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1 Definitions

We define the measured cross-correlation (power) spectrum in the frequency domain by

Sm(f) = 〈h∗1(f)h2(f)〉 (1)

The h1,2(f) are the amplitude spectral densities of the interferometer output. They are
obtained by suitable normalization of the Fourier transform, h̃(f), of the detected signal
time series, h(t),

h(f) =
√

2/T h̃(f)

The average in Eq.(1) is over repeated segments of data, each of duration T [1].

The interpretation of Sm(f) follows from the defining properties of a stochastic background
(assumed isotropic and unpolarized). Namely

〈hαβ(t)〉 = 0

〈hαβ(t)hαβ(t)〉 = 32π

∫ ∞

0

H(f)df (2)

where H(f) is a real, non-negative function describing the spectrum of the stochastic back-
ground

H(f) = |h+(f)|2 + |h×(f)|2 (3)

For interferometers with orthogonal arms

Sm(f) =
8π

5
γ(f)D(f)H(f) (4)

γ(f) is the overlap reduction function. For co-located and co-aligned interferometers γ(f) =
1.

D(f) is the correction to the acceptance (pattern function) of the interferometer as a function
of frequency. It is derived in section 3, but at frequencies f <∼ 1 kHz we can set
D(f) = 1.
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The definition of H(f) through Eq.(2) follows the normalization of Allen and Romano [2].
Maggiore [3] uses instead Sh(f) = 8πH(f).

As shown in the following section the local energy density in the gravitational wave is

ρG =
4π2c2

G

∫ ∞

0

f 2H(f)df (5)

Using Eq.(4) and Eq.(5) we can express the energy density per unit frequency interval in
terms of the measured cross-correlation spectrum

dρG

df
=

20πc2

8G
f 2Sm(f)/[γ(f)D(f)] (6)

Note that dρG/df is not a derivative but the integrand in Eq.(5), [4]. Finally we define

Ω(f) ≡ 1

ρc

f
dρG

df
(7)

The convenient notation

hrms(f) =
√

Sm(f) (8)

is often encountered.

2 Calculation of the local energy density

The local energy density is given by Eq.(35.23) of Misner, Thorne and Wheeler [5]

ρG =
c2

32πG
〈ḣαβ(t, ~x), ḣαβ(t, ~x)〉 (9)

The amplitudes hαβ(t, ~x) can be uniquely expressed by a plane wave expansion [2]

hαβ(t, ~x) =
∑

A

∫ ∞

−∞
df

∫
s2

dΩ̂hA(f, Ω̂)e2πif(t−Ω̂·~x/c)εA
αβ(Ω̂) (10)
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For a stochastic signal (as defined in the previous section), the following holds in the fre-
quency domain [2]

〈h∗A(f, Ω̂)hA′(f ′, Ω̂′)〉 = δ(f − f ′)δ2(Ω̂, Ω̂′)δAA′H(f) (11)

Using the expansion of Eq.(10) in Eq.(9) and expressing the ensemble average by Eq.(11)
we can immediately perform the integrations over dΩ̂′, df ′ and the summation over A′, to
obtain

ρG =
4π2c2

32πG
f 2

∑
A

∫ ∞

−∞
df

∫
s2

dΩ̂εA
αβεAαβH(f) (12)

The summation over the polarization tensors equals 4 and the integral over dΩ̂ equals 4π.
We also limit the integration of df to the range 0 to ∞ (because H(−f) = H(f)) yielding a
further factor of 2, so that

ρG =
4π2c2

G

∫ ∞

0

f 2H(f)df (13)

This proves Eq.(5) and the similar steps lead to Eq.(2). Of course both equations are
evaluated at the same point in space, ~x. Some subtle issues related to infinitely long time
series are discussed in [6].

Note that Weinberg [7] gives the local energy density in the gravitational wave [his Eq.(10.37)]
as

〈tµν〉 =
kµkν

16πG
(|h+|2 + |h×|2) (14)

with c = 1, k = ω = 2πf . If we write

ρG =
∑

A

∫
t00dΩdf (15)

the summation over polarizations and the integration over solid angle introduce a factor of
16π in agreement with Eq.(13).

