LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note	LIGO-T070172-00-Z	2007/09/04
Higher-Frequency Corrections to Stochastic		
Formulae		
John T Whelan Albert Einstein Institute		

Distribution of this document:
All

California Institute of Technology
LIGO Project, MS 18-34
Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834
E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project, Room NW17-161
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014
E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

LIGO-T070172-00-Z

1 Long-Wavelength Limit

The most general tensor gravitational wave in the TT gauge is

$$
\begin{equation*}
\overleftrightarrow{h}(t, \vec{r})=\int_{-\infty}^{\infty} d f \iint d^{2} \Omega_{\hat{k}} \sum_{A=+, \times} h_{A}(f, \hat{k}) \overleftrightarrow{e}_{A}(\hat{k}) e^{i 2 \pi f(t-\hat{k} \cdot \vec{r} / c)} \tag{1.1}
\end{equation*}
$$

Where $h_{A}(f, \hat{k})$ are arbitrary amplitudes and $\left\{\overleftrightarrow{e}_{A}(\hat{k})\right\}$ are the TT polarization basis tensors orthogonal to \hat{k}. The spacetime metric it generates is

$$
\begin{equation*}
d s^{2}=-c^{2} d t^{2}+d \vec{r} \cdot(\overleftrightarrow{1}+\overleftrightarrow{h}(t, \vec{r})) \cdot d \vec{r} . \tag{1.2}
\end{equation*}
$$

The long-wavelength-limit (LWL) assumes that a GW detector makes an instantaneous measurement of some projection of the metric perturbation:

$$
\begin{equation*}
h^{\mathrm{LWL}}(t)=h_{a b}\left(t, \vec{r}_{\mathrm{det}}\right) d^{\mathrm{LWL} a b} \tag{1.3}
\end{equation*}
$$

In particular, for an IFO with arms along the unit vectors \hat{u} and \hat{v}, if $h(t)$ is the fractional differential arm length measured at time t,

$$
\begin{equation*}
\overleftrightarrow{d}^{\mathrm{LWL}}=\frac{\hat{u} \otimes \hat{u}-\hat{v} \otimes \hat{v}}{2} \tag{1.4}
\end{equation*}
$$

2 Rigid Adiabatic Approximation

If the interferometer has arms of length L and $(\Delta t)_{\hat{u}}$ is the round-trip travel time down the \hat{u}-arm of a photon arriving back at the beam splitter at time t, the strain measured can be written as

$$
\begin{equation*}
h(t):=\frac{c(\Delta t)_{\hat{u}}-c(\Delta t)_{\hat{u}}}{2 L}=\int_{-\infty}^{\infty} d f \iint d^{2} \Omega_{\hat{k}} \sum_{A=+, \times} h_{A}(f, \hat{k}) e_{A a b}(\hat{k}) e^{i 2 \pi f(t-\hat{k} \cdot \vec{r} / c)} d^{a b}(f, \hat{k}) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\overleftrightarrow{d}(f, \hat{k})=\mathfrak{T}_{\hat{u}}(f, \hat{k}) \frac{\hat{u} \otimes \hat{u}}{2}-\mathfrak{T}_{\hat{v}}(f, \hat{k}) \frac{\hat{v} \otimes \hat{v}}{2} \tag{2.2}
\end{equation*}
$$

and we have defined in the appendix the notation

$$
\begin{equation*}
\mathfrak{T}_{\hat{u}}(f, \hat{k})=e^{i \frac{\pi f L}{c}(1-\hat{k} \cdot \hat{u})} \operatorname{sinc}\left(\frac{\pi f L}{c}[1+\hat{k} \cdot \hat{u}]\right)+e^{-i \frac{\pi f L}{c}(1+\hat{k} \cdot \hat{u})} \operatorname{sinc}\left(\frac{\pi f L}{c}[1-\hat{k} \cdot \hat{u}]\right) . \tag{2.3}
\end{equation*}
$$

Since $\mathfrak{T}_{\hat{u}}(0, \hat{k})=1$, we get the expected limit $\overleftrightarrow{d}(0, \hat{k})=\overleftrightarrow{d}^{\text {LWL }}$.
In the Fourier domain, (2.1) becomes

$$
\begin{equation*}
\widetilde{h}(f)=\iint d^{2} \Omega_{\hat{k}} \sum_{A=+, \times} h_{A}(f, \hat{k}) e_{A a b}(\hat{k}) e^{-i 2 \pi f \hat{k} \cdot \vec{r} / c} d^{a b}(f, \hat{k}) \tag{2.4}
\end{equation*}
$$

