cor-
related components. For example, a dc light source
has white noise with uncorrelated frequency components,
whereas a 100% modulated light source given by

P(t)=P (1 ~-coswyi) (8)

introduces correlations between all noise components at
frequencies separated by wy- The latter case occurs in an
internally phase modulated interferometer with perfect
fringe contrast, where w, equals twice the phase modu-
lation frequency.

2. Phase dependence

Another interesting consequence of the modulation is
that the shot noise may be unequally distributed in

phase. To see this, we calculate the expectation value
of the squared noise spectrum at a frequency w with a
phase angle . This can be found by evaluating the ex-
pectation value of the real part of P, (w) in a reference
frame rotated by 6:
- 1~ o~ 1 |2
<PPatw 0> = <[5 P + B} >
T/2
hv 1

-1 / dt P(t) [1 + cos(2wt + 20)] . (9)

-T/2

This equation shows that the noise contribution in two
quadratures can be different. The deviation from a uni-
form distribution over phase angle # can be seen by nor-
malizing Eq. (9) to the average squared noise:

<[P,(w,0)>> _1 )
<Pw)r> 2

Setting 8 = 0 in the above equation gives the noise in the
cosine quadrature. For the case of a constant light power
we recover the usual result that the shot noise is equally
distributed in any two quadrature components separated
by 90°. But for the example already mentioned above,
i.e. a light source varying according to Eq. (8), we get

P(t) cos(2wt + 260)
P(t)

. (10)
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This shows that an unequal distribution of the noise oc-
curs at the first subharmonic w,/2 of the light power
modulation frequency, where the squared noise in any one
quadrature can vary between 1/2 and 3/2 times the usual
mean value. This is particularly important for modulated
interferameters, where the power oscillates at twice the
frequency with which the signal is modulated. Unfortu-
nately, the enhanced noise always appears in the signal
quadrature. Thus, one will lose a factor /3/2 in signal-
to-noise ratio (SNR) if one filters out the signal frequency
only. However, one can almost fully recover the loss in
SNR using a proper demodulation scheme.

—%cos20 for w= wp/2

(11)

otherwise.
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C. General remarks

Summarizing the above: Modulated light power pro-
duces non-stationary shot noise. The spectrum of the
noise is white but is no longer equally distributed in
phase. In addition, different frequency components are
correlated.

We note that the white power spectrum (Eq. 7) is a di-
rect consequence of the delta-correlation assumed for the
correlation function (Eq. 6). The time dependent noise
variance results in correlations between different compo-
nents in the frequency domain, but is not evident in the




power spectrum. One can see by analogy that correla-
tions in the time domain would give rise to a frequency
dependent or colored shot noise power spectrum. This
may be important if one chooses a light source with a
more complex second order coherence function.

We have also mentioned that for the case of modu-
lated interferometers, the shot noise is larger in the sig-
nal quadrature. We will later investigate demodulation
schemes in which the SNR approaches that of the un-
modulated case. This can only be achieved by utilizing
the correlated noise components at the higher harmonics
of the modulation frequency to reduce the overall noise
contribution.

IV. DEMODULATION AND SIGNAL
EXTRACTION

The effect of the modulation in a two-beam interferom-
eter according to Eq. (1) is to produce an oscillating light
power proportional to m?(t) and a signal which is ampli-
tude modulated by m(t). A modulation m(t) = sinw,t
shifts the signal to w_, whereas the light power is mod-
ulated with 2w . The signal is returned to dc by mul-
tiplying with a demodulation function d(f) that is pe-
riodic with the same fundamental frequency w,,. Since
the modulation frequency is chosen much higher than the
signal frequencies expected, the demodulated signal can
be lowpass filtered with a cut-off frequency well below
W

A. Demodulation of the Signal

Demodulation of the signal produces a new function
proportional to the product of the signal, modulation,
and demodulation functions, d(t)m(t)s(t). Since both
modulation functions are assumed periodic, the product
q(t) = d(t)m(t) is also periodic with a Fourier series ex-
pansion containing a dc term and harmonics of the fun-
damental frequency w,,. The signal s(t), on the other
hand, is assumed to have Fourier components 3(w) only
at frequencies much lower than w,,. The product g(t)s(¢)
is most easily understood in the frequency domain as a
convolution g(w)*s(w) in which the signal frequencies are
located near dc and repeated at harmonics of w,,. For
frequencies less than w /2 the demodulated photodiode
current can be expressed in the frequency domain as

enky
2hv

where ¢(0) = m(t)d(t), the quantum efficiency of the
photodiode is ) and the elementary charge is e.

