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1 Long-Wavelength Limit

The most general tensor gravitational wave in the T'T gauge is

h(t,7) =/ df//dm > ha(f k)€ alk)e™ = ke) (1.1)

A=+,%x

Where h4(f, l%) are arbitrary amplitudes and {€ 4(k)} are the TT polarization basis tensors
orthogonal to k. The spacetime metric it generates is

ds* = —c* dt* + dr - (T + 7{(?@ 77)) ~dr (1.2)

The long-wavelength-limit (LWL) assumes that a GW detector makes an instantaneous
measurement of some projection of the metric perturbation:

RE(E) = R (t, Fer)d™ (1.3)

In particular, for an IFO with arms along the unit vectors @ and o, if h(t) is the fractional
differential arm length measured at time t,

2 Rigid Adiabatic Approximation

If the interferometer has arms of length L and (At), is the round-trip travel time down the
u-arm of a photon arriving back at the beam splitter at time ¢, the strain measured can be
written as

Wt = c(At)g — c(At)q _/ df//dQQ Z ha(F, ) aap(R)em I ER710) gob ¢ oy

2L
A=+,%x

(2.1)

where . A

< AU VR0

and we have defined in the appendix the notation
~ L ~ - T 7o L ~

Talf k) =" F(-ka) gine (%[1 +k- ﬁ]) et R OHR) g e (%[1 — k- ﬁ]) . (2.3)

Since T4(0, /%) =1, we get the expected limit (7(0, l%) — v

In the Fourier domain, (2.1)) becomes

//d2 Z hA f; 6Aab ) zZﬂ'fkr/cdab(f k) (24)

A=+,X
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3 Stochastic Background Correlations and Overlap Re-
duction Function

An isotropic background has amplitudes {ha(f, l%)} with correlations

. A PO 5)
(W (f, k) har (f' ) = 0% (k, k)6 anrd(f — f’)m75gw(f) (3.1)
which leads to a cross-correlation between the strain in two detectors of
e 1
(Ri(f)ha(f")) = 55(f — ) m2(f) Sgw(f) (3.2)
where the overlap reduction function is
5 . X e
) = o= [ [ PRl 1.0y Py e (33

in terms of the projector PTT* onto traceless symmetric matrices transverse to k.

To zeroth order in fL/c, this becomes

,YII\QNL(JC) _ 43 // d2Qk dIIVZIl; PTchzcz(li; d;WLcd 6i27rffc~(f‘1—172)/c (34)
™

which is the expression we usually use.

4 First Order Corrections

To deal with higher-order corrections, it’s convenient to define

@:Qﬂf‘Fl—Fgl/C (41&)
. T1—Ta
S§=—— 4.1b
‘7"1 B 7”2‘ ( )
B=mnfL/c (4.1c)
Then R R
Talf, k) = 1= i - i+ O(8?) (4.2)
SO . .
T N kE-u)u@u—(k-0)0 @7
(k) = dve g DEO LB DOD | o (43)
That means, for a correlation between two IFOs,
g dLWLT’a’ S,fb _ g dLWLT’a’ S,f}
() =gt + A B ) S AT
g 2LWLT7 a, §7ﬁ _ g dLWLT) a, S,f]
_52 ( 1 2) ( 1 2)+O<ﬁ2) (44)

[\]
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where 5
i // &, €% dyy, PTN keuuus (4.5)

The quantity defined in (4.5) can be calculated by observing that if we define the vector
a = as,

- arab s
G(d, o, 5,1) = dg Cg((;: S)ucudu6 (4.6)
where .
Fea(e,8) = - / / d?Q PTTRab ciaks (4.7)

is the usual tensor used in the calculation of the overlap reduction function, which we know
to be

Fgg(a, §)=p1 (a)Png + pg(a)PTj‘cgsgshPng + pg(a)PT‘}ZsfsgshsiPT% (4.8)
where .
p1 () 5 —10 5 Jo()
pale) | = [ —10 40 —50) | & (4.9)
ps(a) 5 -2 1P 22(0)
Substituting in for § and using
106 Ol
Y = E = Se (410)

we have

8ng<a"§) 8 a ( ) a ( ) a 7
gae :8ae< 1(« )PT b o PT b oo Png PT b fozgozhoziPTZd

@) Pt + ) 220 PT;gsgshPngse

N {pg (a) — 4p3(a)} P9 o 0,5, P, (4.11)
«

IC) PTs, P 4 PYgs P
(07

+2P3(Oz> [PT;Z fg PTgh+PTab of g9 PTZ§i|
(6%
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Working out the tensor contractions (assuming d is already traceless) gives