3 Stochastic Background Correlations and Overlap Reduction Function

An isotropic background has amplitudes $\left\{h_{A}(f, \hat{k})\right\}$ with correlations

$$
\begin{equation*}
\left\langle h_{A}^{*}(f, \hat{k}) h_{A^{\prime}}\left(f^{\prime}, \hat{k}^{\prime}\right)\right\rangle=\delta^{2}\left(\hat{k}, \hat{k}^{\prime}\right) \delta_{A A^{\prime}} \delta\left(f-f^{\prime}\right) \frac{5}{16 \pi} S_{\mathrm{gw}}(f) \tag{3.1}
\end{equation*}
$$

which leads to a cross-correlation between the strain in two detectors of

$$
\begin{equation*}
\left\langle\widetilde{h}_{1}^{*}(f) \widetilde{h}_{2}\left(f^{\prime}\right)\right\rangle=\frac{1}{2} \delta\left(f-f^{\prime}\right) \gamma_{12}(f) S_{\mathrm{gw}}(f) \tag{3.2}
\end{equation*}
$$

where the overlap reduction function is

$$
\begin{equation*}
\gamma_{12}(f)=\frac{5}{4 \pi} \iint d^{2} \Omega_{\hat{k}} d_{1 a b}^{*}(f, \hat{k}) P_{c d}^{\mathrm{TT} \hat{k} a b} d_{2}^{c d}(f, \hat{k}) e^{i 2 \pi f \hat{k} \cdot\left(\vec{r}_{1}-\vec{r}_{2}\right) / c} \tag{3.3}
\end{equation*}
$$

in terms of the projector $P^{\mathrm{TT} \hat{k} a b}{ }_{c d}$ onto traceless symmetric matrices transverse to \hat{k}.
To zeroth order in $f L / c$, this becomes

$$
\begin{equation*}
\gamma_{12}^{\mathrm{LWL}}(f)=\frac{5}{4 \pi} \iint d^{2} \Omega_{\hat{k}} d_{1 a b}^{\mathrm{LWL}} P_{c d}^{\mathrm{TT} \hat{k} a b} d_{2}^{\mathrm{LWL} c d} e^{i 2 \pi f \hat{k} \cdot\left(\vec{r}_{1}-\vec{r}_{2}\right) / c} \tag{3.4}
\end{equation*}
$$

which is the expression we usually use.

4 First Order Corrections

To deal with higher-order corrections, it's convenient to define

$$
\begin{gather*}
\alpha=2 \pi f\left|\vec{r}_{1}-\vec{r}_{2}\right| / c \tag{4.1a}\\
\hat{s}=\frac{\vec{r}_{1}-\vec{r}_{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|} \tag{4.1b}\\
\beta=\pi f L / c \tag{4.1c}
\end{gather*}
$$

Then

$$
\begin{equation*}
\mathfrak{T}_{\hat{u}}(f, \hat{k})=1-i \beta \hat{k} \cdot \hat{u}+\mathcal{O}\left(\beta^{2}\right) \tag{4.2}
\end{equation*}
$$

so

$$
\begin{equation*}
\overleftrightarrow{d}(f, \hat{k})=\overleftrightarrow{d}^{\mathrm{LwL}}-i \beta \frac{(\hat{k} \cdot \hat{u}) \hat{u} \otimes \hat{u}-(\hat{k} \cdot \hat{v}) \hat{v} \otimes \hat{v}}{2}+\mathcal{O}\left(\beta^{2}\right) \tag{4.3}
\end{equation*}
$$

That means, for a correlation between two IFOs,

$$
\begin{align*}
\gamma_{12}(f)=\gamma_{12}^{\mathrm{LWL}}(f)+\beta_{1} \frac{\mathcal{G}\left(\stackrel{\leftrightarrow}{d_{2}^{\mathrm{LWLT}}}, \alpha, \hat{s}, \hat{u}_{1}\right)-\mathcal{G}\left(\stackrel{\leftrightarrow}{d_{2}^{\mathrm{LWLT}}}, \alpha, \hat{s}, \hat{v}_{1}\right)}{2} \\
-\beta_{2} \frac{\mathcal{G}\left(\overleftrightarrow{d}_{1}^{\mathrm{LWLT}}, \alpha, \hat{s}, \hat{u}_{2}\right)-\mathcal{G}\left(\overleftrightarrow{d}_{1}^{\mathrm{LWLT}}, \alpha, \hat{s}, \hat{v}_{2}\right)}{2}+\mathcal{O}\left(\beta^{2}\right) \tag{4.4}
\end{align*}
$$

where

$$
\begin{equation*}
\mathcal{G}(\overleftrightarrow{d}, \alpha, \hat{s}, \hat{u})=i \frac{5}{4 \pi} \iint d^{2} \Omega_{\hat{k}} e^{i \alpha \hat{k} \cdot \hat{s}} d_{a b} P_{c d}^{\mathrm{TT} \hat{k} a b} k_{e} u^{c} u^{d} u^{e} \tag{4.5}
\end{equation*}
$$

The quantity defined in 4.5 can be calculated by observing that if we define the vector $\vec{\alpha}=\alpha \hat{s}$,

$$
\begin{equation*}
\mathcal{G}(\stackrel{\leftrightarrow}{d}, \alpha, \hat{s}, \hat{u})=d_{a b} \frac{\partial \Gamma_{c d}^{a b}(\alpha, \hat{s})}{\partial \alpha^{e}} u^{c} u^{d} u^{e} \tag{4.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{c d}^{a b}(\alpha, \hat{s})=\frac{5}{4 \pi} \iint d^{2} \Omega_{\hat{k}} P_{c d}^{\mathrm{TT} \hat{k} a b} e^{i \alpha \hat{k} \cdot \hat{s}} \tag{4.7}
\end{equation*}
$$

is the usual tensor used in the calculation of the overlap reduction function, which we know to be