Iw)=

7(0)s(w) for w < wy, /2, (12)

B. Demodulation of the Noise

In order to describe the demodulation of the noise we
modify the time domain correlation function Eg. (6).
Multiplication of the non-stationary shot noise by the

function d(t) does not alter the delta correlation in the
time domain. The expectation value of the demodulated
noise remains zero at any given instant, but the variance
is multiplied by the square of the demodulation function.
Thus, the correlation of the noise in terms of the demod-
ulated photodiode current becomes

<Z, (I, ({t)> = f’;yﬂdz(t) P)st-1t). (13)

This demodulated shot noise is also non-stationary and
has the same form as the modulated shot noise given
in Eq. (6). Thus, all the results derived for modulated
shot noise are still valid with the simple replacement of
P(t) by d%(t)P(t) and a proper scale factor converting
from light power to photodiode current. For example,
the power spectrum of the demodulated noise is

<|Z,(w)|*> = ,i—”T d(t) P(t) . (14)

An equation similar to Eq. (5) follows immediately which
shows that correlations exist between different frequency
components of the demodulated noise that are separated
by frequencies contained in the Fourier series expansion
of d?(t)P(t). More important, however, is that the lower
frequencies of the demodulated noise which survive the
lowpass filter stage are not correlated. This means that
standard matched filter signal processing can proceed
with the assumption of uncorrelated white noise.

The demodulated noise is particularly simple for the
case of an ideal interferometer, P, = 0, with small
modulation index, and small signals s(t) < m(t) < 1. In
this case, P(t) = Pym?(t)/4 and the squared noise, given
by Eq. (14), then is proportional to the time average of
g%(t) = d?(t)m?(t). This can also be written as a sum of
frequency components using Parseval’s theorem:

~ 62 P, —
<Z,@)*>= 2L 0 (15)
H 2
t e‘nP, ~
=gt Y law)l, (16)

where the sum has to be taken over negative and positive
frequencies.

V. SIGNAL-TO-NOISE RATIO IN
MODULATED INTERFEROMETERS

For a sinusoidal signal with unknown phase we define
a SNR as:

HA®)

— e, 17
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SNR(w) =

where the numerator is the Fourier component of the sig-
nal and the denominator is the noise contribution that
can be calculated quite generally using Eq. (14). Maxi-
mizing this ratio will constrain the optimal modulation
and demodulation waveforms. We will investigate this




formula in detail for the case of two-beam interferome-
ters, and also briefly for Fabry-Perot cavities used in the
rf reflection locking technique.

For the following discussion it is convenient to split off
a factor F' (< 1) that depends only on the modulation
and demodulation waveforms from the SNR:

SNR(w) = F - SNRo(w) , (18)

where SNR, is the maximum theoretical signal-to-noise
ratio that could be obtained under ideal conditions. For
two-beam interferometers we have

NPT .

5% [3(w)] (19)
When comparing this equation with shot noise sensitiv-
ities quoted in the literature one should remember that
the rms value of a narrowband signal is v/2 larger than
the double-sided Fourier component |s{w)] for frequencies

w#0.

SNRy(w) =

A. Two-beam interferometers

For simplicity, we will still make the assumption of a

quadratic response to phase differences, as was already
done in Eq. (1).

1. Perfect fringe contrast

Let us first consider an interferometer with perfect
fringe contrast (P,,;, = 0) and small signals. Using Egs.
(12) and (15) we can write

. _ _dOm@)
d2(t)m¥(t)
It should be noticed that the fact that F is independent
of the modulation amplitude originates from the approx-
imation s<m <1 made in Eq. (1).

The factor F is always less than or equal to unity. It
becomes unity only when the product m(t)d(t) is time
independent. Thus, the optimum demodulation function
for the case of modulated noise is d(t) x 1/m(t). This
condition is automatically met in the case of square wave
modulation and demodulation. Sine modulation, on the
other hand, would be best demodulated using 1/sine (but
such a waveform cannot be fully realized). This result is
quite different from the usual notion that the best SNR
would be obtained using identical waveforms for modula-
tion and demodulation. Another interesting fact is that
the SNR is symmetric with respect to the modulation and
demodulation waveforms for interferometers with perfect
fringe contrast.