Ay P s ucuu® = (5-4) (@ - d - 1) (4.12a)
Tab g Tfh codye (a5 g fh_ﬁ
dap P~ 387 P70 seuuu® = (5 - a)dygs?sp | u'u
1 3 (4.12b)
=(5-0)*5-d-u)— g(A w)(5-d-3)
) 1 s
dabPT?cgsfsgshsiPTi‘;seucudue =(5-1) ((§ 1) — 5) (§-d-39) (4.12¢)
Tab Tfg Tab .g pTfe|  c d e _ e f g_ﬂ f 6_5fe
dep | P $eSgP g + P 3,8" Py | uuu’ = dpesqu’ | ' u 3 +dsgsque | u'u 3
. 1 o
=(§-a)(a 11)+§(§ d-u)

1 . 2 o
dap [PT;gsfsgshPng + PT;&‘;sfsgshPng] uCutu® = ((§ )2 — g) (3-d-a)+ g(g a)(5-d-§)

Combining (4.11)), (4.12)), and (4.5)) gives us

G(d,a,8,d) = {p/l(a)—l— pQ(O‘)} (3-4)(a-d-a)

- p2()  ps(@)] | 1 [p2() ps(a)]] . .
—i—{(s u)Q[p'Q(a)—Q - +2 - }—i-g -2 - (§-d-a)
w429 L) 42229 ey 4829 Vg e d g
3 « 3 o 3 o
(4.13)
This is relatively easy to evaluate, if we keep in mind the recursion relation
d je(a) Jer1 (@)
R it e (4.14)
and thus .
) 5105 [
ph(ar) | = —a | =10 40 =50 | | 2l (4.15)
ps(c) 5 -2 ) &l
Note that since the limiting forms of the spherical Bessel functions tell us that
pr(a) =2+ 0(a?) (4.16a)
pa(a) = O(a?) (4.16b)
ps(a) = O(a?) (4.16¢)

all of the coéfficients in (4.13)) vanish at @« = 0. and thus Q(E, 0,5,1) = 0, which we could
also see by symmetry considerations from (4.5]).
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| [ AR DT () [ DA |

XARM 0.95333 0.00298 0.00313
YARM | —0.89466 | —0.00167 0.00187
NULL 0.03181 | —0.00061 —0.01914

Table 1: Impact of first-order corrections on L1-A1 search. The corrections to the overlap
reduction function are less than one percent, except for the null orientation. The upper limit
results in [4] are not affected to the stated precision by these corrections.

5 Specific Examples

The matlab/octave functions curlyG.m and orfcorrection.m implement (4.13)) and (4.4));
they can be found in the CVS at sgwb/doc/TechNotes/figsources. We use them to ex-
amine the corrections to the overlap reduction function for

1. LLO-ALLEGRO, which has actually been analyzed at 915 Hz.[4]

2. LHO-LLO around 1kHz, which is being considered for S5 as a counterpart to LIGO-
Virgo analyses, and

3. LHO-Virgo and LLO-Virgo around 1kHz, which are being considered for S5.

5.1 LLO-ALLEGRO

This is fairly easy to consider, since the overlap reduction function (and its first-order cor-
rection) is more or less constant across the band of interest. We summarize the corrections
in table As a check, the scripts used in [4] were re-run with the LWL plus first order
overlap reduction functions; the upper limit result was unchanged, while some numbers in
tables changed in the third decimal place.

5.2 LHO-LLO

We move on to consider LHO-LLO. Of course, at frequencies previously considered (<
300 Hz) the effects are negligible. In Figure [1] we show the LWL and first-order overlap
reduction functions. However, it’s hard to quantify the differences by eye. We can consider
the ratio 6v(f)/v(f) (Fig[2), but this is awkward because v(f) passes through zero. One
useful tool for quantifying the size of the corrections is the high-frequency envelope, £7eny/ f,
which describes the falloff of the long-wavelength overlap reduction function.[5] For LHO-
LLO, this is plotted in Fig. . We can thus plot % to get a sense of the size of the
corrections. This is done in Fig. 4] which shows that the correction is > 5% of the LWL
amplitude at 1kHz. We thus conclude that first-order corrections to the overlap reduction

function will be necessary if LLO-LHO pairs are included in an analysis around 1kHz.
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H1-L1 Overlap
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Figure 1: Long-wavelength overlap reduction function for LHO-LLO pair, compared with
first-order corrected version. The differences are small, but it’s hard to get a quantitative
sense with the “eyeball test”.

