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1 Long-Wavelength Limit

The most general tensor gravitational wave in the TT gauge is

h
↔

(t, ~r) =

∫ ∞

−∞
df

∫∫
d2Ωk̂

∑
A=+,×

hA(f, k̂)e↔A(k̂)ei2πf(t−k̂·~r/c) (1.1)

Where hA(f, k̂) are arbitrary amplitudes and {e↔A(k̂)} are the TT polarization basis tensors
orthogonal to k̂. The spacetime metric it generates is

ds2 = −c2 dt2 + d~r ·
(

1
↔

+ h
↔

(t, ~r)
)
· d~r . (1.2)

The long-wavelength-limit (LWL) assumes that a GW detector makes an instantaneous
measurement of some projection of the metric perturbation:

hlwl(t) = hab(t, ~rdet)d
lwl ab (1.3)

In particular, for an IFO with arms along the unit vectors û and v̂, if h(t) is the fractional
differential arm length measured at time t,

d
↔

lwl =
û⊗ û− v̂ ⊗ v̂

2
(1.4)

2 Rigid Adiabatic Approximation

If the interferometer has arms of length L and (∆t)û is the round-trip travel time down the
û-arm of a photon arriving back at the beam splitter at time t, the strain measured can be
written as

h(t) :=
c(∆t)û − c(∆t)û

2L
=

∫ ∞

−∞
df

∫∫
d2Ωk̂

∑
A=+,×

hA(f, k̂)eA ab(k̂)ei2πf(t−k̂·~r/c)dab(f, k̂)

(2.1)
where

d
↔

(f, k̂) = Tû(f, k̂)
û⊗ û

2
− Tv̂(f, k̂)

v̂ ⊗ v̂

2
(2.2)

and we have defined in the appendix the notation

Tû(f, k̂) = ei πfL
c

(1−k̂·û) sinc

(
πfL

c
[1 + k̂ · û]

)
+ e−i πfL

c
(1+k̂·û) sinc

(
πfL

c
[1− k̂ · û]

)
. (2.3)

Since Tû(0, k̂) = 1, we get the expected limit d
↔

(0, k̂) = d
↔

lwl.

In the Fourier domain, (2.1) becomes

h̃(f) =

∫∫
d2Ωk̂

∑
A=+,×

hA(f, k̂)eA ab(k̂)e−i2πfk̂·~r/cdab(f, k̂) (2.4)
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3 Stochastic Background Correlations and Overlap Re-

duction Function

An isotropic background has amplitudes {hA(f, k̂)} with correlations

〈h∗A(f, k̂)hA′(f
′, k̂′)〉 = δ2(k̂, k̂′)δAA′δ(f − f ′)

5

16π
Sgw(f) (3.1)

which leads to a cross-correlation between the strain in two detectors of

〈h̃∗1(f)h̃2(f
′)〉 =

1

2
δ(f − f ′) γ12(f) Sgw(f) (3.2)

where the overlap reduction function is

γ12(f) =
5

4π

∫∫
d2Ωk̂ d∗1 ab(f, k̂) PTTk̂ab

cd dcd
2 (f, k̂) ei2πfk̂·(~r1−~r2)/c (3.3)

in terms of the projector PTTk̂ab
cd onto traceless symmetric matrices transverse to k̂.

To zeroth order in fL/c, this becomes

γlwl
12 (f) =

5

4π

∫∫
d2Ωk̂ dlwl

1 ab PTTk̂ab
cd dlwl

2
cd ei2πfk̂·(~r1−~r2)/c (3.4)

which is the expression we usually use.

4 First Order Corrections

To deal with higher-order corrections, it’s convenient to define

α = 2πf |~r1 − ~r2| /c (4.1a)

ŝ =
~r1 − ~r2

|~r1 − ~r2|
(4.1b)

β = πfL/c (4.1c)

Then
Tû(f, k̂) = 1− iβk̂ · û +O(β2) (4.2)

so

d
↔

(f, k̂) = d
↔

lwl − iβ
(k̂ · û)û⊗ û− (k̂ · v̂)v̂ ⊗ v̂

2
+O(β2) (4.3)

That means, for a correlation between two IFOs,

γ12(f) = γlwl
12 (f) + β1

G(d
↔

lwl
2

T, α, ŝ, û1)− G(d
↔

lwl
2

T, α, ŝ, v̂1)

2

− β2
G(d

↔
lwl
1

T, α, ŝ, û2)− G(d
↔

lwl
1

T, α, ŝ, v̂2)

2
+O(β2) (4.4)
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where

G(d
↔

, α, ŝ, û) = i
5

4π

∫∫
d2Ωk̂ eiαk̂·ŝdab PTTk̂ab

cd keu
cudue . (4.5)

