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1. Purpose and Motivation 
 
Precise knowledge of the mechanical loss angles and Young moduli of the mirror coating 
constituents is needed for optimizing the coating multilayer thicknesses, so as to minimize the 
coating thermal noise for a prescribed reflectivity in advanced interferometric gravitational wave 
detectors [1].  
In the simplest yet reliable model of the coating noise PSD, this latter is a linear combination of the 
total (physical) thicknesses  sH,L of the coating low (suffix L) and high (suffix H) index constituents, 
currently, Tantala (Ta2O5) and Silica (SiO2), 
 

)( HL ssPSD γ+Π= .      (1) 
 

In (1) Π is a constant of no concern to us here, and γ is basically given by the ratio YHφH /YLφL, 
where  YH,L. and φH,L  denote the Young moduli and mechanical loss-angles of the high and low 
index materials, respectively.  
Presently available estimates for the loss angles φH,L are deduced from ringdown measurements 
based on the experimental setup and computational framework described in [2], using suspended 
thin or thick circular samples with different sH/sL ratios.  
A number of related critical issues are noted: i) the ringdown modes are in the KHz range, and 
should be extrapolated down to the band of interest; ii) the retrieved loss angles depend critically on 
the value of the ratio between the elastic energies stored in the coating and substrate, which is 
computed numerically using finite elements (known to be of  limited  accuracy when dealing with 
thin layers); iii) the systematic error may be exceedingly large for materials with extremely low 
mechanical losses.  
The YH,L values, on the other hand, are presently approximated by the corresponding bulk-material 
values, although this may be a crude approximation1.  
Use of trustfully more accurate values for the Young modulus and the coating/substrate energy ratio 
led to a difference by factor two for the estimated Silica loss angle between [2] and [3], based on the 
same measurements. Available estimates for γ are thus presently affected by relatively large 
uncertainties2.  
Quite recently, an alternative experimental setup has been proposed, based on a clamped cantilever 
geometry. Potentially this may offer several advantages, including: i) easier/cheaper sample 
preparation and measurement setup (hopefully resulting in more abundant and more repeatable 
measurements); ii) ringdown modes (and derived quantities) falling directly within the frequency 
band of interest; iii) last but not least, the possibility of a fully analytic modelling, which is the 
subject of the present report.  
 
Preliminary measurements based on the clamped cantilever are ongoing both at LMA, Lyon FR, 
and the University of Glasgow UK, yielding encouragingly consistent results [4].  

                                                
1 From a suitably large set of ringdown measurements, one may retrieve in principle both the loss angles and the Young 
moduli of the coating constituents. However, from ringdown measurements corresponding to different coating 
thicknesses, one may directly estimate the value of γ, without having to know separately the Young moduli and loss 
angles. 
2 Measurement-related errors may be expected to be Poisson-distributed; technology-related (coating process-
repeatability related) uncertainties may be expected to be Gaussian-distributed. The number of presently available 
measurements is unfortunately so small to make the above distinctions of almost no practical use.. 



2. Clamped Cantilever Model 
 
The basic model of a clamped coated cantilever in the small-oscillations regime has been developed 
in [5,6]. We refer henceforth to the geometry and notation in Figure 1. 

 
 

Fig. 1 – Problem’s geometry and notation 

 
where the cantilever is assumed as being clamped at  y = 0.  
Define the neutral section  z= z0  by [7]:      ∫+ =−
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where E(z) is the z-dependent Young modulus. 
The layered cantilever is described (in the linearized homogeneization approach) by the equation 
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where cs ρρ ,  are the substrate and coating-layer mass-densities. 

Introducing the complex (phasor) notation ])(Re[),( ti neyzty ωζ = , the above equation becomes: 
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where ωn  and κn are the angular frequency and wavenumber of the n-th mode, respectively. The 
dispersion equation connecting the above quantities reads: 
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The natural modes are obtained by enforcing the boundary conditions: 
 

0)('''0)(''0)0('0)0( ==== LzLzzz .    (6) 

 

L 
w 

hs 

hc 

y 

z 

x 



pertaining to the clamped and free end of the cantilever, respectively. The modes can be computed 
in explicit form, and are: 
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The A and B coefficients are defined but for a common multiplicative factor. Their ratio is: 
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The product nn xL =κ  can be taken to represent the eigenvalue, and is obtained by solving the 

(trascendental) equation 
 

 1coshcos −=nn xx .      (9) 

3. Elastic Energy 
 
The elastic energy per unit volume, assuming ),( tyζζ =  is given by [7] 
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where E(z) and  σ(z) are the  z-dependent Young modulus and Poisson coefficient, and z0  is the 
neutral section defined by (2). The average over a cycle of oscillation is expressed, in the phasor 
notation, by: 
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Upon integrating on the relevant volumes, the elastic energy in the coating (suffix c) and substrate 
(suffix s) of the cantilever can be written: 
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The ratio between the (one-cycle averaged) energies stored in the coating and substrate layers is 
accordingly: 
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4. Ringdown and Coating Loss Angle 
 
The coated cantilever quality factor in the flexural (lowest) eigenmode with resonant frequency 1ω  
is: 
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where <W> and <P> are the elastic energy stored and the power dissipated averaged over a cycle 
[8]. On the other hand 
 