(20)

2. Imperfect fringe contrast

In practical situations the assumption of a perfect con-
trast is not valid. Including the background light (62>0
in Eq. 1) the factor F becomes

s dm) _
d2(t)m2(t) + b2 d2(2) m2(?)

Now F is no longer independent of the modulation am-
plitude.

The second term in the denominator containing b? af-
fects the SNR in two ways. First, it reduces the achiev-
able value of F' below unity for all choices of modulation
waveforms. This is simply due to the fact that there is
noise, but no signal contained in the background light.
The second effect is more subtle. A poor fringe con-
trast introduces a non-modulated noise component that
is uncorrelated in the frequency domain. Thus, as the
background light increases, we expect that the impor-
tance of the frequency correlations should decrease. In
the limit of high background noise the optimal modu-
lation/demodulation waveforms are identical instead of
reciprocal as in the case of a perfect interferometer. The
introduction of a minimum light power therefore changes
the condition with respect to the optimal demodulation
waveform.

(21)

B. Fabry-Perot cavities

The case of a single Fabry-Perot cavity used in the
rfreflection locking technique is somewhat more difficult
and we will only present the results for sine wave modula-
tion and demodulation here. For highly reflecting mirrors
and assuming that only the carrier (of the phase modu-
lated input light) enters the cavity, the time dependence
of the light power hitting the photodiode can be written
as

P(t)= Po{1-M(24, - A))J;

- |
—4M AT, Y Ty cos 2kwmt} , (22)
k=1

where M <1 is the mode-matching factor (for light
power), A_ is the relative amplitude of the light leaking
out of the cavity in resonance for perfect mode-matching
and without modulation (4, = 1++/P,;,/F,), and J are
the Bessel functions of the first kind. The phase modula-
tion of the input light is assumed to be ¢(t) = ¢, sinw, 2,
where ¢ is the modulation index that has to be used as
the argument of the Bessel functions.

The signal term in the above equation has been omit-
ted. A deviation 6v(t) from the resonance leads to a
phase shift s(t) = 26v(t)/Av of the carrier leaking out
of the cavity, where Av is the FWHM bandwidth of the
cavity. For s(t) <1, the signal term becomes

P.(t) = 4s(t)PyM A JoJ sinwt (23)

where the higher harmonics have been dropped since they
do not contribute after sine wave demodulation. We
can calculate a factor F modifying the SNR where SNR,
for the Fabry-Perot cavity is two times larger than that
found for the two beam interferometer (see eq. 19)
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(24)

This equation deviates from a treatment using the aver-
age light power in the standard shot noise formula only
by the addition of the third term in the denominator
proportional to J,.° Investigation of Eq. (24) shows that
for an undercoupled Fabry-Perot with optimal modula-
tion index (¢,, &~ 1) the correction due to this term is
only a few percent if A_ stays below 0.5. In all other
cases, the full equation must be used. For example, with
M =1, A, =1, and a small modulation index, the out-
put light power has a form given by Eq. (8) and F? = 2/3
as expected.

It is obvious that, also for the Fabry-Perot, square wave
modulation avoids the time dependence of the light on
the photodiode. Thus the corresponding optimal demod-
ulation waveform would also be a square wave according
to the matched filter theory.

V1. EVALUATION OF MODULATION AND
DEMODULATION SCHEMES

In this section we will discuss different modulation and
demodulation schemes that improve the SNR by appro-
priate utilization of the correlated noise in the harmonics.
We will limit the discussion to two-beam interferometers
and quadratic approximation of the phase response (see
Eq. 1), with emphasis on the typical case of sine wave
modulation.

1. Perfect fringe contrast

Let us now return to the formulae for perfect inter-
ference, b = 0, and quote results for several realizable
modulation and demodulation schemes. For square wave
modulation, demodulation using square or sine wave-
forms yields a correction factor F to SNR; of 1.0 and
V8/m = 0.900, respectively. Using sine modulation, the
F for square and sine demodulation is v/8/7 = 0.900 and
V2/3 = 0.816, respectively. We notice again that the re-
sults are symmetric with respect to the modulation and
demodulation waveforms.

