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1 Definition of the Stochastic Background Spectrum

The standard plane-wave expansion for a gravitational wave is

hab(~r, t) =
∑

A=+,×

∫ ∞

−∞
df

x
d2Ωn̂ hA(f, n̂) eA ab(n̂) exp

(
i2πf

[
t− n̂ · ~r

c

])
(1.1)

where {←→e A(n̂)} are the usual transverse traceless basis tensors, normalized to obey

eA ab(n̂) eab
A′(n̂) = 2δAA′ (1.2)

The spectrum H(f) for an isotropic stochastic background is defined (e.g., in eqn (2.11) of
Allen and Romano[1]) by

〈h∗A(f, n̂) hA′(f ′, n̂′)〉 = δ2(n̂, n̂′) δAA′ δ(f − f ′) H(f) (1.3)

The natural extension of this definition to a potentially anisotropic, unpolarized background
is

〈h∗A(f, n̂) hA′(f ′, n̂′)〉 = δ2(n̂, n̂′) δAA′ δ(f − f ′) H(f, n̂) (1.4)

If we further assume that the spatial distribution of the background is non-frequency-
dependent1, we can factor the background strength to get

〈h∗A(f, n̂) hA′(f ′, n̂′)〉 = δ2(n̂, n̂′) δAA′ δ(f − f ′) H(f)P(n̂) (1.5)

which is equation (2.8) of Allen and Ottewill [2]. The separation into H(f) and P(n̂) is of
course arbitrary, but we will get the closest correspondence to the isotropic formulas if we
choose it so that x

d2Ωn̂P(n̂) = 4π . (1.6)

This is the normalization chosen by Allen and Ottewill [2], in their equation (3.10). Note,
however, that this is not the notation used by Ballmer[3], as can be seen from appendix
C of his thesis[4], so his H(f) differs from that associated with the Allen and Ottewill
normalization by a factor of 4π from the division into H(f) and P(n̂); additionally his
(implicit) definition of H(f, n̂) is four times that used in the generalization (1.4) of Allen
and Romano. So Ballmer’s H(f) is 16π times that used in this note.

2 Expected Cross-Correlation in a Pair of Detectors

Let detector i at position ~ri have response tensor
←→
di , so that the strain it measures is

hi(t) = dab
i hab(~ri, t) =

∑
A=+,×

∫ ∞

−∞
df

x
d2Ωn̂ hA(f, n̂) dab

i eA ab(n̂) exp

(
i2πf

[
t− n̂ · ~ri

c

])
(2.1)

1This is not a good assumption in general, but we should be able to resolve a background into a sum of
contributions which individually satisfy it.
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Note that in addition to the explicit time dependence, there is a slow time variation hidden
in the quantities n̂ · ~ri and dab

i eA ab(n̂) = FA
i (n̂). This is because n̂ is a sky direction vector

associated with a fixed right ascension and declination while ~ri and
←→
di are quantities with

constant components in an Earth-fixed basis, and are thus rotating with respect to the sky-
fixed basis. However, if the data are analyzed in chunks which are small compared to the
rotation period of one siderial day, we can neglect that time dependence in identifying

h̃i(f) ≈
∑

A=+,×

x
d2Ωn̂ hA(f, n̂) dab

i eA ab(n̂) exp

(
−i2πf

n̂ · ~ri

c

)
(2.2)

The usual calculation tells us that

〈h̃∗i (f) h̃j(f
′)〉 = δ(f − f ′)

x
d2Ωn̂

∑
A=+,×

dab
i eA ab(n̂) eA ab(n̂) eA cd(n̂) dcd

j H(f, n̂)ei2πfn̂·(~ri−~rj)/c

= 2δ(f − f ′)
x

d2Ωn̂ dab
i PTTn̂ab

cd dcd
j H(f, n̂)ei2πfn̂·(~ri−~rj)/c

(2.3)

where PTTn̂ab
cd is the projector onto traceless, symmetric tensors transverse to the unit vector

n̂, which can be expanded in the standard polarization basis as

PTTn̂ab
cd =

1

2

∑
A=+,×

eab
A (n̂) eA cd(n̂) (2.4)

If we recall the overlap reduction function appropriate for isotropic stochastic background
searches

γ12(f) = d1 ab dcd
2

5

4π

x
d2Ωn̂ PTTn̂ab

cd ei2πfn̂·(~r2−~r1)/c (2.5)

and call integrand, which depends on both frequency and sky direction,

d2γ12

d2Ω
(f, n̂) =

5

4π

(
d1 ab dcd

2 PTTn̂ab
cd

) (
ei2πfn̂·(~r2−~r1)/c

)
(2.6)

then (2.3) becomes

〈h̃∗i (f) h̃j(f
′)〉 = δ(f − f ′)

