LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note \quad LIGO-T060162-00-Z	2006 June 5
Comments on Anisotropic	
Stochastic Background Searches	

Distribution of this document:
All

California Institute of Technology
LIGO Project, MS 18-34
Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834
E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project, Room NW17-161
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014
E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note \quad LIGO-T060162-00-Z	2006 June 5
Comments on Anisotropic	
Stochastic Background Searches	

Distribution of this document:
All

California Institute of Technology
LIGO Project, MS 18-34
Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834
E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project, Room NW17-161
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014
E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

1 Definition of the Stochastic Background Spectrum

The standard plane-wave expansion for a gravitational wave is

$$
\begin{equation*}
h_{a b}(\vec{r}, t)=\sum_{A=+, \times} \int_{-\infty}^{\infty} d f \iint d^{2} \Omega_{\hat{n}} h_{A}(f, \hat{n}) e_{A a b}(\hat{n}) \exp \left(i 2 \pi f\left[t-\frac{\hat{n} \cdot \vec{r}}{c}\right]\right) \tag{1.1}
\end{equation*}
$$

where $\left\{\overleftrightarrow{e}_{A}(\hat{n})\right\}$ are the usual transverse traceless basis tensors, normalized to obey

$$
\begin{equation*}
e_{A a b}(\hat{n}) e_{A^{\prime}}^{a b}(\hat{n})=2 \delta_{A A^{\prime}} \tag{1.2}
\end{equation*}
$$

The spectrum $H(f)$ for an isotropic stochastic background is defined (e.g., in eqn (2.11) of Allen and Romano [1]) by

$$
\begin{equation*}
\left\langle h_{A}^{*}(f, \hat{n}) h_{A^{\prime}}\left(f^{\prime}, \hat{n}^{\prime}\right)\right\rangle=\delta^{2}\left(\hat{n}, \hat{n}^{\prime}\right) \delta_{A A^{\prime}} \delta\left(f-f^{\prime}\right) H(f) \tag{1.3}
\end{equation*}
$$

The natural extension of this definition to a potentially anisotropic, unpolarized background is

$$
\begin{equation*}
\left\langle h_{A}^{*}(f, \hat{n}) h_{A^{\prime}}\left(f^{\prime}, \hat{n}^{\prime}\right)\right\rangle=\delta^{2}\left(\hat{n}, \hat{n}^{\prime}\right) \delta_{A A^{\prime}} \delta\left(f-f^{\prime}\right) H(f, \hat{n}) \tag{1.4}
\end{equation*}
$$

If we further assume that the spatial distribution of the background is non-frequencydependent ${ }^{11}$, we can factor the background strength to get

$$
\begin{equation*}
\left\langle h_{A}^{*}(f, \hat{n}) h_{A^{\prime}}\left(f^{\prime}, \hat{n}^{\prime}\right)\right\rangle=\delta^{2}\left(\hat{n}, \hat{n}^{\prime}\right) \delta_{A A^{\prime}} \delta\left(f-f^{\prime}\right) H(f) \mathcal{P}(\hat{n}) \tag{1.5}
\end{equation*}
$$

which is equation (2.8) of Allen and Ottewill [2]. The separation into $H(f)$ and $\mathcal{P}(\hat{n})$ is of course arbitrary, but we will get the closest correspondence to the isotropic formulas if we choose it so that

$$
\begin{equation*}
\iint d^{2} \Omega_{\hat{n}} \mathcal{P}(\hat{n})=4 \pi \tag{1.6}
\end{equation*}
$$

This is the normalization chosen by Allen and Ottewill [2], in their equation (3.10).

2 Expected Cross-Correlation in a Pair of Detectors

Let detector i at position $\overrightarrow{r_{i}}$ have response tensor $\overleftrightarrow{d_{i}}$, so that the strain it measures is

$$
\begin{equation*}
h_{i}(t)=d_{i}^{a b} h_{a b}\left(\vec{r}_{i}, t\right)=\sum_{A=+, \times} \int_{-\infty}^{\infty} d f \iint d^{2} \Omega_{\hat{n}} h_{A}(f, \hat{n}) d_{i}^{a b} e_{A a b}(\hat{n}) \exp \left(i 2 \pi f\left[t-\frac{\hat{n} \cdot \vec{r}_{i}}{c}\right]\right) \tag{2.1}
\end{equation*}
$$