Fractional Correction to H1-L.1 Overlap
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Figure 2: Ratio of first-order LHO-LLO overlap reduction function to long-wavelength value.
Because the correction and the long-wavelength form have zeros in different places, the ratio
blows up at some frequencies (the ones that contribute least to the search sensitivity) and
is therefore not very informative.
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H-L Overlap w/High-f kEnvelope
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Figure 3: The LHO-LLO overlap reduction function, plotted along with its high-frequency
envelope as calculated in [5]. The 1/f envelope captures the amplitude of the oscillations at
high frequencies.

H1-L1 Overlap Correction Relative to High-f Envelope
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Figure 4: Size of first-order corrections to the LHO-LLO overlap reduction function relative
to its overall amplitude. We see that at kilohertz frequencies, 5 — 10% corrections are
necessary.

page 7 of



LIGO-T070172-00-Z

5.3 LIGO-Virgo

We repeat the same comparison for the LIGO-Virgo detector pairs, plotting % for LHO-

Virgo and LLO-Virgo in Fig. [5| In this case, we see that the errors are less than 1%, so the
corrections for LIGO-Virgo searches will be negligible.

6 Conclusions

An examination of the (analytically calculated) first-order corrections to the isotropic overlap
reduction functions due to finite interferometer arm length, for various detector pairs, shows
that

1. Corrections for LLO-ALLEGRO (due to the finite length of the LLO arms) are negli-
gible at 915 Hz

2. Corrections for LHO-LLO near 1kHz may be 5-10%, so first-order corrections should
be incorporated

3. Corrections for LHO-Virgo and LLO-Virgo near 1kHz are < 1%, so so first-order
corrections can be neglected

A Calculation of Rigid Adiabatic Response Tensor

The most general tensor gravitational wave in the T'T gauge is

ht,7) = /_ . df / / P, " half, k)ea(k) /=R (A1)

A=+,x

N

h(fk)

Where ha(f, k) are arbitrary amplitudes and {€ 4(k)} are the T'T polarization basis orthog-
onal to k. The spacetime metric it generates is

—

ds® = —2 dt? + dF - (T T, F)) - dF . (A.2)

A.1 Propagation Time Down a Finite-Length Arm

Consider two wordlines with fixed spatial codrdinates; in the TT gauge, these will be
geodesics. Let their separation vector be Ln so that a photon travels from the spacetime
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H1-V1 Overlap Correction Relative to High-f Envelope
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Figure 5: Size of first-order corrections to the LIGO-Virgo overlap reduction functions rela-
tive to their overall amplitude. Note that the vertical scale here is different from that used
in Fig. [ and in fact the corrections are < 1%.
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point (t;, Fmia — £1) to (tf,7mia + £7). To lowest order in the metric perturbation, the
photon’s spatial trajectory can be parametrized as

L
FN) = Toa + A0 (A.3)

where A goes from -1 to 1E| The elapsed time can be obtained from the fact that the photon’s
trajectory is null:

dt = c\/df- (T+Z(t,f‘)> =L (1 i () - fz)m d\ (A.4)

and integrating this gives (defining ¢, = t; + L/2¢)
L L
ty—ti=— / [1 + - (tmid + )\—, Tmid + A§ﬁ> : ﬁ} + O(h?)

<1+ / df / / PR (f, k) : (A @ 7)) (mia—hTmia /0
C

The integral over A is just

1 A 2nfi-kn) _ —i2nfL(1-kn) R
}/ pinf (ki _ € 77 € : ’ — Sinc <7Tf_L[1 e ﬁ]) (A.6)
2J- 2i [%fiﬂ—k-ﬁ)}

L 1 [ - . - L R
tp—t; = — {1 + 5/ df // P h(f, k) : (2 ® f)e™ tmia=kTmia/e) gine (Wf 1—Fk- n])}
C _ &

1
/ z27rf L - (1— k- n))\)
-1

N | —

A.2 Michelson Interferometer Response

Consider an interferometer with arms of length L pointing in directions @ and v. Let the
vertex be at position 7. Let ¢ be the time that two photons meet at the vertex after travelling
down their respective arms and back.