The case of sine modulation deserves special attention
for two reasons. First, this is easiest to achieve exper-
imentally and in fact is the dominant modulation used
in existing setups. Secondly, from a theoretical point
of view, sine modulation reveals a surprising effect. Con-
sider the results quoted above which state that it is better
to demodulate using a square wave than a sine wave. This
result agrees with the graphical picture that a square
wave better approximates the ideal 1/sine demodulation
function. On the other hand, this result is surprising
since one would expect the higher harmonics contained in
the square wave to demodulate extra noise, but certainly
not to increase the signal contribution. In the case of
white uncorrelated noise, the square wave demodulation

would clearly be inferior for sine wave modulation. The
improvement is only possible in modulated shot noise be-
cause the additional noise components demodulated by
the odd harmonics in the square wave lead to an over-
all reduction in noise. This is due to the correlation of
noise components separated by twice the phase modula-
tion frequency.

In order to clarify this statement let us assume sine
wave modulation and consider the effect of adding the
third harmonic with amplitude a to the demodulation
function:

m(t) =sinwt
(25)
d(t)=sinw_t + asindw,t.

The product ¢(t) = d(t)m(t) in the frequency domain has
a dc component, a 2" and a 4%} harmonic. The noise
power, calculated according to Eq. (15), is proportional
to 3/2 4 a® — « and obtains a minimum value when the
even harmonics of g(t) are of the same size, i.e. when a =
1/2. Thus, the addition of a third harmonic improves the
F from 0.816 to 0.894.

The process of adding harmonics to the demodulation
function can be extended in order to further improve the
SNR. The optimum demodulation function containing N
odd harmonics is given by

N-1
d(t) = ) _ (1 - n/N)sin[(2n + Dwyt]. (26)

n=0

The product function ¢(t) contains a dc term and N
even harmonics of equivalent strength. The squared
noise contribution is proportional to 1+ 1/(2N) and ap-
proaches unity as the number of odd harmonics is in-
creased. These relations show that better SNR can be
obtained by selecting the optimum strength of the higher
harmonics. This is desirable for designing waveforms
which have both good SNR and relatively small band-
width. However, we note that the energy, i.e. the time
average of the squared function d(t), increases propor-
tional to N/6 + 1/4 + 1/(12N) as more harmonics are
added.

2. Imperfect fringe contrast

In the case of imperfect fringe contrast, the background
light contributes uncorrelated noise reducing the advan-
tage of adding higher harmonics (that do not contain any
signal) to the demodulation function.

For the example of sine wave modulation, there is a
break-even point where sine wave demodulation becomes

~ superior to square wave. Equating the values of F'2 given

by Eq. (21) for these two demodulation waveforms, we
find that for relative background levels b2 > 1.14 sine wave
demodulation is preferred. On the other hand, using the
optimal modulation amplitude usually leads to a value
for b? less than unity. .
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If only the third harmonic is added to the demodu-
lation function (Eq. 25) the optimal amplitude becomes
a = 1/[2(1 + b?)] instead of 1/2 as was found for perfect
fringe contrast. Determining analytically the optimal
amplitudes for a finite number of additional harmonics
becomes increasingly difficult. It is more practical to first
calculate the ideal demodulation function and truncate
after the desired number of harmonics, accepting some
deviation from the optimum SNR.

In order to arrive at an optimal SNR, the demodulation
function in the time domain must be proportional to the
signal modulation and inversely proportional to the time
dependent squared noise. For the case of a sine wave
modulation, this gives -

sinw_©

dit) = sinw t + iz 27
This equation shows explicitly that the optimal demod-
ulation waveform is 1/sine in the case of perfect fringe
contrast (b% = 0), as mentioned earlier. We also recover
the expected result that for poor fringe contrast (%> 1)
it is best to match the modulation function using sine
wave demodulation.

The Fourier series expansion of Eq. (27) consists of si-
nusoidal terms at the odd harmonics (2k+1)w,, with am-
plitudes proportional to a¥, where a = 1+4+b% — /202 + b4.
The rms value of this function, found by adding the
squared frequency components, can be seen to be finite
for all values b2 > 0 in contrast to the case of perfect
interference, where Eq. (26) gives a diverging series of
harmonics for N — oo. The value of F? for sine wave
modulation and optimal demodulation can be written as

b
F2=1—-—L——. 28
V2 + b2 (28)