8π

5

x
d2Ωn̂

d2γ12

d2Ω
(f, n̂) H(f, n̂)

= δ(f − f ′)
8π

5
H(f)

x
d2Ωn̂

d2γ12

d2Ω
(f, n̂)P(n̂)

(2.7)

If we extend the definition of the overlap reduction function to one specific to a particular
background P(n̂) as follows:

γP12(f) =
x

d2Ωn̂
d2γ12

d2Ω
(f, n̂)P(n̂) (2.8)

then we have a generalization of the usual formula:

〈h̃∗i (f) h̃j(f
′)〉 = δ(f − f ′)

8π

5
γP12(f)H(f) (2.9)

page 3 of 9



LIGO-T060162-01-Z

This is the equivalent of equation (3.56) in Allen and Romano[1]. [See also Allen & Romano’s
equation (2.15).]

Note that γP12(f) depends on the detectors, the spatial distribution of the source, and also
on siderial time.

Note also that, subject to the normalization (1.6), a background coming from a single direc-
tion n̂0 is described by a distribution

Pn̂0(n̂) = 4πδ2(n̂, n̂0) (2.10)

which corresponds to the overlap reduction function

γn̂0
12 (f) = 4π

d2γ12

d2Ω
(f, n̂0) = 5

(
d1 ab dcd

2 PTTn̂0ab
cd

) (
ei2πfn̂0·(~r2−~r1)/c

)
=

5

2

( ∑
A=+,×

FA 1(n̂0) FA 2(n̂0)

)(
ei2πfn̂0·(~r2−~r1)/c

) (2.11)

This is 5 times what Ballmer[3] calls γΩ̂.

3 Calculation of Overlap Reduction Function Integrand

For a given sky direction, the overlap reduction function integrand (2.6) factors as shown
above into a piece depending only on detector orientation and a factor depending only on the
frequency and separation. Note that in a basis co-rotating with the Earth, the components

of the detector response tensors
←→
d1 and

←→
d2 and the separation vector ~r2 − ~r1 are fixed, but

the direction n̂ associated with a particular right ascension and declination changes with
siderial time.

The explicit form of the projector PTTn̂ab
cd, and thus of the overlap reduction function inte-

grand d2γ12

d2Ω
(f, n̂) can be worked out by noting that it must be traceless and symmetric on

both pairs of indices ({ab} and {cd}); with n̂ as the only preferred direction, there are only
three independent tensors which can be created with these properties:

T1
ab
cd = PTab

cd (3.1a)

T2
ab
cd(n̂) = PTab

ef n̂
f n̂gP

Teg
cd (3.1b)

T3
ab
cd(n̂) = PTab

ef n̂
en̂f n̂gn̂hP

Tgh
cd (3.1c)

where

PTab
cd = δa

(cδ
b
d) −

1

3
δabδcd (3.2)

is the projector onto traceless symmetric tensors. We can thus write

PTTn̂ab
cd =

3∑
n=1

βnTn
ab
cd ; (3.3)
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to figure out the coëfficients {βn} we just need to contract each of the {Tn
ab
cd} with PTTn̂ab

cd and
each other. The former set of contractions is straightforward, because PTTn̂ab

cd is a projector
onto a two-dimensional subspace which is transverse to n̂.

T1
cd
abP

TTn̂ab
cd = PTTn̂ab

ab = 2 (3.4a)

T2
cd
abP

TTn̂ab
cd = PTTn̂ab

acnbn
c = 0 (3.4b)

T3
cd
abP

TTn̂ab
cd = PTTn̂ab

cdnanbn
cnd = 0 (3.4c)

The latter set of contractions is worked out in the appendix of [5] [equation (21)] and they
give us

2
0
0

 =

T1
cd
ab

T2
cd
ab

T3
cd
ab

PTTn̂ab
cd =

0BBB@
5 5/3 2/3

5/3 17/18 4/9
2/3 4/9 4/9

1CCCA︷ ︸︸ ︷T1
cd
ab

T2
cd
ab

T3
cd
ab

(T1
ab
cd T2

ab
cd T3

ab
cd

)β1

β2

β3

 (3.5)

Inverting the matrix givesβ1

β2

β3

 =

 1
2
−1 1

4

−1 4 −5
2

1
4
−5

2
35
8

2
0
0

 =

 1
−2
1/2

 (3.6)

so

PTTn̂ab
cd = PTab

cd − 2PTab
ef n̂

f n̂gP
Teg

cd +
1

2
PTab

ef n̂
en̂f n̂gn̂hP

Tgh
cd (3.7)

which means

d2γ12

d2Ω
(f, n̂) =

5

4π
ei2πfn̂·(~r2−~r1)/c

[
dT

1
abdT

2 ab − 2dT
1

abn̂bn̂
cdT

2 ac +
1

2
dT

1
abn̂an̂bn̂

cn̂ddT
2 cd

]
(3.8)

where

dTab = PTab
cd dcd = dab − 1

3
δabdc

c (3.9)

is the traceless part of the response tensor (which, for an interferometer, is just the tensor
itself).