The quantity defined in (4.5) can be calculated by observing that if we define the vector
~α = αŝ,

G(d
↔

, α, ŝ, û) = dab
∂Γab

cd(α, ŝ)

∂αe
ucudue (4.6)

where

Γab
cd(α, ŝ) =

5

4π

∫∫
d2Ωk̂ PTTk̂ab

cd eiαk̂·ŝ (4.7)

is the usual tensor used in the calculation of the overlap reduction function, which we know
to be

Γab
cd(α, ŝ) = ρ1(α)PTab

cd + ρ2(α)PTab
fgs

gshP
Tfh

cd + ρ3(α)PTab
fgs

fsgshsiP
Thi

cd (4.8)

where ρ1(α)
ρ2(α)
ρ3(α)

 =

 5 −10 5
−10 40 −50

5
2

−25 175
2

 j0(α)
j1(α)

α
j2(α)
α2

 (4.9)

Substituting in for ŝ and using
∂α

∂αe
=

αe

α
= se (4.10)

we have

∂Γab
cd(α, ŝ)

∂αe
=

∂

∂αe

(
ρ1(α)PTab

cd +
ρ2(α)

α2
PTab

fgα
gαhP

Tfh
cd +

ρ3(α)

α4
PTab

fgα
fαgαhαiP

Thi
cd

)
=ρ′1(α)PTab

cdse +

[
ρ′2(α)− 2

ρ2(α)

α

]
PTab

fgs
gshP

Tfh
cd se

+

[
ρ′3(α)− 4

ρ3(α)

α

]
PTab

fgs
fsgshsiP

Thi
cdse

+
ρ2(α)

α

[
PTab

fesgP
Tfg

cd + PTab
fgs

gPTfe
cd

]
+ 2

ρ3(α)

α

[
PTab

fes
fsgshP

Tgh
cd + PTab

fgs
fsgshP

The
cd

]
(4.11)
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Working out the tensor contractions (assuming d
↔

is already traceless) gives

dabP
Tab

cdseu
cudue = (ŝ · û)(û · d

↔
· û) (4.12a)

dabP
Tab

fgs
gshP

Tfh
cd seu

cudue = (ŝ · û)dfgs
gsh

(
ufuh − δfh

3

)
= (ŝ · û)2(ŝ · d

↔
· û)− 1

3
(ŝ · û)(ŝ · d

↔
· ŝ)

(4.12b)

dabP
Tab

fgs
fsgshsiP

Thi
cdseu

cudue = (ŝ · û)

(
(ŝ · û)2 − 1

3

)
(ŝ · d

↔
· ŝ) (4.12c)

dab

[
PTab

fesgP
Tfg

cd + PTab
fgs

gPTfe
cd

]
ucudue = dfesgu

e

(
ufug − δfg

3

)
+ dfgsgue

(
ufue − δfe

3

)
= (ŝ · û)(û · d

↔
· û) +

1

3
(ŝ · d

↔
· û)

(4.12d)

dab

[
PTab

fes
fsgshP

Tgh
cd + PTab

fgs
fsgshP

The
cd

]
ucudue =

(
(ŝ · û)2 − 1

3

)
(ŝ · d

↔
· û) +

2

3
(ŝ · û)(ŝ · d

↔
· ŝ)

(4.12e)

Combining (4.11), (4.12), and (4.5) gives us

G(d
↔

, α, ŝ, û) =

[
ρ′1(α) +

ρ2(α)

α

]
(ŝ · û)(û · d

↔
· û)

+

{
(ŝ · û)2

[
ρ′2(α)− 2

ρ2(α)

α
+ 2

ρ3(α)

α

]
+

1

3

[
ρ2(α)

α
− 2

ρ3(α)

α

]}
(ŝ · d

↔
· û)

+

{
(ŝ · û)2

[
ρ′3(α)− 4

ρ3(α)

α

]
+

1

3

[
−ρ′2(α) + 2

ρ2(α)

α
− ρ′3(α) + 8

ρ3(α)

α

]}
(ŝ · û)(ŝ · d

↔
· ŝ)

(4.13)

This is relatively easy to evaluate, if we keep in mind the recursion relation

d

dα

j`(α)

α`
= −α

j`+1(α)

α`+1
(4.14)

and thus ρ′1(α)
ρ′2(α)
ρ′3(α)

 = −α

 5 −10 5
−10 40 −50

5
2

−25 175
2


 j1(α)

α
j2(α)
α2

j3(α)
α3

 (4.15)