$$
\begin{equation*}
\Gamma_{c d}^{a b}(\alpha, \hat{s})=\rho_{1}(\alpha) P_{c d}^{\mathrm{T} a b}+\rho_{2}(\alpha) P_{f g}^{\mathrm{T} a b} s^{g} s_{h} P_{c d}^{\mathrm{T} f h}+\rho_{3}(\alpha) P_{f g}^{\mathrm{T} a b} s^{f} s^{g} s_{h} s_{i} P_{c d}^{\mathrm{T} h i} \tag{4.8}
\end{equation*}
$$

where

$$
\left(\begin{array}{c}
\rho_{1}(\alpha) \tag{4.9}\\
\rho_{2}(\alpha) \\
\rho_{3}(\alpha)
\end{array}\right)=\left(\begin{array}{ccc}
5 & -10 & 5 \\
-10 & 40 & -50 \\
\frac{5}{2} & -25 & \frac{175}{2}
\end{array}\right)\left(\begin{array}{c}
j_{0}(\alpha) \\
\frac{j_{1}(\alpha)}{\alpha} \\
\frac{j_{2}(\alpha)}{\alpha^{2}}
\end{array}\right)
$$

Substituting in for \hat{s} and using

$$
\begin{equation*}
\frac{\partial \alpha}{\partial \alpha^{e}}=\frac{\alpha_{e}}{\alpha}=s_{e} \tag{4.10}
\end{equation*}
$$

we have

$$
\begin{align*}
\frac{\partial \Gamma_{c d}^{a b}(\alpha, \hat{s})}{\partial \alpha^{e}}= & \frac{\partial}{\partial \alpha^{e}}\left(\rho_{1}(\alpha) P_{c d}^{\mathrm{T} a b}+\frac{\rho_{2}(\alpha)}{\alpha^{2}} P_{f g}^{\mathrm{T} a b} \alpha^{g} \alpha_{h} P_{c d}^{\mathrm{T} f h}+\frac{\rho_{3}(\alpha)}{\alpha^{4}} P_{f g}^{\mathrm{T} a b} \alpha^{f} \alpha^{g} \alpha_{h} \alpha_{i} P_{c d}^{\mathrm{Thi}}\right) \\
= & \rho_{1}^{\prime}(\alpha) P_{c d}^{\mathrm{T} a b} s_{e}+\left[\rho_{2}^{\prime}(\alpha)-2 \frac{\rho_{2}(\alpha)}{\alpha}\right] P_{f g}^{\mathrm{T} a b} s^{g} s_{h} P_{c d}^{\mathrm{T} f h} s_{e} \\
& +\left[\rho_{3}^{\prime}(\alpha)-4 \frac{\rho_{3}(\alpha)}{\alpha}\right] P_{f g}^{\mathrm{T} a b} s^{f} s^{g} s_{h} s_{i} P_{c d}^{\mathrm{Thi}} s_{e} \tag{4.11}\\
& +\frac{\rho_{2}(\alpha)}{\alpha}\left[P_{f e}^{\mathrm{T} a b} s_{g} P_{c d}^{\mathrm{T} f g}+P_{f g}^{\mathrm{T} a b} s^{g} P_{c d}^{\mathrm{T} f e}\right] \\
& +2 \frac{\rho_{3}(\alpha)}{\alpha}\left[P_{f e}^{\mathrm{T} a b} s^{f} s_{g} s_{h} P_{c d}^{\mathrm{T} g h}+P_{f g}^{\mathrm{T} a b} s^{f} s^{g} s_{h} P_{c d}^{\mathrm{T} h e}\right]
\end{align*}
$$

Working out the tensor contractions (assuming \overleftrightarrow{d} is already traceless) gives

$$
\begin{align*}
& d_{a b} P_{c d}^{\mathrm{T} a b} s_{e} u^{c} u^{d} u^{e}=(\hat{s} \cdot \hat{u})(\hat{u} \cdot \stackrel{\leftrightarrow}{d} \cdot \hat{u}) \tag{4.12a}\\
& d_{a b} P_{f g}^{\mathrm{T} a b} s^{g} s_{h} P_{c d}^{\mathrm{T} f h} s_{e} u^{c} u^{d} u^{e}=(\hat{s} \cdot \hat{u}) d_{f g} s^{g} s_{h}\left(u^{f} u^{h}-\frac{\delta^{f h}}{3}\right) \tag{4.12b}\\
& =(\hat{s} \cdot \hat{u})^{2}(\hat{s} \cdot \overleftrightarrow{d} \cdot \hat{u})-\frac{1}{3}(\hat{s} \cdot \hat{u})(\hat{s} \cdot \overleftrightarrow{d} \cdot \hat{s}) \\
& d_{a b} P_{f g}^{\mathrm{T} a b} s^{f} s^{g} s_{h} s_{i} P_{c d}^{\mathrm{T} h i} s_{e} u^{c} u^{d} u^{e}=(\hat{s} \cdot \hat{u})\left((\hat{s} \cdot \hat{u})^{2}-\frac{1}{3}\right)(\hat{s} \cdot \stackrel{\leftrightarrow}{d} \cdot \hat{s}) \tag{4.12c}\\
& d_{a b}\left[P_{f e}^{\mathrm{T} a b} s_{g} P_{c d}^{\mathrm{T} f g}+P_{f g}^{\mathrm{T} a b} s^{g} P_{c d}^{\mathrm{T} f e}\right] u^{c} u^{d} u^{e}=d_{f e} s_{g} u^{e}\left(u^{f} u^{g}-\frac{\delta^{f g}}{3}\right)+d_{f g} s_{g} u_{e}\left(u^{f} u^{e}-\frac{\delta^{f e}}{3}\right) \\
& =(\hat{s} \cdot \hat{u})(\hat{u} \cdot \overleftrightarrow{d} \cdot \hat{u})+\frac{1}{3}(\hat{s} \cdot \overleftrightarrow{d} \cdot \hat{u}) \tag{4.12d}\\
& d_{a b}\left[P_{f e}^{\mathrm{T} a b} s^{f} s_{g} s_{h} P_{c d}^{\mathrm{T} g h}+P_{f g}^{\mathrm{T} a b} s^{f} s^{g} s_{h} P_{c d}^{\mathrm{T} h e}\right] u^{c} u^{d} u^{e}=\left((\hat{s} \cdot \hat{u})^{2}-\frac{1}{3}\right)(\hat{s} \cdot \stackrel{\leftrightarrow}{d} \cdot \hat{u})+\frac{2}{3}(\hat{s} \cdot \hat{u})(\hat{s} \cdot \stackrel{\leftrightarrow}{d} \cdot \hat{s}) \tag{4.12e}
\end{align*}
$$