Finally for convenience in evaluating Ω(f) in Eq.(7) we give
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ρc =
3c2H2

0

8πG
(16)

3 The interferometer acceptance as a function of fre-

quency

The gravitational wave signal appears at the antisymmetric (dark) port of the interferometer.
It is proportional to the difference in the phase of the carrier light exiting from the two arms.
We follow Sigg [8] in calculating the phase shift induced by a gravitational wave of arbitrary
incidence and polarization.

The interferometer arms are taken along the x and y axes, and the gravitational wave vector
is ~k, Ω = c|~k|. In spherical coordinates

k̂x = sin θ cos φ k̂y = sin θ sin φ k̂z = cos θ (17)

and k = |~k|. We work in the TT gauge and designate the metric perturbation amplitudes
by h+ and h× for the two polarizations of the wave. After rotating the gravitational wave
tensor into the interferometer coordinate system we find

hxx = − cos θ sin 2φh× +
(
cos2 θ cos2 φ− sin2 φ

)
h+

hyy = cos θ sin 2φh× +
(
cos2 θ sin2 φ− cos2 φ

)
h+ (18)

The proper time for a light signal is zero

dτ 2 = dxµgµνdxν = 0 with gµν = ηµν + hµν

The change in the phase of the carrier is obtained by integrating the proper time dτ over a
round trip along the arm

∆Φ =

∫ 2L

0

ωdτ =

∫ 2L

0

ω

c
[1 + hxx(t)]

1
2 dx (19)

or
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∆Φx (t0) =
ω

c

∫ L

0

{
1 + hxx cos

[
Ωt0 + k(1− k̂x)x

]} 1
2
dx +

+
ω

c

∫ L

0

{
1 + hxx cos

[
Ωt0 + k

(
2L− (1 + k̂x)x

)]} 1
2
dx (20)

Since hxx, hyy � 1 we expand the square roots, convert to exponential notation, discard the
time independent term and shift to the time of arrival to find

∆Φx =
hxxLω

c
e−iΦΩ

sin ΦΩ + ik̂x cos ΦΩ − ik̂xe
ikxΦΩ

ΦΩ

(
1− k̂2

x

) (21)

and a corresponding expression for ∆Φy. Here

ΦΩ = LΩ/c

with L the length of the arm and Ω = 2πfG. The magnitude of Eq. (21) gives the amplitude
of the change in carrier phase and the modulus gives the phase shift with respect to the
gravitational wave. For normal incidence kx = 0 and we recover the usual expression for the
carrier phase.

We must form the phase difference between the two arms for each of the two polarizations
separately, and we combine the results in quadrature

H = ∆Φx −∆Φy

H+ = H (h× = 0, h+ = 1)

H× = H (h× = 1, h+ = 0)

H =
√
|H+|2 + |H×|2 (22)

|H+|, |H×| and H are shown as a function of the angles of incidence θ, φ, of the gravitational
wave in Fig. 1 for fG = 0 and in Fig. 2 for ΦΩ = π (this corresponds to fG = 37.52 kHz for
L = 4 km). We refer to H (θ, φ, fG) as the antenna pattern at frequency fG.

To evaluate the acceptance of the interferometer, i.e., the function D(f) introduced in Eq.(4)
we must average over θ, and φ. We do this by integrating

V =

∫ 2π

0

dφ

∫ π

0

sin θdθ

∫ |H(θ,φ)|

0

r2dr (23)
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and setting

D(f) = [V (f)/V (f = 0)]
1
3 (24)

Our calculation so far involved a single traversal in the arm. Since the carrier undergoes
multiple reflections in the Fabry-Perot cavity we must add the contribution of these repeated
traversals. It was shown by Schilling [9] that the result for a single traversal, which we
designate H1, is multiplied by the usual transfer function for a resonant optical cavity.
Namely

HFP =
H1

|1− r1r2ei2ΦΩ |
(25)

where r1, r2 are the reflectivities of the input and end mirrors. Thus the result of Eq.(25) is
not modified by the multiple traversals in the arms.
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h+ Polarization h× Polarization RMS Average Polarization

Figure 1: The acceptance pattern at f < 1 kHz for the plus and cross polarizations and their
rms average

h+ Polarization h× Polarization RMS Average Polarization

Figure 2: The acceptance pattern at f = 37.52 kHz for the plus and cross polarizations and
their rms average
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