Note that since the limiting forms of the spherical Bessel functions tell us that

ρ1(α) = 2 +O(α2) (4.16a)

ρ2(α) = O(α2) (4.16b)

ρ3(α) = O(α2) (4.16c)

all of the coëfficients in (4.13) vanish at α = 0. and thus G(d
↔

, 0, ŝ, û) = 0, which we could
also see by symmetry considerations from (4.5).
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γLWL(f) δγ(f) δγ(f)/γLWL(f)

XARM 0.95333 0.00298 0.00313
YARM −0.89466 −0.00167 0.00187
NULL 0.03181 −0.00061 −0.01914

Table 1: Impact of first-order corrections on L1-A1 search. The corrections to the overlap
reduction function are less than one percent, except for the null orientation. The upper limit
results in [4] are not affected to the stated precision by these corrections.

5 Specific Examples

The matlab/octave functions curlyG.m and orfcorrection.m implement (4.13) and (4.4);
they can be found in the CVS at sgwb/doc/TechNotes/figsources. We use them to ex-
amine the corrections to the overlap reduction function for

1. LLO-ALLEGRO, which has actually been analyzed at 915 Hz.[4]

2. LHO-LLO around 1 kHz, which is being considered for S5 as a counterpart to LIGO-
Virgo analyses, and

3. LHO-Virgo and LLO-Virgo around 1 kHz, which are being considered for S5.

5.1 LLO-ALLEGRO

This is fairly easy to consider, since the overlap reduction function (and its first-order cor-
rection) is more or less constant across the band of interest. We summarize the corrections
in table 5.1. As a check, the scripts used in [4] were re-run with the LWL plus first order
overlap reduction functions; the upper limit result was unchanged, while some numbers in
tables changed in the third decimal place.

5.2 LHO-LLO

We move on to consider LHO-LLO. Of course, at frequencies previously considered (.
300 Hz) the effects are negligible. In Figure 1 we show the LWL and first-order overlap
reduction functions. However, it’s hard to quantify the differences by eye. We can consider
the ratio δγ(f)/γ(f) (Fig 2), but this is awkward because γ(f) passes through zero. One
useful tool for quantifying the size of the corrections is the high-frequency envelope, ±γenv/f ,
which describes the falloff of the long-wavelength overlap reduction function.[5] For LHO-

LLO, this is plotted in Fig. 3. We can thus plot δγ(f)
γenv/f

to get a sense of the size of the

corrections. This is done in Fig. 4, which shows that the correction is > 5% of the LWL
amplitude at 1 kHz. We thus conclude that first-order corrections to the overlap reduction
function will be necessary if LLO-LHO pairs are included in an analysis around 1 kHz.
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Figure 1: Long-wavelength overlap reduction function for LHO-LLO pair, compared with
first-order corrected version. The differences are small, but it’s hard to get a quantitative
sense with the “eyeball test”.

Figure 2: Ratio of first-order LHO-LLO overlap reduction function to long-wavelength value.
Because the correction and the long-wavelength form have zeros in different places, the ratio
blows up at some frequencies (the ones that contribute least to the search sensitivity) and
is therefore not very informative.
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Figure 3: The LHO-LLO overlap reduction function, plotted along with its high-frequency
envelope as calculated in [5]. The 1/f envelope captures the amplitude of the oscillations at
high frequencies.

Figure 4: Size of first-order corrections to the LHO-LLO overlap reduction function relative
to its overall amplitude. We see that at kilohertz frequencies, 5 − 10% corrections are
necessary.
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5.3 LIGO-Virgo

We repeat the same comparison for the LIGO-Virgo detector pairs, plotting δγ(f)
γenv/f

for LHO-

Virgo and LLO-Virgo in Fig. 5. In this case, we see that the errors are less than 1%, so the
corrections for LIGO-Virgo searches will be negligible.

6 Conclusions

An examination of the (analytically calculated) first-order corrections to the isotropic overlap
reduction functions due to finite interferometer arm length, for various detector pairs, shows
that

1. Corrections for LLO-ALLEGRO (due to the finite length of the LLO arms) are negli-
gible at 915 Hz

2. Corrections for LHO-LLO near 1 kHz may be 5-10%, so first-order corrections should
be incorporated

3. Corrections for LHO-Virgo and LLO-Virgo near 1 kHz are < 1%, so so first-order
corrections can be neglected

A Calculation of Rigid Adiabatic Response Tensor

The most general tensor gravitational wave in the TT gauge is

h
↔

(t, ~r) =

∫ ∞

−∞
df

∫∫
d2Ωk̂

∑
A=+,×

hA(f, k̂)e↔A(k̂)︸ ︷︷ ︸
h
↔

(f,k̂)

ei2πf(t−k̂·~r/c) (A.1)