Combining (4.11), 4.12), and (4.5) gives us

$$
\begin{align*}
& \mathcal{G}(\stackrel{\leftrightarrow}{d}, \alpha, \hat{s}, \hat{u})=\left[\rho_{1}^{\prime}(\alpha)+\frac{\rho_{2}(\alpha)}{\alpha}\right](\hat{s} \cdot \hat{u})(\hat{u} \cdot \stackrel{\leftrightarrow}{d} \cdot \hat{u}) \\
& \quad+\left\{(\hat{s} \cdot \hat{u})^{2}\left[\rho_{2}^{\prime}(\alpha)-2 \frac{\rho_{2}(\alpha)}{\alpha}+2 \frac{\rho_{3}(\alpha)}{\alpha}\right]+\frac{1}{3}\left[\frac{\rho_{2}(\alpha)}{\alpha}-2 \frac{\rho_{3}(\alpha)}{\alpha}\right]\right\}(\hat{s} \cdot \overleftrightarrow{d} \cdot \hat{u}) \\
& +\left\{(\hat{s} \cdot \hat{u})^{2}\left[\rho_{3}^{\prime}(\alpha)-4 \frac{\rho_{3}(\alpha)}{\alpha}\right]+\frac{1}{3}\left[-\rho_{2}^{\prime}(\alpha)+2 \frac{\rho_{2}(\alpha)}{\alpha}-\rho_{3}^{\prime}(\alpha)+8 \frac{\rho_{3}(\alpha)}{\alpha}\right]\right\}(\hat{s} \cdot \hat{u})(\hat{s} \cdot \stackrel{\leftrightarrow}{d} \cdot \hat{s}) \tag{4.13}
\end{align*}
$$

This is relatively easy to evaluate, if we keep in mind the recursion relation

$$
\begin{equation*}
\frac{d}{d \alpha} \frac{j_{\ell}(\alpha)}{\alpha^{\ell}}=-\alpha \frac{j_{\ell+1}(\alpha)}{\alpha^{\ell+1}} \tag{4.14}
\end{equation*}
$$

and thus

$$
\left(\begin{array}{l}
\rho_{1}^{\prime}(\alpha) \tag{4.15}\\
\rho_{2}^{\prime}(\alpha) \\
\rho_{3}^{\prime}(\alpha)
\end{array}\right)=-\alpha\left(\begin{array}{ccc}
5 & -10 & 5 \\
-10 & 40 & -50 \\
\frac{5}{2} & -25 & \frac{175}{2}
\end{array}\right)\left(\begin{array}{c}
\frac{j_{1}(\alpha)}{\alpha_{2}} \\
\frac{j_{2}(\alpha)}{\alpha^{2}} \\
\frac{j_{3}(\alpha)}{\alpha^{3}}
\end{array}\right)
$$

Note that since the limiting forms of the spherical Bessel functions tell us that

$$
\begin{align*}
& \rho_{1}(\alpha)=2+\mathcal{O}\left(\alpha^{2}\right) \tag{4.16a}\\
& \rho_{2}(\alpha)=\mathcal{O}\left(\alpha^{2}\right) \tag{4.16b}\\
& \rho_{3}(\alpha)=\mathcal{O}\left(\alpha^{2}\right) \tag{4.16c}
\end{align*}
$$

all of the coëfficients in 4.13) vanish at $\alpha=0$. and thus $\mathcal{G}(\overleftrightarrow{d}, 0, \hat{s}, \hat{u})=0$, which we could also see by symmetry considerations from (4.5).

	$\gamma^{\mathrm{LWL}}(f)$	$\delta \gamma(f)$	$\delta \gamma(f) / \gamma^{\mathrm{LWL}}(f)$
XARM	0.95333	0.00298	0.00313
YARM	-0.89466	-0.00167	0.00187
NULL	0.03181	-0.00061	-0.01914

Table 1: Impact of first-order corrections on L1-A1 search. The corrections to the overlap reduction function are less than one percent, except for the null orientation. The upper limit results in [4] are not affected to the stated precision by these corrections.

