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1. Introduction

The first version of waveburst algorithm, described in [1] and [2], was implemented in

LAL and LDAS and used for the S2 burst analysis [3], [4].

For the S3 [5] and S4 [6] analysis the same algorithm was implemented in a C++

library called Wavelet Analysis Tool (WAT) which is part of the DMT package. The

pipeline itself is implemented as a ROOT [7] script and the ROOT jobs ran under

Condor.

For the S4 run [6],[8], we upgraded the algorithm to perform analysis at several

time-frequency resolutions [9], which made it more sensitive to a wider class of burst

signals.

For the S5 run [10] further upgrades are made: the Symlet 60 wavelet is replaced

by Meyer 1024 wavelet and the linear predictor error (LPE) filter is used for data

conditioning. The Meyer 1024 wavelet has much longer filter (1024 coefficients) which

significantly reduce spectral leakage between wavelet layers. The LPE filter removes

significant fraction of energy from power lines and violin modes. It improves the

detection efficiency for burst signals in the vicinity of these lines. Both modifications

also improve the detection efficiency at low frequencies (64-100Hz).

Since the S4 waveburst version of waveburst is described in detailes in [9] , in

this document we only describe the difference between S5 and S4 versions rather then

presenting the whole algorithm from the beginning. However, to make clear what part

of the pipeline is modified, we list below its main stages:

• Apply wavelet transformation to GW channel from each detector to obtain time-

frequency scalograms of data with a certain time-frequency resolution;

• Apply data conditioning: whitening, variability corrections, etc;

• Select 10% of loudest (black) pixels in each detector;

• Compute rank of sdelected pixels;

• Compare scalograms for each pair of detectors and select only those pixels that are

in time-frequency coincidence (within some window) in all detectors;

• Do clustering of the remaining pixels separately in each detector;

• Compute properties of clusters (time: central, start, stop, duration; frequency:

central, minimum, maximum, bandwidth; hrss, SNR, etc) in each detector;

• Use non-parametric significance (gs) of a multidetector trigger to select candidate

GW events.

• Apply amplitude cut which requires that hrss of a trigger detected in H1 is no

more than twice different from hrss of the coincident trigger reconstructed in the

H2 detector.

We typically set the geometric significance threshold so that the background rate

at the end of the waveburst pipeline is about 20µHz. The background is estimated by

running the pipeline on time shifted data ( we use 100 time lags shifting the LLO and
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LHO detector with respect to each other). After that the r-staistics cut [11] and vetoes

[12] are applied to reduce the rate down to about 0.1µHz.

2. Meyer wavelet

The bandwidth of wavelet layers depends on the wavelet decomposition depth. A single

wavelet decomposition step devides an input time series X(t) into two wavelet series

Xa(t) (low-pass filtering) and Xd(t) (high-pass filtering). The sampling rate of X(t) is

twice larger then one for the wavelet series. The Xa(t) represents the low frequency

sub-band (approximation layer) and the Xd(t) represents the high frequency sub-band

(detailes layer) of the original time series. It can be seen by zeroing either Xa(t) or Xd(t)

data and then applying the inverse wavelet transformation which produces time series

Ya(t) (Xd = 0) or Yd(t) (Xa = 0). In case when X(t) is white gaussian noise and the

Haar wavelet is applied, the corresponding power spectra of Ya(t) and Yd(t) are shown

in Figure 1.

Figure 1. Power spectra Ya(t) (black) and Yd(t) (red) for Haar wavelet.

One can see that there is a significant spectral leakage between the frequency bands,

which makes Haar a poor wavelet for time-frequency analysis.

Applying the wavelet decomposition steps, formaly we can devide data into sub-

bands with a desirable frequency resolution. This is the transformation frequency

resolution (TR). It should be distinguished from the wavelet frequency resolution (WR),

which is defined by spectral leakage between wavelet sub-bands (see Figure 1). In turn

the spectral leakage depends on the length of the wavelet filter.
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Figure 2 shows the spectral leakage from the approximation wavelet layer for Haar,

Symlet_16 and Symlet_60 (where 16 and 60 denote the number of the wavelet filter

coefficients). As one can see, the longer is the filter impulse response, the lower is

the spectral leakage between the wavelet sub-bands. For example, also see the PSD of

approximation signal after 2 wavelet decomposition steps (Figure 3).