VIiI. COMPARISON WITH THE
STANDARD SHOT NOISE FORMULA

A, Calculating a correction factor

We define the quantity R? as the ratio of the noise level
calculated with the standard shot noise formula (using
the average light power hitting the photodiode) to the
actual noise level (including the correlations in the mod-
ulated shot noise). This quantity is independent of the
existence of a signal and gives a measure of the effect
of modulation on the noise level. If one uses the power
spectrum of modulated noise given by Eq. (7) and ignores
correlations, the expected noise level, after demodula-
tion, would just contain another normalization constant
equal to the rms value of the demodulation function. The
ratio R of the noise ignoring frequency correlations to the
actual noise level is given by

2 1+ b2
EO)m) e

(29)

d2(t) - m2(t)

This ratio approaches unity as the stationary white noise
contribution from the background light increases. One
should note, however, that at the same time the SNR
decreases.

B. Application to a prototype GW detector

To our knowledge, the effect of correlations in modu-
lated shot noise has not yet been included in published
derivations of the shot noise limits for gravitational wave
detector prototypes. We find that the extra contribu-
tion from modulated noise can explain much of the dis-
crepancy between the measured noise and the theoret-
ical shot noise limit reported by Shoemaker et al.! for
the Garching prototype experiments. In these setups
the modulation was sinusoidal. The demodulation wave
form can also be taken to be sinusoidal since the higher
harmonics were removed with a bandpass filter before
demodulation.!® For the experiment with the 30-meter
prototype a value of b%  0.22 is estimated which gives a
correction R = 0.84, or about 1.5 dB. The corrected shot
noise limit for the Garching prototype is graphed in Fig-
ure 2 in comparison with the measured noise. The high
power experiment described in Appendix C of Ref. 1 now
shows excellent agreement between calculated and mea-
sured noise above 800 Hz.
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FIG. 2. Noise level of the Garching 30-meter prototype
detector. The straight line denotes the calculated shot noise
limit.

VIII. CONCLUSION

We have shown that the modulation technique com-
monly used in making highly sensitive measurements
with laser interferometry raises a special problem of de-
tecting a signal in modulated, non-stationary noise. It
is not sufficient to treat the resulting noise as a white
distribution with a power spectrum equal to the aver-
age energy of the noise, because the modulation intro-
duces correlations between various frequency components
in the noise spectrum.



This can significantly alter the optimal demodulation
scheme that one would follow if the noise were station-
ary. The usual procedure is to construct a demodulation
function using only frequency components contained in
the signal but to avoid including components that contain
noise but no signal. These considerations lead to the con-
ceptual picture that the optimal demodulation function
should ‘match’ the modulated signal. In non-stationary
noise, however, we have seen that one can gain by in-
cluding frequencies in the demodulation function that do
not contain signal. These components contain correlated
noise which tends to cancel that contained in the signal
frequencies. '

Maximizing the SNR for a modulated interferometer
requires that the modulation and demodulation wave-
forms should be reciprocal in case of perfect fringe con-
trast. On the other hand, in the limit of very bad inter-
ference the optimal choice is to make both waveforms
identical. Square wave modulation and demodulation
satisfies both these criteria simultaneously and from this
point of view provides the ideal modulation technique.
This is in some sense obvious since square wave modu-
lation produces a constant light output which gives sta-
tionary white noise. The practical disadvantage is that
infinite bandwidth is needed for both the modulation and
demodulation waveform generation. It is possible, how-
ever, to design modulation schemes in which odd har-
monics are added to the modulation and/or demodula-
tion waveforms in order to compromise between SNR and
low bandwidth.

Furthermore, we want to emphasize that the effect de-
scribed in this paper is caused by the time dependence
of the output light power. In the case of two-beam in-
terferometers, this results from internal phase modula-
tion. Clearly, for schemes where the output power is not
modulated, the usual shot noise formula applies. For
example, a Michelson interferometer with external mod-
ulation, as has been proposed for future GW detectors,!
ideally will not have correlations in the shot noise. Also,
for a sufficiently undercoupled Fabry-Perot interferometer
(A.<0.5), using the rfreflection locking technique with
sinusoidal modulation and demodulation, the correction
to the SNR is not higher than a few percent.

Finally, we note that shot noise formulae for the case
of modulated light sources can be derived placing the av-
erage light power in the standard shot noise formula and
correcting this result with the factor 1/R which accounts
for the non-stationarity. Applying this correction to the
calculated shot noise limit for the Garching prototype
experiments improves the agreement with the measured
sensitivity considerably.
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