5 Specific Examples

The matlab/octave functions curlyG.m and orfcorrection.m implement (4.13) and (4.4); they can be found in the CVS at sgwb/doc/TechNotes/figsources. We use them to examine the corrections to the overlap reduction function for

1. LLO-ALLEGRO, which has actually been analyzed at 915 Hz . [4]
2. LHO-LLO around 1 kHz , which is being considered for S 5 as a counterpart to LIGOVirgo analyses, and
3. LHO-Virgo and LLO-Virgo around 1 kHz , which are being considered for S 5 .

5.1 LLO-ALLEGRO

This is fairly easy to consider, since the overlap reduction function (and its first-order correction) is more or less constant across the band of interest. We summarize the corrections in table 5.1. As a check, the scripts used in [4] were re-run with the LWL plus first order overlap reduction functions; the upper limit result was unchanged, while some numbers in tables changed in the third decimal place.

5.2 LHO-LLO

We move on to consider LHO-LLO. Of course, at frequencies previously considered (\lesssim 300 Hz) the effects are negligible. In Figure 1 we show the LWL and first-order overlap reduction functions. However, it's hard to quantify the differences by eye. We can consider the ratio $\delta \gamma(f) / \gamma(f)$ (Fig 2), but this is awkward because $\gamma(f)$ passes through zero. One useful tool for quantifying the size of the corrections is the high-frequency envelope, $\pm \gamma_{\text {env }} / f$, which describes the falloff of the long-wavelength overlap reduction function. 5] For LHOLLO, this is plotted in Fig. 3. We can thus plot $\frac{\delta \gamma(f)}{\gamma_{\text {env }} / f}$ to get a sense of the size of the corrections. This is done in Fig. 4, which shows that the correction is $>5 \%$ of the LWL amplitude at 1 kHz . We thus conclude that first-order corrections to the overlap reduction function will be necessary if LLO-LHO pairs are included in an analysis around 1 kHz .

Figure 1: Long-wavelength overlap reduction function for LHO-LLO pair, compared with first-order corrected version. The differences are small, but it's hard to get a quantitative sense with the "eyeball test".

Figure 2: Ratio of first-order LHO-LLO overlap reduction function to long-wavelength value. Because the correction and the long-wavelength form have zeros in different places, the ratio blows up at some frequencies (the ones that contribute least to the search sensitivity) and is therefore not very informative.

Figure 3: The LHO-LLO overlap reduction function, plotted along with its high-frequency envelope as calculated in [5]. The $1 / f$ envelope captures the amplitude of the oscillations at high frequencies.

Figure 4: Size of first-order corrections to the LHO-LLO overlap reduction function relative to its overall amplitude. We see that at kilohertz frequencies, $5-10 \%$ corrections are necessary.

5.3 LIGO-Virgo

We repeat the same comparison for the LIGO-Virgo detector pairs, plotting $\frac{\delta \gamma(f)}{\gamma_{\text {env }} / f}$ for LHOVirgo and LLO-Virgo in Fig. 5. In this case, we see that the errors are less than 1\%, so the corrections for LIGO-Virgo searches will be negligible.

6 Conclusions

An examination of the (analytically calculated) first-order corrections to the isotropic overlap reduction functions due to finite interferometer arm length, for various detector pairs, shows that

1. Corrections for LLO-ALLEGRO (due to the finite length of the LLO arms) are negligible at 915 Hz
2. Corrections for LHO-LLO near 1 kHz may be $5-10 \%$, so first-order corrections should be incorporated
3. Corrections for LHO-Virgo and LLO-Virgo near 1 kHz are $<1 \%$, so so first-order corrections can be neglected

A Calculation of Rigid Adiabatic Response Tensor

The most general tensor gravitational wave in the TT gauge is

$$
\begin{equation*}
\overleftrightarrow{h}(t, \vec{r})=\int_{-\infty}^{\infty} d f \iint d^{2} \Omega_{\hat{k}} \underbrace{\sum_{A=+, x} h_{A}(f, \hat{k}) \overleftrightarrow{e}_{A}(\hat{k})}_{\overleftrightarrow{h}(f, \hat{k})} e^{i 2 \pi f(t-\hat{k} \cdot \vec{r} / c)} \tag{A.1}
\end{equation*}
$$

Where $h_{A}(f, \hat{k})$ are arbitrary amplitudes and $\left\{\overleftrightarrow{e}_{A}(\hat{k})\right\}$ are the TT polarization basis orthogonal to \hat{k}. The spacetime metric it generates is

$$
\begin{equation*}
d s^{2}=-c^{2} d t^{2}+d \vec{r} \cdot(\overleftrightarrow{1}+\overleftrightarrow{h}(t, \vec{r})) \cdot d \vec{r} \tag{A.2}
\end{equation*}
$$

A. 1 Propagation Time Down a Finite-Length Arm

Consider two wordlines with fixed spatial coördinates; in the TT gauge, these will be geodesics. Let their separation vector be $L \hat{n}$ so that a photon travels from the spacetime