Figure 2. Comparison of spectral leakage for Haar and Symlet wavelets after one

decomposition step

In general, given a time series with sampling rate f and a wavelet with filter length

N , the actual wavelet frequency resolution is WR ∼ f/N . This is the reason why

in the S4 analysis we used Symlet wavelet with the filter length 60. But even in

case when Symlet_60 wavelet is applied to time series with f = 4096Hz, the actual

wavelet frequency resolution is WR ∼ 64Hz which is not adequate for detection of long

and narrow-band GW signals like high Q sine-gaussian signals. WaveBurst performs

analysis at different TR resolutions with the best one of TR = 8Hz. Obviously the

wavelet filter length of 60 is not adequate for this resolution and longer filters should

be used. Unfortunatelly there is no known Symlets with filter length greater then

∼ 64. Long Symlet filters can be calculated in principle with the algorithm suggested

by Daubechie, but we did not see any references to long Daubechies/Symlet filters so

far. The calculation of long filters involves the ratios of large numbers (like factorials)

and it is quite nontrivial computational task.

Since long Symlet filters are not readily available, we suggest to use Meyer filters

instead, which can be easily calculated for filter length < 1000. Another small advantage

of the Meyer filter is that it is perfectly symmetric (linear phase highpass and lowpass

filters). For reference on Meyer wavelets see [13]
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Figure 3. Comparison of spectral leakage for Haar and Symlet wavelets after two

decomposition steps

The following figures show the frequency resolution and spectral leakage for one step

(Figure 4) and three step (Figure 5) Meyer_1024 wavelet transformation in comparison

with the Haar and Symlet_60 wavelets. Obviously the Meyer_1024 wavelet is much

better bandpass filter then the Haar and Symlet_60 wavelets.

Note, the wavelet functions (Figure 6) for Meyer and Symlet_60 wavelet are very

similar. It is not surprising because any symmetric wavelet becomes a Shannon wavelet

in the limit of long filters (N → ∞). A disadvantage of the Meyer filters is that for

local support they have to be trancated. The result of this is that the Meyer wavelets

are ”approximately” orthonormal. It means that the Parseval identity is approximate

and the forward-inverse wavelet transformation does not reproduce the original time

series ”exactly” as for the Symlet wavelets. From the other side the Meyer filters can

be constructed in such a way that the Parseval identity holds with better then 0.01%

accuracy, which is more then adequate for the analysis. The histograms of the residual

signal (original X(t) - forward-inverse X(t)) are shown for Meyer_1024 (Figure 7) and

for Symlet_60 (Figure 8) wavelets.

Figure 9 (see also zoomed plot on Figure 10) demonstartes how wavelet works as a

bandpass filter. For this example a white Gaussian noise (sampling rate 4096Hz) was

transformed with 7-step wavelet transformation, which corresponds to the TR = 16Hz.

Then all wavelet layers except for the wavelet layer 33 representing frequency band

528− 544Hz were zeroed and the inverse transformation was applied. Performing FFT

of the obtained signal we expect to see a bandlimited spectra with power in 528−544Hz

band. The Haar wavelet exibits a significant long-range spectral leakage. The Haar filter
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Figure 4. Comparison of spectral leakage for Haar, Symlet 60 and Meyer 1024

wavelets after one decomposition step

Figure 5. Comparison of spectral leakage for Haar, Symlet 60 and Meyer 1024

wavelets after three decomposition steps
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Figure 6. Wavelet functions for Symlet 60 and Meyer 1024 wavelets

is too short and it is not a good tool for this task. The Symlet_60 does not have any

long-range leakage, but it has a significant leakage into neighbor bins (within a window

defined by its WR ∼ 64Hz resolution). The Meyer_1024 wavelet shows no significant

leakage.