First, consider the round-trip travel time down the first arm. This can be broken into two
parts:

IT think this step is wrong, since there is an O(h) correction to dif (not necessarily along f) that I'm
leaving out, and this would give an additional O(h) term in dt. However, I seem to get the same answer as
Rubbo, Cornish and Poujade.[I]. We now think the explanation for this is that if you use fractional distance
down the arm as a parameter for the timelike geodesic, the missing correction term is perpendicular to n
and therefore gives no first-order contribution when substituted into .
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e The inbound trip, where 7w = —a and to lowest order 9 = t — L/2¢ and 7pq =
7+ ul/2, so
L ~
toid — K - rmld/c—t—k F/c—2 (1+k-u) (A.8)
c

e The outbound trip, where n = 4 and to lowest order t,;q = t — 3L/2c and Tyiq =
7+ alL/2, so
L

tmid — k- rmld/cft—k F/c—2c

(3+k-) (A.9)

The fractional change in round-trip travel time down the arm in the u direction due to the

GW is thus

C(At)ﬂ_QL_ - 200 1 (£ 1N i2mf(t—k7/c)
L _/_oodf//d QR (f, ke

: e_i%fL/c—a @i {eimc%(l_k'a) sinc (M—L[l + k- ﬂ])

2
¢ i (A.10)
4 e MR ) i (%[1 —k ﬁ])} /2
In the limit fL < 1 this reduces to the familiar
At)y —2L < L @
ABMa=2L g, 200 (A11)
2L
so we write the generalization as
At)q o .
A8t — 2L t)QL = / df / / PR (f, k) IR G (k) (A.12)
where ey
“ - A URU
da(f, k) = Ta(f, k) (A.13)

borrowing from [1] the notation

R —i2nfL/c . . R . . R
Ta(f k) = S [el 0=k gine (Wf—L[l +k- 11]) 4R gy (WfTL[l — k- &])} :

2 c
(A.14)
Note that this corresponds to D(i27f, —k - @) as defined by [2], albeit in rather different
notation.

The standard Michelson interferometer, then, measures

At)y — c(A L& L9
c(At)q 2Lc( t)s :/ df//d2thk; i2m f(t—k7/c) :{T(fk)uébu_%(f,k)v@v
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A.3 Fabry-Perot Effect

The LIGO interferometers are not, however, simple Michelson interferometers. The arms act
as Fabry-Perot cavities, which store light which gradually leaks out of the interferometer.
The result of this is that a measurement at time ¢ reflects the Michelson response convolved
with a time-dependent effect.[2], 3] The result is that the quantity measured is

— Talp S iom i hF S URU A DR
d d2 k 2 f(t—k-7/c) . % L . % k
|t [f o e R T )
(A.16)
The LIGO calibration doesn’t actually use the full frequency-dependent Fabry-Perot response

R e (A17)

but instead approximates it with a single cavity pole
Rep(f) = L (A.18)

L+if/ foote
writing

Rip(f) = 1+;ﬂwﬁw%ﬁm) (A19)

we can see that | vy e
Jpole = P (A.20)

Since we've expanded the exponential to first order in fL/c, this expression would seem to
be adequate as long as second-order deviations from the long-wavelength limit don’t become
important. However, since the reflectivity of the LIGO mirrors is high, r,r, is close to one,
and 72" is actually rather large. This means the neglected second-order correction to the
exponenmal once we multiply it by T“”; s is more like the size of a first-order quantity.
Fortunately, this apparent problem is resolved if we absorb into the Fabry-Perot response
the troublesome prefactor e=?7/L/¢ in (A.14)). Then we have

. 1—r, )2 — ()2
Ry, (f)e~i2mIble = lalb - (rar) (rar) '~ (A.21)
P ei2nfLjc _ rarbe—ﬂﬂ'fL/c (rarb)—l/2€z27rfL/c _ (Tarb)l/Qe—ZZﬂfL/c
Now if we define ]
n=—5n(ran) (A.22)
and
B=mnfL/c (A.23)
which are both small quantities for f ~ 1kHz,
— . 3
pr(f)e—nnfL/c _ el —e™ sinhn _ 77‘—1- O(e?) _ | 1
enti2B — g—n—i2B smh(77 +i20) n+i20+0(e)  14i268/n+ O(e?)
(A.24)
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So in fact the cavity pole model is accurate to second order in small quantities when used
to approximate Ry, (f)e 2™/L/¢. That leads us to define

. - ;s L - - ;s L ~
Tu(f, k) = & 17D gine (%[1 + k- ﬁ]) e k) i (%[1 — k- &]) (A.25)

and that observe that the LIGO calibration (valid to second order in f/L) actually gives us
a “strain” of

~

h(t) = /_OO df // PQR(f, k)R {Sa(f, l%)a G; “_ To(f, 1%)@ f ”} (A.26)
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