Figure 5: Size of first-order corrections to the LIGO-Virgo overlap reduction functions relative to their overall amplitude. Note that the vertical scale here is different from that used in Fig. 4 and in fact the corrections are $<1 \%$.
point $\left(t_{i}, \vec{r}_{\text {mid }}-\frac{L}{2} \hat{n}\right)$ to $\left(t_{f}, \vec{r}_{\text {mid }}+\frac{L}{2} \hat{n}\right)$. To lowest order in the metric perturbation, the photon's spatial trajectory can be parametrized as

$$
\begin{equation*}
\vec{r}(\lambda)=\vec{r}_{\text {mid }}+\lambda \frac{L}{2} \hat{n} \tag{A.3}
\end{equation*}
$$

where λ goes from -1 to $1 \|$ The elapsed time can be obtained from the fact that the photon's trajectory is null:

$$
\begin{equation*}
d t=c \sqrt{d \vec{r} \cdot(\overleftrightarrow{1}+\overleftrightarrow{h}(t, \vec{r})) \cdot d \vec{r}}=\frac{L}{2 c}(1+\hat{n} \cdot \overleftrightarrow{h}(t, \vec{r}) \cdot \hat{n})^{1 / 2} d \lambda \tag{A.4}
\end{equation*}
$$

and integrating this gives (defining $t_{\text {mid }}=t_{i}+L / 2 c$)

$$
\begin{align*}
t_{f}-t_{i} & =\frac{L}{2 c} \int_{-1}^{1}\left[1+\frac{1}{2} \hat{n} \cdot \overleftrightarrow{h}\left(t_{\text {mid }}+\lambda \frac{L}{2 c}, \vec{r}_{\text {mid }}+\lambda \frac{L}{2} \hat{n}\right) \cdot \hat{n}\right]+\mathcal{O}\left(h^{2}\right) \\
& =\frac{L}{c}\left(1+\frac{1}{2} \int_{-\infty}^{\infty} d f \iint d^{2} \Omega_{\hat{k}} \overleftrightarrow{h}(f, \hat{k}):(\hat{n} \otimes \hat{n}) e^{i 2 \pi f\left(t_{\text {mid }}-\hat{k} \cdot \vec{r}_{\text {mid }} / c\right)} \frac{1}{2} \int_{-1}^{1} e^{i 2 \pi f \frac{L}{2 c}(1-\hat{k} \cdot \hat{n}) \lambda}\right) \tag{A.5}
\end{align*}
$$

The integral over λ is just

$$
\begin{equation*}
\frac{1}{2} \int_{-1}^{1} e^{i 2 \pi f \frac{L}{2 c}(1-\hat{k} \cdot \hat{n}) \lambda}=\frac{e^{i 2 \pi f \frac{L}{2 c}(1-\hat{k} \cdot \hat{n})}-e^{-i 2 \pi f \frac{L}{2 c}(1-\hat{k} \cdot \hat{n})}}{2 i\left[2 \pi f \frac{L}{2 c}(1-\hat{k} \cdot \hat{n})\right]}=\operatorname{sinc}\left(\frac{\pi f L}{c}[1-\hat{k} \cdot \hat{n}]\right) \tag{A.6}
\end{equation*}
$$

So

$$
\begin{equation*}
t_{f}-t_{i}=\frac{L}{c}\left\{1+\frac{1}{2} \int_{-\infty}^{\infty} d f \iint d^{2} \Omega_{\hat{k}} \overleftrightarrow{h}(f, \hat{k}):(\hat{n} \otimes \hat{n}) e^{i 2 \pi f\left(t_{\text {mid }}-\hat{k} \cdot \vec{r}_{\text {mid }} / c\right)} \operatorname{sinc}\left(\frac{\pi f L}{c}[1-\hat{k} \cdot \hat{n}]\right)\right\} \tag{A.7}
\end{equation*}
$$

A. 2 Michelson Interferometer Response

Consider an interferometer with arms of length L pointing in directions \hat{u} and \hat{v}. Let the vertex be at position \vec{r}. Let t be the time that two photons meet at the vertex after travelling down their respective arms and back.

First, consider the round-trip travel time down the first arm. This can be broken into two parts:

[^0]- The inbound trip, where $\hat{n}=-\hat{u}$ and to lowest order $t_{\text {mid }}=t-L / 2 c$ and $\vec{r}_{\text {mid }}=$ $\vec{r}+\hat{u} L / 2$, so

$$
\begin{equation*}
t_{\mathrm{mid}}-\hat{k} \cdot \vec{r}_{\mathrm{mid}} / c=t-\hat{k} \cdot \vec{r} / c-\frac{L}{2 c}(1+\hat{k} \cdot \hat{u}) \tag{A.8}
\end{equation*}
$$

- The outbound trip, where $\hat{n}=\hat{u}$ and to lowest order $t_{\text {mid }}=t-3 L / 2 c$ and $\vec{r}_{\text {mid }}=$ $\vec{r}+\hat{u} L / 2$, so

$$
\begin{equation*}
t_{\mathrm{mid}}-\hat{k} \cdot \vec{r}_{\mathrm{mid}} / c=t-\hat{k} \cdot \vec{r} / c-\frac{L}{2 c}(3+\hat{k} \cdot \hat{u}) \tag{A.9}
\end{equation*}
$$