This calculation is implemented in the matapps routine orfintegrand() in the directory
src/utilities/detgeom/matlab; if you pass it a 3×N matrix representing N different sky
directions in Earth-fixed Cartesian coördinates, and a column vector (M × 1 matrix) of M

frequencies, it will return an M×N matrix containing the value of d2γ12

d2Ω
at each frequency and

sky direction. The routine getcartesiandirectionfromsource() converts the combination
of declination and minus hour angle (which is right ascension minus Greenwich Mean Siderial
Time) into Earth-fixed Cartesian unit vectors.
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4 Autocorrelation (Power Spectral Density) in a Given

Detector

One measure of the stochastic background strength is the strain spectrum it would generate
in a suitable detector. Applying (2.9) to a single detector and defining the one-sided strain
power spectral density by

〈h(f)∗h(f ′)〉 =
1

2
Sdet(f)δ(f − f ′) (4.1)

we have

Sdet(f) =
16π

5
γPdetH(f) (4.2)

where

γPdet =
x

d2Ωn̂
d2γdet

d2Ω
(n̂)P(n̂) (4.3)

and

d2γdet

d2Ω
(n̂) =

5

4π
dab dcd PTTn̂ab

cd =
5

4π

[
dTabdT

ab − 2dTabn̂bn̂
cdT

ac +
1

2
dTabn̂an̂bn̂

cn̂ddT
cd

]
(4.4)

Now, for the special case of pointlike source at sky position n̂0, one can consider the strain
PSD in an optimally oriented detector, i.e., an interferometer whose perpendicular arms lie
in the plane transverse to the propagation direction so that

dab dcd PTTn̂0ab
cd = dabd

ab =
1

2
(4.5)

and then γdet = 5
2

Sgw,opt(f) = 8πH(f) (4.6)

However, this concept of an “optimally oriented detector” doesn’t generalize particularly
well to sources with non-trivial sky distributions.

5 Detector-Independent Measures of Background Strength

5.1 Energy Density

A property of the gravitational wave background itself, without reference to the strain in
any hypothetical detector, is the energy density[1, 6]

ρgw =
c2

32πG
〈ḣab(t, ~r)ḣ

ab(t, ~r)〉 =
πc2

G

∫ ∞

0

f 2
x

d2Ωn̂ H(f, n̂) =
4π2c2

G

∫ ∞

0

f 2 H(f) df (5.1)

where we have used the Allen and Ottewill normalization (1.6) in the last step. Note that
subject to this normalization the relation of H(f) to energy density has the same form for
both isotropic and anisotropic backgrounds.
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The energy density per unit frequency interval is this

dρgw

df
=

4π2c2

G
f 2 H(f) (5.2)

and the usual definition of energy density per logarithmic frequency interval as a fraction of
the critical energy density is

Ωgw(f) =
f

ρcrit

dρgw

df
=

32π2

3H2
0

f 3H(f) (5.3)

One can also consider the energy density per hertz per steradian coming from a given direc-
tion:

d3ρgw

df d2Ω
(f, n̂) =

πc2

G
f 2H(f, n̂) (5.4)

5.2 Energy Flux

An even more natural quantity, if we want to restrict attention waves coming from a given
direction, is the power per square meter per hertz per steradian (which is apparently called
the spectral radiance, although I would have called it flux density)

d3~Jgw

df d2Ω
(f, n̂) = −n̂

πc3

G
f 2 H(f, n̂) (5.5)

For a general background this makes more sense than flux itself (for instance, the net flux
through any surface from an isotropic background is zero), but for a pointlike source this
diverges because of the delta function in H(f, n̂). In that case, the useful quantity is the
total power per square meter per hertz through a surface perpendicular to the direction to
the pointlike source (which is apparently called spectral irradiance–although I would have
called it flux–and is the thing that’s measured in Janskys)

dΦgw

df
=

4π2c3

G
f 2 H(f) (5.6)

5.3 Quantitative Relationship

To see how all of these are related, consider a stochastic background of total strength
h2

100Ωgw(f) = 10−6, in two cases: (i) isotropic (ii) coming from a single direction n̂0 The
values of these various reference quantities are shown in Table 1.
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Table 1: Comparison of measures of SGWB strength for isotropic vs point-line backgrounds.
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