Where hA(f, k̂) are arbitrary amplitudes and {e↔A(k̂)} are the TT polarization basis orthog-
onal to k̂. The spacetime metric it generates is

ds2 = −c2 dt2 + d~r ·
(

1
↔

+ h
↔

(t, ~r)
)
· d~r . (A.2)

A.1 Propagation Time Down a Finite-Length Arm

Consider two wordlines with fixed spatial coördinates; in the TT gauge, these will be
geodesics. Let their separation vector be Ln̂ so that a photon travels from the spacetime
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Figure 5: Size of first-order corrections to the LIGO-Virgo overlap reduction functions rela-
tive to their overall amplitude. Note that the vertical scale here is different from that used
in Fig. 4 and in fact the corrections are < 1%.
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point (ti, ~rmid − L
2
n̂) to (tf , ~rmid + L

2
n̂). To lowest order in the metric perturbation, the

photon’s spatial trajectory can be parametrized as

~r(λ) = ~rmid + λ
L

2
n̂ (A.3)

where λ goes from -1 to 1.1 The elapsed time can be obtained from the fact that the photon’s
trajectory is null:

dt = c

√
d~r ·

(
1
↔

+ h
↔

(t, ~r)
)
· d~r =

L

2c

(
1 + n̂ · h

↔
(t, ~r) · n̂

)1/2

dλ (A.4)

and integrating this gives (defining tmid = ti + L/2c)

tf − ti =
L

2c

∫ 1

−1

[
1 +

1

2
n̂ · h

↔
(

tmid + λ
L

2c
, ~rmid + λ

L

2
n̂

)
· n̂

]
+O(h2)

=
L

c

(
1 +

1

2

∫ ∞

−∞
df

∫∫
d2Ωk̂h

↔
(f, k̂) : (n̂⊗ n̂)ei2πf(tmid−k̂·~rmid/c) 1

2

∫ 1

−1

ei2πf L
2c

(1−k̂·n̂)λ

)
(A.5)

The integral over λ is just

1

2

∫ 1

−1

ei2πf L
2c

(1−k̂·n̂)λ =
ei2πf L

2c
(1−k̂·n̂) − e−i2πf L

2c
(1−k̂·n̂)

2i
[
2πf L

2c
(1− k̂ · n̂)

] = sinc

(
πfL

c
[1− k̂ · n̂]

)
(A.6)

So

tf−ti =
L

c

{
1 +

1

2

∫ ∞

−∞
df

∫∫
d2Ωk̂h

↔
(f, k̂) : (n̂⊗ n̂)ei2πf(tmid−k̂·~rmid/c) sinc

(
πfL

c
[1− k̂ · n̂]

)}
(A.7)

A.2 Michelson Interferometer Response

Consider an interferometer with arms of length L pointing in directions û and v̂. Let the
vertex be at position ~r. Let t be the time that two photons meet at the vertex after travelling
down their respective arms and back.

First, consider the round-trip travel time down the first arm. This can be broken into two
parts:

1I think this step is wrong, since there is an O(h) correction to d~r (not necessarily along n̂) that I’m
leaving out, and this would give an additional O(h) term in dt. However, I seem to get the same answer as
Rubbo, Cornish and Poujade.[1]. We now think the explanation for this is that if you use fractional distance
down the arm as a parameter for the timelike geodesic, the missing correction term is perpendicular to n̂
and therefore gives no first-order contribution when substituted into (A.4).
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• The inbound trip, where n̂ = −û and to lowest order tmid = t − L/2c and ~rmid =
~r + ûL/2, so

tmid − k̂ · ~rmid/c = t− k̂ · ~r/c− L

2c
(1 + k̂ · û) (A.8)

• The outbound trip, where n̂ = û and to lowest order tmid = t − 3L/2c and ~rmid =
~r + ûL/2, so

tmid − k̂ · ~rmid/c = t− k̂ · ~r/c− L

2c
(3 + k̂ · û) (A.9)

The fractional change in round-trip travel time down the arm in the û direction due to the
GW is thus

c(∆t)û − 2L

2L
=

∫ ∞

−∞
df

∫∫
d2Ωk̂h

↔
(f, k̂)ei2πf(t−k̂·~r/c)

: e−i2πfL/c û⊗ û

2

[
ei πfL

c
(1−k̂·û) sinc

(
πfL

c
[1 + k̂ · û]

)
+ e−i πfL

c
(1+k̂·û) sinc

(
πfL

c
[1− k̂ · û]

)]
/2

(A.10)