Use of the Meyer_1024 wavelet improves the WB performance. The WB whitening

is performed at WR=4Hz. A corresponding scalogram for L1 detector and Symlet_60

transformation (Figure 11) shows a line at ∼ 70Hz which is in fact due to the spectral

leakage from nearby 60Hz power line. The Meyer_1024 wavelet localizes the line energy

much better (Figure 12), which significantly improves the WB sensitivity at 70Hz.
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Figure 7. Meyer 1024 forward-inverse residual

Figure 8. Symlet 60 forward-inverse residual
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Figure 9. Wavelet resolution 32 Hz for Haar, Symlet 60 and Meyer 1024 wavelets

Figure 10. Wavelet resolution 32 Hz for Haar, Symlet 60 and Meyer 1024 wavelets,

zoomed
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Figure 11. Scalogram with a 70Hz line using Symlet 60 wavelet

Figure 12. Scalogram with a 70Hz line using Meyer 1024 wavelet
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3. Linear Predictor Filter

During the S4 analysis we started observing that some data artifacts (like power lines)

present a certain problem for the WB analysis. They were not a problem for S2 and

S3 runs, but during the S4 run the detector sensitivity was considerably increased and

the power lines started to affect the analysis. Therefore for the S5 analysis we have

looked at different options for the line/artifacts removal. One of the options is the

linear prediction error (LPE) filter.

The linear prediction error filters are used to remove ”predictable” components of a

given signal x(t). They have been used before in LIGO data analysis [14] in time domain.

In this case the output of the LPE filter is a whitened time series x′(t). Unfortunately

this approach can not be directly used in the WB analysis because:

• construction of symmetric LPE filters needs to be clarified,

• it interferes with the WB parameter reconstruction, such as estimation of the noise

rms(f) and signal hrss,

• there is also a question how LPE filter affects the GW signal waveforms.

3.1. Symmetric filters

For construction of symmetric LPE filters we follow the approach described in [15] The

symmetric LPE filters can be constructed from the backward and forward LPE filters

by using classical Levinson algorithm or the split lattice algorithm.

3.2. LPE filter in wavelet domain

Since each wavelet layer is a time series, rather then applying LPE filter to a time series

x(t), one can perform a wavelet decomposition x(t) → w(f, t) first and then calculate

and apply LPE filter F (f) individually to each wavelet layer. A set of filters F (f)

remove predictable components (like lines) in wavelet layers producing data w ′(t). A

filtered time series x′(t) can be reconstructed from w′(t). The example PSD of filtered

S4 data is shown in Figure 13. As one can see, when applied in wavelet domain the LPE

filter removes data artifacts but preserves the power spectral density of the noise floor.

3.3. Effect of LPE on the GW waveforms

Lets consider a time series x(t) with GW signal h(t) in it: x(t) = n(t) + h(t), where

n(t) is the noise. The LPE filter is constructed from an estimate of the autocorelation

function of the noise a(t) =
∑

[x(t)∗x(t−T )]. If the signal is quite strong (signal energy

is comparable with the energy of the noise in the signal bandwidth) it will affect (or

even dominate) the estimation of a(t) and therefore when the corresponding LPE filter

is applied it will partially remove the GW signal. It may affect the GW detection and

the estimation of the GW amplitude. This is definitely a problem for strong injections.

The signal cancelation also depends on the data length used for filter training. For
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Figure 13. Power spectra of original (black) and LPE filtered (red) noise

example, Figure 14 shows how the LPE filter (the training length of 120 sec) affects the

270Hz sine-gaussian injection with hrss = 10−21 (S4 data, L1 detector). The difference

of LPE(x(t) + h(t)) and LPE(x(t)) is responsible for residual signal away from the

injections (Figure 15).

To reduce the effect of the injected signal on the LPE(x(t)+h(t)) filter construction,

5% of loudest samples are removed from the data before training the filter. See

corresponding injected signal (Figure 16) and residual signal (Figure 17).

Normalized wavelet scalograms without LPE (Figure 18) and with LPE (Figure 19)

demonstrate how the LPE filter is used for data conditioning. It removes most of the

line structure present on the TF plot due to power lines and violin modes.
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Figure 14. Effect of LPF on 270 Hz sine-gaussian. Black curve is an injection. The

red curve is obtained as a difference between LPE filtered data with injection x(t)+h(t)

and LPE filtered data without injection x(t). One can see that the red curve has lower

amplitude, which means that the LPE filter trained on data x(t) + h(t) cancels out

some of the injected signal. The difference between LPE(x(t) + h(t)) and LPE(x(t))

is responsible for residual signal away from the injections.