><
><

=
s

s
s P

W
Q 1ω

   and   
><

><
=

c

c
c P

W
Q 1ω

 ,    (15) 

 
where the suffixes  c  and  s  refer to the coating and substrate as usual. Hence: 
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The ratio  in (16) can be evaluated using (13). A limiting form of the averaged energy ratio in (13) 
valid under the assumptions  <Wc>  << <Ws>  has been given in [9,10] and is: 
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where Es and Ec are the Young moduli of the substrate and coating, respectively. A 
MATHEMATICA   notebook implementing the above formulas has been written and is made 
available in the Appendix. Note that  the uncoated cantilever quality factor differs from the 
substrate quality factor in (16) by less then 1%. Equation (16) allows to determine the coating loss 
angle (inverse of coating quality factor) from measured damping constants of the bare (uncoated) 
and coated cantilever. 
Extension of the above fully analytic model to (heterogeneous) multilayer-coated cantilevers is also 
possible [11] and relatively straightforward, and will be the subject of a forthcoming report. 
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APPENDIX – A MATHEMATICA™  NOTEBOOK 
 
(************************************************** **************************) 
(*                  Analytic model of clamped coated cantilever ringdown                                          *) 
(*                  MATHEMATICA 5.0 Notebook ver. 1, 19/04/2006                                               *) 
(*                 Authors: V. Pierro, I.M Pinto, TWG University of Sannio, INFN and LSC            *) 
(************************************************** **************************) 
 

(* Spelling warnings turned off *) 
Off[General::spell]; 
Off[General::spell1]; 
 

(* thickness [m] *) 
hs=120*10^-6  (* substrate, Silica *); 
hc=1/2*10^-6 (* coating, Tantala *); 
 

(* length & width [m] *) 
ll=40*10^-3; 
w=5*10^-3; 
 

(* Young moduli [Pa]*) 
Es=70*10^9 (* substrate, Silica *); 
Ec=140*10^9      (* coating, Tantala *); 
 

(* densities [Kg/m^3]*) 
rhos=2202 (* substrate, Silica *); 
rhoc=8316 (* coating, Tantala *); 
 

(* Poisson coefficients [] *) 
sigs=0.16395 (* substrate, Silica *); 
sigc =0.23 (* coating, Tantala *);  
 

(* Piecewise-constant, z-dependent Young modulus [Pa] *) 
EE[z_]:=Es*UnitStep[hs-z]+Ec*(UnitStep[z-hs]-UnitStep[z-hs-hc]) 
 

(* Neutral surface *) 
zz0=z0/.Solve[Integrate[(z-z0)*EE[z],{z,0,hs+hc}]�0,z0][[1]]//N[#,22]&; 
Print["Neutral surface position [µm] :",zz0*10^6] 
 



 
(* Eigenvalues *) 
xx[k_]:=x/.FindRoot[Cos[x]*Cosh[x]�-1,{x,Pi*(k-1/2)},WorkingPrecision→20] 
ASB[k_]:=(Cos[xx[k]]+Cosh[xx[k]])/(Sin[xx[k]]-Sinh[xx[k]]) 
 

(* Eigenvalue list *) 
Print["Eigenvalues: ", (xtav=Table[{k,xx[k]},{k,1,10}])//TableForm] 
 

(* Resonant frequency, fundamental mode [Hz] *) 
 

(* coated cantilever  *) 
f1coated=(xx[1]/ll)^2*Sqrt[Integrate[(z-zz0)^2*EE[z],{z,0,hs+hc}]/(hs*rhos+hc*rhoc)]/(2*Pi); 
(* substrate only; 0-thickness coating *) 
f1uncoated=(xx[1]/ll)^2*Sqrt[Integrate[(z-hs/2)^2*Es,{z,0,hs}]/(hs*rhos)]/(2*Pi); 
 

Print["f1, coated cantilever [Hz] : “ , f1coated] 
Print["f1, substrate only [Hz] : “ , f1uncoated] 
Print["f1coated/f1uncoated   :", f1coated/f1uncoated] 
 

(* Dominant wavenumber [m-1] *) 
k1coated=Sqrt[2*Pi*f1coated]*(Integrate[(z-zz0)^2*EE[z],{z,0,hs+hc}]/(hs*rhos+hc*rhoc))^(1/4); 
 

Print["Dominant wavenumber [m-1] :",k1coated] 
 

(* Elastic energy *) 
Ws=w/(4*(1-sigs^2))*Integrate[(z-zz0)^2*EE[z],{z,0,hs}]* 
      Integrate[D[zz1[y],{y,2}]^2,{y,0,ll}]; 
Wc=w/(4*(1-sigc^2))*Integrate[(z-zz0)^2*EE[z],{z,hs,hc+hs}]* 
      Integrate[D[zz1[y],{y,2}]^2,{y,0,ll}]; 
 
(* Elastic energy, substrate only *) 
Ws0=w/(4*(1-sigs^2))*Integrate[(z-
1/2*hs)^2*EE[z],{z,0,hs}]*Integrate[D[zz1[y],{y,2}]̂ 2,{y,0,ll}]; 
 

Print["Ws0/Ws, full analytic : ", Ws0/Ws] 
 

 (* Longitudinal distribution, dominant (flexural) mode *) 
zz1[y_]=ASB[1]*(Cos[k1coated*y]-Cosh[k1coated*y] )+(Sin[k1coated*y]-Sinh[k1coated*y]); 
 

(* Plot longitudinal distribution, scaled *) 
Plot[zz1[y*ll]/zz1[ll],{y,0,1},Axes→False,Frame→True,AspectRatio→.3, 
  FrameLabel→{"z/L",None},PlotLabel->"Normalized Mode-Amplitude",ImageSize→500] 
 
(* Ratio Ws/Wc *) 
rat=Ws/Wc; 
(* Approximate value of ratio, according to Nishino, eq. (15) *)  
ratapp= (Es*hs)/(3.*Ec*hc); 
 

Print["Ratio Ws/Wc, exact, analytic : ", rat] 
Print["Ratio Ws/Wc, Nishino's app. : ", ratapp] 