Note that in addition to the explicit time dependence, there is a slow time variation hidden in the quantities $\hat{n} \cdot \vec{r}_{i}$ and $d_{i}^{a b} e_{A a b}(\hat{n})=F_{i}^{A}(\hat{n})$. This is because \hat{n} is a sky direction vector associated with a fixed right ascension and declination while $\overrightarrow{r_{i}}$ and $\overleftrightarrow{d_{i}}$ are quantities with

[^0]constant components in an Earth-fixed basis, and are thus rotating with respect to the skyfixed basis. However, if the data are analyzed in chunks which are small compared to the rotation period of one siderial day, we can neglect that time dependence in identifying
\[

$$
\begin{equation*}
\widetilde{h}_{i}(f) \approx \sum_{A=+, \times} \iint d^{2} \Omega_{\hat{n}} h_{A}(f, \hat{n}) d_{i}^{a b} e_{A a b}(\hat{n}) \exp \left(-i 2 \pi f \frac{\hat{n} \cdot \vec{r}_{i}}{c}\right) \tag{2.2}
\end{equation*}
$$

\]

The usual calculation tells us that

$$
\begin{align*}
\left\langle\widetilde{h}_{i}^{*}(f) \widetilde{h}_{j}\left(f^{\prime}\right)\right\rangle & =\delta\left(f-f^{\prime}\right) \iint d^{2} \Omega_{\hat{n}} \sum_{A=+, \times} d_{i}^{a b} e_{A a b}(\hat{n}) e_{A a b}(\hat{n}) e_{A c d}(\hat{n}) d_{j}^{c d} H(f, \hat{n}) e^{i 2 \pi f \hat{n} \cdot\left(\vec{r}_{i}-\vec{r}_{j}\right) / c} \\
& =2 \delta\left(f-f^{\prime}\right) \iint d^{2} \Omega_{\hat{n}} d_{i}^{a b} P_{c d}^{\mathrm{TT} \hat{n} a b} d_{j}^{c d} H(f, \hat{n}) e^{i 2 \pi f \hat{n} \cdot\left(\vec{r}_{i}-\vec{r}_{j}\right) / c} \tag{2.3}
\end{align*}
$$

where $P^{\mathrm{TT} \hat{n} a b}{ }_{c d}$ is the projector onto traceless, symmetric tensors transverse to the unit vector \hat{n}, which can be expanded in the standard polarization basis as

$$
\begin{equation*}
P_{c d}^{\mathrm{TT} \hat{n} a b}=\frac{1}{2} \sum_{A=+, \times} e_{A}^{a b}(\hat{n}) e_{A c d}(\hat{n}) \tag{2.4}
\end{equation*}
$$

If we recall the overlap reduction function appropriate for isotropic stochastic background searches

$$
\begin{equation*}
\gamma_{12}(f)=d_{1 a b} d_{2}^{c d} \frac{5}{4 \pi} \iint d^{2} \Omega_{\hat{n}} P_{c d}^{\mathrm{TT} \hat{n} a b} e^{i 2 \pi f \hat{n} \cdot\left(\vec{r}_{2}-\vec{r}_{1}\right) / c} \tag{2.5}
\end{equation*}
$$

and call integrand, which depends on both frequency and sky direction,

$$
\begin{equation*}
\frac{d^{2} \gamma_{12}}{d^{2} \Omega}(f, \hat{n})=\frac{5}{4 \pi}\left(d_{1 a b} d_{2}^{c d} P^{\mathrm{TT} \hat{n} a b}{ }_{c d}\right)\left(e^{i 2 \pi f \hat{n} \cdot\left(\vec{r}_{2}-\vec{r}_{1}\right) / c}\right) \tag{2.6}
\end{equation*}
$$

then 2.3 becomes

$$
\begin{align*}
\left\langle\widetilde{h}_{i}^{*}(f) \widetilde{h}_{j}\left(f^{\prime}\right)\right\rangle & =\delta\left(f-f^{\prime}\right) \frac{8 \pi}{5} \iint d^{2} \Omega_{\hat{n}} \frac{d^{2} \gamma_{12}}{d^{2} \Omega}(f, \hat{n}) H(f, \hat{n}) \\
& =\delta\left(f-f^{\prime}\right) \frac{8 \pi}{5} H(f) \iint d^{2} \Omega_{\hat{n}} \frac{d^{2} \gamma_{12}}{d^{2} \Omega}(f, \hat{n}) \mathcal{P}(\hat{n}) \tag{2.7}
\end{align*}
$$