The fractional change in round-trip travel time down the arm in the \hat{u} direction due to the GW is thus

$$
\begin{align*}
& \frac{c(\Delta t)_{\hat{u}}-2 L}{2 L}=\int_{-\infty}^{\infty} d f \iint d^{2} \Omega_{\hat{k}} \overleftrightarrow{h}(f, \hat{k}) e^{i 2 \pi f(t-\hat{k} \cdot \vec{r} / c)} \\
&: e^{-i 2 \pi f L / c} \frac{\hat{u} \otimes \hat{u}}{2} {\left[e^{i \frac{\pi f L}{c}(1-\hat{k} \cdot \hat{u})} \operatorname{sinc}\left(\frac{\pi f L}{c}[1+\hat{k} \cdot \hat{u}]\right)\right.} \tag{A.10}\\
&\left.+e^{-i \frac{\pi f L}{c}(1+\hat{k} \cdot \hat{u})} \operatorname{sinc}\left(\frac{\pi f L}{c}[1-\hat{k} \cdot \hat{u}]\right)\right] / 2
\end{align*}
$$

In the limit $f L \ll 1$ this reduces to the familiar

$$
\begin{equation*}
\frac{c(\Delta t)_{\hat{u}}-2 L}{2 L} \rightarrow \overleftrightarrow{h}(t, \vec{r}): \frac{\hat{u} \otimes \hat{u}}{2} \tag{A.11}
\end{equation*}
$$

so we write the generalization as

$$
\begin{equation*}
\frac{c(\Delta t)_{\hat{u}}-2 L}{2 L}=\int_{-\infty}^{\infty} d f \iint d^{2} \Omega_{\hat{k}} \overleftrightarrow{h}(f, \hat{k}) e^{i 2 \pi f(t-\hat{k} \cdot \vec{r} / c)}: \overleftrightarrow{d}_{\hat{u}}(f, \hat{k}) \tag{A.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\overleftrightarrow{d}_{\hat{u}}(f, \hat{k})=\mathcal{T}_{\hat{u}}(f, \hat{k}) \frac{\hat{u} \otimes \hat{u}}{2} \tag{A.13}
\end{equation*}
$$

borrowing from [1] the notation

$$
\begin{equation*}
\mathcal{T}_{\hat{u}}(f, \hat{k})=\frac{e^{-i 2 \pi f L / c}}{2}\left[e^{i \frac{\pi f L}{c}(1-\hat{k} \cdot \hat{u})} \operatorname{sinc}\left(\frac{\pi f L}{c}[1+\hat{k} \cdot \hat{u}]\right)+e^{-i \frac{\pi f L}{c}(1+\hat{k} \cdot \hat{u})} \operatorname{sinc}\left(\frac{\pi f L}{c}[1-\hat{k} \cdot \hat{u}]\right)\right] \tag{A.14}
\end{equation*}
$$

Note that this corresponds to $D(i 2 \pi f,-\hat{k} \cdot \hat{u})$ as defined by [2], albeit in rather different notation.

The standard Michelson interferometer, then, measures

$$
\begin{equation*}
\frac{c(\Delta t)_{\hat{u}}-c(\Delta t)_{\hat{v}}}{2 L}=\int_{-\infty}^{\infty} d f \iint d^{2} \Omega_{\hat{k}} \stackrel{\leftrightarrow}{h}(f, \hat{k}) e^{i 2 \pi f(t-\hat{k} \cdot \vec{r} / c)}:\left\{\mathcal{T}_{\hat{u}}(f, \hat{k}) \frac{\hat{u} \otimes \hat{u}}{2}-\mathcal{I}_{\hat{v}}(f, \hat{k}) \frac{\hat{v} \otimes \hat{v}}{2}\right\} \tag{A.15}
\end{equation*}
$$

A. 3 Fabry-Perot Effect

The LIGO interferometers are not, however, simple Michelson interferometers. The arms act as Fabry-Perot cavities, which store light which gradually leaks out of the interferometer. The result of this is that a measurement at time t reflects the Michelson response convolved with a time-dependent effect. [2, 3] The result is that the quantity measured is

$$
\begin{equation*}
\int_{-\infty}^{\infty} d f \iint d^{2} \Omega_{\hat{k}} \frac{1-r_{a} r_{b}}{1-r_{a} r_{b} e^{-i 4 \pi f L / c}} \stackrel{\leftrightarrow}{h}(f, \hat{k}) e^{i 2 \pi f(t-\hat{k} \cdot \vec{r} / c)}:\left\{\mathcal{T}_{\hat{u}}(f, \hat{k}) \frac{\hat{u} \otimes \hat{u}}{2}-\mathcal{T}_{\hat{v}}(f, \hat{k}) \frac{\hat{v} \otimes \hat{v}}{2}\right\} \tag{A.16}
\end{equation*}
$$

The LIGO calibration doesn't actually use the full frequency-dependent Fabry-Perot response

$$
\begin{equation*}
R_{\mathrm{fp}}(f)=\frac{1-r_{a} r_{b}}{1-r_{a} r_{b} e^{-i 4 \pi f L / c}} \tag{A.17}
\end{equation*}
$$

but instead approximates it with a single cavity pole

$$
\begin{equation*}
R_{\mathrm{cp}}(f)=\frac{1}{1+i f / f_{\mathrm{pole}}} \tag{A.18}
\end{equation*}
$$

writing

$$
\begin{equation*}
R_{\mathrm{fp}}(f)=\frac{1}{1+\frac{r_{a} r_{b}}{1-r_{a} r_{b}}\left(1-e^{-i 4 \pi f L / c}\right)} \tag{A.19}
\end{equation*}
$$

we can see that

$$
\begin{equation*}
f_{\text {pole }}=\frac{1-r_{a} r_{b}}{r_{a} r_{b}} \frac{c}{4 \pi L} . \tag{A.20}
\end{equation*}
$$