In the limit fL � 1 this reduces to the familiar

c(∆t)û − 2L

2L
→ h

↔
(t, ~r) :

û⊗ û

2
(A.11)

so we write the generalization as

c(∆t)û − 2L

2L
=

∫ ∞

−∞
df

∫∫
d2Ωk̂h

↔
(f, k̂)ei2πf(t−k̂·~r/c) : d

↔
û(f, k̂) (A.12)

where

d
↔

û(f, k̂) = Tû(f, k̂)
û⊗ û

2
(A.13)

borrowing from [1] the notation

Tû(f, k̂) =
e−i2πfL/c

2

[
ei πfL

c
(1−k̂·û) sinc

(
πfL

c
[1 + k̂ · û]

)
+ e−i πfL

c
(1+k̂·û) sinc

(
πfL

c
[1− k̂ · û]

)]
.

(A.14)
Note that this corresponds to D(i2πf,−k̂ · û) as defined by [2], albeit in rather different
notation.

The standard Michelson interferometer, then, measures

c(∆t)û − c(∆t)v̂

2L
=

∫ ∞

−∞
df

∫∫
d2Ωk̂h

↔
(f, k̂)ei2πf(t−k̂·~r/c) :

{
Tû(f, k̂)

û⊗ û

2
− Tv̂(f, k̂)

v̂ ⊗ v̂

2

}
(A.15)
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A.3 Fabry-Perot Effect

The LIGO interferometers are not, however, simple Michelson interferometers. The arms act
as Fabry-Perot cavities, which store light which gradually leaks out of the interferometer.
The result of this is that a measurement at time t reflects the Michelson response convolved
with a time-dependent effect.[2, 3] The result is that the quantity measured is∫ ∞

−∞
df

∫∫
d2Ωk̂

1− rarb

1− rarbe−i4πfL/c
h
↔

(f, k̂)ei2πf(t−k̂·~r/c) :

{
Tû(f, k̂)

û⊗ û

2
− Tv̂(f, k̂)

v̂ ⊗ v̂

2

}
(A.16)

The LIGO calibration doesn’t actually use the full frequency-dependent Fabry-Perot response

Rfp(f) =
1− rarb

1− rarbe−i4πfL/c
(A.17)

but instead approximates it with a single cavity pole

Rcp(f) =
1

1 + if/fpole

(A.18)

writing

Rfp(f) =
1

1 + rarb

1−rarb
(1− e−i4πfL/c)

(A.19)

we can see that

fpole =
1− rarb

rarb

c

4πL
. (A.20)

Since we’ve expanded the exponential to first order in fL/c, this expression would seem to
be adequate as long as second-order deviations from the long-wavelength limit don’t become
important. However, since the reflectivity of the LIGO mirrors is high, rarb is close to one,
and rarb

1−rarb
is actually rather large. This means the neglected second-order correction to the

exponential, once we multiply it by rarb

1−rarb
, is more like the size of a first-order quantity.

Fortunately, this apparent problem is resolved if we absorb into the Fabry-Perot response
the troublesome prefactor e−i2πfL/c in (A.14). Then we have

Rfp(f)e−i2πfL/c =
1− rarb

ei2πfL/c − rarbe−i2πfL/c
=

(rarb)
−1/2 − (rarb)

1/2

(rarb)−1/2ei2πfL/c − (rarb)1/2e−i2πfL/c
(A.21)

Now if we define

η = −1

2
ln(rarb) (A.22)

and
β = πfL/c (A.23)

which are both small quantities for f ∼ 1 kHz,

Rfp(f)e−i2πfL/c =
eη − e−η

eη+i2β − e−η−i2β
=

sinh η

sinh(η + i2β)
=

η +O(ε3)

η + i2β +O(ε3)
=

1

1 + i2β/η +O(ε2)
(A.24)
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So in fact the cavity pole model is accurate to second order in small quantities when used
to approximate Rfp(f)e−i2πfL/c. That leads us to define

Tû(f, k̂) = ei πfL
c

(1−k̂·û) sinc

(
πfL

c
[1 + k̂ · û]

)
+ e−i πfL

c
(1+k̂·û) sinc

(
πfL

c
[1− k̂ · û]

)
(A.25)

and that observe that the LIGO calibration (valid to second order in f/L) actually gives us
a “strain” of

h(t) =

∫ ∞

−∞
df

∫∫
d2Ωk̂h

↔
(f, k̂)ei2πf(t−k̂·~r/c) :

{
Tû(f, k̂)

û⊗ û

2
− Tv̂(f, k̂)

v̂ ⊗ v̂

2

}
(A.26)
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