If we extend the definition of the overlap reduction function to one specific to a particular background $\mathcal{P}(\hat{n})$ as follows:

$$
\begin{equation*}
\gamma_{12}^{\mathcal{P}}(f)=\iint d^{2} \Omega_{\hat{n}} \frac{d^{2} \gamma_{12}}{d^{2} \Omega}(f, \hat{n}) \mathcal{P}(\hat{n}) \tag{2.8}
\end{equation*}
$$

then we have a generalization of the usual formula:

$$
\begin{equation*}
\left\langle\widetilde{h}_{i}^{*}(f) \widetilde{h}_{j}\left(f^{\prime}\right)\right\rangle=\delta\left(f-f^{\prime}\right) \frac{8 \pi}{5} \gamma_{12}^{\mathcal{P}}(f) H(f) \tag{2.9}
\end{equation*}
$$

This is the equivalent of equation (3.56) in Allen and Romano [1]. [See also Allen \& Romano's equation (2.15).]

Note that $\gamma_{12}^{\mathcal{P}}(f)$ depends on the detectors, the spatial distribution of the source, and also on siderial time.

Note also that, subject to the normalization (1.6), a background coming from a single direction \hat{n}_{0} is described by a distribution

$$
\begin{equation*}
\mathcal{P}_{\hat{n}_{0}}(\hat{n})=4 \pi \delta^{2}\left(\hat{n}, \hat{n}_{0}\right) \tag{2.10}
\end{equation*}
$$

which corresponds to the overlap reduction function

$$
\begin{align*}
\gamma_{12}^{\hat{n}_{0}}(f) & =4 \pi \frac{d^{2} \gamma_{12}}{d^{2} \Omega}\left(f, \hat{n}_{0}\right)=5\left(d_{1 a b} d_{2}^{c d} P^{\mathrm{TT} \hat{n} a b} c d\right)\left(e^{i 2 \pi f \hat{n} \cdot\left(\vec{r}_{2}-\vec{r}_{1}\right) / c}\right) \\
& =\frac{5}{2}\left(\sum_{A=+, \times} F_{A 1}(\hat{n}) F_{A 2}(\hat{n})\right)\left(e^{i 2 \pi f \hat{n} \cdot\left(\vec{r}_{2}-\vec{r}_{1}\right) / c}\right) \tag{2.11}
\end{align*}
$$

This is 5 times what Ballmer [3] calls $\gamma_{\hat{\Omega}}$.

3 Calculation of Overlap Reduction Function Integrand

For a given sky direction, the overlap reduction function integrand (2.6) factors as shown above into a piece depending only on detector orientation and a factor depending only on the frequency and separation. Note that in a basis co-rotating with the Earth, the components of the detector response tensors $\overleftrightarrow{d_{1}}$ and $\overleftrightarrow{d_{2}}$ and the separation vector $\vec{r}_{2}-\vec{r}_{1}$ are fixed, but the direction \hat{n} associated with a particular right ascension and declination changes with siderial time.

The explicit form of the projector $P^{\mathrm{TT} \hat{n} a b}{ }_{c d}$, and thus of the overlap reduction function integrand $\frac{d^{2} \gamma_{12}}{d^{2} \Omega}(f, \hat{n})$ can be worked out by noting that it must be traceless and symmetric on both pairs of indices ($\{a b\}$ and $\{c d\}$); with \hat{n} as the only preferred direction, there are only three independent tensors which can be created with these properties:

$$
\begin{align*}
T_{1 c d}^{a b} & =P_{c d}^{\mathrm{T} a b} \tag{3.1a}\\
T_{2}^{a b}{ }_{c d}^{a b}(\hat{n}) & =P_{e f}^{\mathrm{T} a b} \hat{n}^{f} \hat{n}_{g} P_{c d}^{\mathrm{T} e g} \tag{3.1b}\\
T_{3_{c d}^{a b}}^{a b}(\hat{n}) & =P_{e f}^{\mathrm{T} a b} \hat{n}^{e} \hat{n}^{f} \hat{n}_{g} \hat{n}_{h} P_{c d}^{\mathrm{T} g h} \tag{3.1c}
\end{align*}
$$

where

$$
\begin{equation*}
P_{c d}^{\mathrm{T} a b}=\delta_{(c}^{a} \delta_{d)}^{b}-\frac{1}{3} \delta^{a b} \delta_{c d} \tag{3.2}
\end{equation*}
$$

is the projector onto traceless symmetric tensors. We can thus write

$$
\begin{equation*}
P_{c d}^{\mathrm{TT} \hat{a} a b}=\sum_{n=1}^{3} \beta_{n} T_{n c d}^{a b} \tag{3.3}
\end{equation*}
$$

to figure out the coëfficients $\left\{\beta_{n}\right\}$ we just need to contract each of the $\left\{T_{n_{c d}}^{a b}\right\}$ with $P^{\mathrm{TTn} \hat{n}}{ }_{c d}$ and each other. The former set of contractions is straightforward, because $P^{T T n}{ }_{c d}$ is a projector onto a two-dimensional subspace which is transverse to \hat{n}.