Figure 15. Residual signal
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Figure 16. Injected signal with 5% of strongest samples removed for the LPE filter

construction.

Figure 17. Residual signal with 5% of strongest samples removed for the LPE filter

construction
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Figure 18. Normalized wavelet scalogram before the LPE filter is applied.

Figure 19. Normalized wavelet scalogram after the LPE filter is applied.
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4. Improvements to whitening procedure

Whitening procedure was modified for more robust handling of non-standard time

intervals. In the S4 waveburst version we observed some boundary artifacts (excess

of triggers at the beginning or end of a job) in the presence of power line instabilities

on a few segments, which duration was not divisible by 60 seconds. The corrections

introduced in S5 version removed those artifacts. Also we introduced sliding window

for the estimation of the detector noise. It considerably reduced the boundary artifacts

(for comparison, see Figures 30 and 31).

5. Bug in the rank calculation

The rank statistic is calculated in the rSignificance() function. The algorithm is

described in [9]. Given a data segment x(t), the pixel rank is calculated with a running

window T (5sec):

|Ts|

****|*******xxxx*******|**************************************

<- window T ->

Rank is assigned to all pixels in the window, but only rank of pixels in the middle

of the window (marked xxx) is saved. The length of the xxx section is equal to the

window sliding step Ts. Sliding the window by Ts one can rank all pixels in the data

set x. In this way each pixel is always ranked against neighbour pixels.

The S4 implementation of the algorithm is a little bit different from what is

described above and what was intended - the ranked pixels are located not in the middle

of the window, but in the beginning:

|Ts|

****|xxxx**************|**************************************

<- window T ->

This bug is responsible for inconsistent wavelet scalograms for strong injections. Namely,

the highest rank can be assigned to relatively weak pixels on the edges of injected signal.

However, the correct picture would be when the highest runk is assigned to a pixel in

the center of the injected signal. Figures 20 and 21 show wavelet rank scalograms before

and after bug fix.

6. Modifications to the production script

The WB script was modified to avoid multiple calculation of the rank statistic for each

time lag. Before the whitened TF series were shifted and then the rank statistic was

calculated. Now the rank statistic is produced first and then the rank TF series are

shifted in time. This modification reduced the WB run time by factor of 3.
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Figure 20. Incorrect rank assignment for long sine-gaussian injections.

Figure 21. Rank assignment for long sine-gaussian injections after the bug fix.
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7. Comparison of S4 and S5 waveburst version results on the first few

months of S5 run

Figures 22 and 23 show comparable sensitivities for most of the frequencies for both

searches at about the same background rate. Notice significant improvement in

sensitivity for 70 Hz sine-gaussian due to better data conditioning (LPE) and longer

wavelet filter.

Frequency reconstruction is somewhat better in the S5 version (Figure 24) then in

the S4 version (Figure 25). Time reconstruction (Figures 26 and 27) is improved as well.

The hrss reconstruction is better for the S5 version (Figure 28) then for the S4

version (Figure 29) because less energy leaks outside of the detection band for signals

with frequencies close to the detection band boundaries (70 and 2000 Hz sine-gaussians).
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Figure 22. Efficiency for S5 version of waveburst, SG1 S5, gc = 2.1, background rate

18µHz.

Figure 23. Efficiency for S4 version of waveburst, SG1 S5, gc = 2.0, background rate

19µHz.
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Figure 24. Frequency reconstruction, S5 waveburst version, SG1 S5.

Figure 25. Frequency reconstruction, S4 waveburst version, SG1 S5.
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Figure 26. Time reconstruction, S5 waveburst version, SG1 S5.

Figure 27. Time reconstruction, S4 waveburst version, SG1 S5.
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Figure 28. hrss reconstruction, S5 waveburst version, SG1 S5.

Figure 29. hrss reconstruction, S4 waveburst version, SG1 S5.
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Figure 30. Boundary artifact, S4 waveburst version.

Figure 31. No more boundary artifact in S5 waveburst version.
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