Since we've expanded the exponential to first order in $f L / c$, this expression would seem to be adequate as long as second-order deviations from the long-wavelength limit don't become important. However, since the reflectivity of the LIGO mirrors is high, $r_{a} r_{b}$ is close to one, and $\frac{r_{a} r_{b}}{1-r_{a} r_{b}}$ is actually rather large. This means the neglected second-order correction to the exponential, once we multiply it by $\frac{r_{a} r_{b}}{1-r_{a} r_{b}}$, is more like the size of a first-order quantity. Fortunately, this apparent problem is resolved if we absorb into the Fabry-Perot response the troublesome prefactor $e^{-i 2 \pi f L / c}$ in A.14). Then we have

$$
\begin{equation*}
R_{\mathrm{fp}}(f) e^{-i 2 \pi f L / c}=\frac{1-r_{a} r_{b}}{e^{i 2 \pi f L / c}-r_{a} r_{b} e^{-i 2 \pi f L / c}}=\frac{\left(r_{a} r_{b}\right)^{-1 / 2}-\left(r_{a} r_{b}\right)^{1 / 2}}{\left(r_{a} r_{b}\right)^{-1 / 2} e^{i 2 \pi f L / c}-\left(r_{a} r_{b}\right)^{1 / 2} e^{-i 2 \pi f L / c}} \tag{A.21}
\end{equation*}
$$

Now if we define

$$
\begin{equation*}
\eta=-\frac{1}{2} \ln \left(r_{a} r_{b}\right) \tag{A.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=\pi f L / c \tag{A.23}
\end{equation*}
$$

which are both small quantities for $f \sim 1 \mathrm{kHz}$,
$R_{\mathrm{fp}}(f) e^{-i 2 \pi f L / c}=\frac{e^{\eta}-e^{-\eta}}{e^{\eta+i 2 \beta}-e^{-\eta-i 2 \beta}}=\frac{\sinh \eta}{\sinh (\eta+i 2 \beta)}=\frac{\eta+\mathcal{O}\left(\epsilon^{3}\right)}{\eta+i 2 \beta+\mathcal{O}\left(\epsilon^{3}\right)}=\frac{1}{1+i 2 \beta / \eta+\mathcal{O}\left(\epsilon^{2}\right)}$
page 12 of 13

So in fact the cavity pole model is accurate to second order in small quantities when used to approximate $R_{\mathrm{fp}}(f) e^{-i 2 \pi f L / c}$. That leads us to define

$$
\begin{equation*}
\mathfrak{T}_{\hat{u}}(f, \hat{k})=e^{i \frac{\pi f L}{c}(1-\hat{k} \cdot \hat{u})} \operatorname{sinc}\left(\frac{\pi f L}{c}[1+\hat{k} \cdot \hat{u}]\right)+e^{-i \frac{\pi f L}{c}(1+\hat{k} \cdot \hat{u})} \operatorname{sinc}\left(\frac{\pi f L}{c}[1-\hat{k} \cdot \hat{u}]\right) \tag{A.25}
\end{equation*}
$$

and that observe that the LIGO calibration (valid to second order in f / L) actually gives us a "strain" of

$$
\begin{equation*}
h(t)=\int_{-\infty}^{\infty} d f \iint d^{2} \Omega_{\hat{k}} \stackrel{\leftrightarrow}{h}(f, \hat{k}) e^{i 2 \pi f(t-\hat{k} \cdot \vec{r} / c)}:\left\{\mathfrak{T}_{\hat{u}}(f, \hat{k}) \frac{\hat{u} \otimes \hat{u}}{2}-\mathfrak{T}_{\hat{v}}(f, \hat{k}) \frac{\hat{v} \otimes \hat{v}}{2}\right\} \tag{A.26}
\end{equation*}
$$

References

[1] Louis J. Rubbo, Neil J. Cornish, and Olivier Poujade, "Forward modeling of space-borne gravitational wave detectors", Phys. Rev. D 69, 082003 (2004); arXiv:gr-qc/0311069.
[2] Malik Rakhmanov, "Response of LIGO to Gravitational Waves at High Frequencies and in the Vicinity of the FSR $(37.5 \mathrm{kHz})$ ", LIGO Technical note LIGO-T060237-00-D
[3] Malik Rakhmanov, Caltech Ph.D thesis, LIGO-P000002-R
[4] B. Abbott et al (LIGO Scientific Collaboration), "First Cross-Correlation Analysis of Interferometric and Resonant-Bar Gravitational-Wave Data for Stochastic Backgrounds", Phys. Rev. D 76, 022001 (2007); arXiv:gr-qc/0703068
[5] Giancarlo Cella et al, to appear in Class. Quant. Grav.; arXiv:0704.2983

[^0]: ${ }^{1}$ I think this step is wrong, since there is an $\mathcal{O}(h)$ correction to $d \vec{r}$ (not necessarily along \hat{n}) that I'm leaving out, and this would give an additional $\mathcal{O}(h)$ term in $d t$. However, I seem to get the same answer as Rubbo, Cornish and Poujade. [1. We now think the explanation for this is that if you use fractional distance down the arm as a parameter for the timelike geodesic, the missing correction term is perpendicular to \hat{n} and therefore gives no first-order contribution when substituted into A.4.