$$
\begin{align*}
& T_{1 a b}^{c d} P^{\mathrm{TT} \hat{n} a b}{ }_{c d}=P^{\mathrm{TT} \hat{n} a b}{ }_{a b}=2 \tag{3.4a}\\
& T_{2 a b}^{c d} P^{\mathrm{TT} \hat{n} a b}{ }_{c d}=P^{\mathrm{TT} \hat{n} a b}{ }_{a c} n_{b} n^{c}=0 \tag{3.4b}\\
& T_{3}^{c d}=P^{\mathrm{TT} \hat{n} a b}=P^{\mathrm{TT} \hat{n} a b}{ }_{c d} n_{a} n_{b} n^{c} n^{d}=0 \tag{3.4c}
\end{align*}
$$

The latter set of contractions is worked out in the appendix of [4] [equation (21)] and they give us

Inverting the matrix gives

$$
\left(\begin{array}{l}
\beta_{1} \tag{3.6}\\
\beta_{2} \\
\beta_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{2} & -1 & \frac{1}{4} \\
-1 & 4 & -\frac{5}{2} \\
\frac{1}{4} & -\frac{5}{2} & \frac{35}{8}
\end{array}\right)\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
-2 \\
1 / 2
\end{array}\right)
$$

so

$$
\begin{equation*}
P_{c d}^{\mathrm{TT} \hat{n} a b}=P_{c d}^{\mathrm{T} a b}-2 P_{e f}^{\mathrm{T} a b} \hat{n}^{f} \hat{n}_{g} P_{c d}^{\mathrm{T} e g}+\frac{1}{2} P_{e f}^{\mathrm{T} a b} \hat{n}^{e} \hat{n}^{f} \hat{n}_{g} \hat{n}_{h} P_{c d}^{\mathrm{T} g h} \tag{3.7}
\end{equation*}
$$

which means

$$
\begin{equation*}
\frac{d^{2} \gamma_{12}}{d^{2} \Omega}(f, \hat{n})=\frac{5}{4 \pi} e^{i 2 \pi f \hat{n} \cdot\left(\vec{r}_{2}-\vec{r}_{1}\right) / c}\left[d_{1}^{\mathrm{T} a b} d_{2}^{\mathrm{T}} a b-2 d_{1}^{\mathrm{T} a b} \hat{n}_{b} \hat{n}^{c} d_{2}^{\mathrm{T}} a c+\frac{1}{2} d_{1}^{\mathrm{T} a b} \hat{n}_{a} \hat{n}_{b} \hat{n}^{c} \hat{n}^{d} d_{2}^{\mathrm{T}} c d\right] \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
d^{\mathrm{T} a b}=P_{c d}^{\mathrm{T} a b} d^{c d}=d^{a b}-\frac{1}{3} \delta^{a b} d_{c}^{c} \tag{3.9}
\end{equation*}
$$

is the traceless part of the response tensor (which, for an interferometer, is just the tensor itself).

This calculation is implemented in the matapps routine orfintegrand() in the directory src/utilities/detgeom/matlab; if you pass it a $3 \times N$ matrix representing N different sky directions in Earth-fixed Cartesian coördinates, and a column vector ($M \times 1$ matrix) of M frequencies, it will return an $M \times N$ matrix containing the value of $\frac{d^{2} \gamma_{12}}{d^{2} \Omega}$ at each frequency and sky direction. The routine getcartesiandirectionfromsource() converts the combination of declination and minus hour angle (which is right ascension minus Greenwich Mean Siderial Time) into Earth-fixed Cartesian unit vectors.

References

[1] Allen B and Romano J D 1999 Phys Rev D59 102001; e-Print: gr-qc/9710117.
[2] Allen B and Ottewill A C 1997 Phys Rev D56 545; e-Print: gr-qc/9607068.
[3] Ballmer S W "A radiometer for stochastic gravitational waves"; e-Print: gr-qc/0510096
[4] Whelan J T "Stochastic Gravitational Wave Measurements with Bar Detectors: Dependence of Response on Detector Orientation"; submitted to Class Quant Grav; e-Print: gr-qc/0509109.

[^0]: ${ }^{1}$ This is not a good assumption in general, but we should be able to resolve a background into a sum of contributions which individually satisfy it.

