Outline: continuous-wave detection validation steps (T060062-00-Z)

- I. CW pipelines produce candidates that pass a number of tests.
 - A. The SNR is above a threshold set by a false alarm rate.
 - **B**. The candidate is not vetoed by coincidence test(s).
 - 1. SNRs match in all IFOs within expected error.
 - 2. Frequencies match in all IFOs within expected error.
 - 3. Sky positions match in all IFOs within expected error.
 - 4. Spindowns match in all IFOs within expected error.
 - \mathbb{C} . The candidate is not vetoed by "goodness-of-fit" test(s).
 - 1. These test might be applied before or after the coincidence test(s).
 - 2. These tests have to undergo Monte Carlo simulations to set their false dismisal rates.
 - 3. A chi-squared test in frequency-domain code has been implemented.
 - 4. Other possible tests:
 - **a**. Test line width (instrument lines will be broadened by doppler demodulation).
 - **b.** Test that SNR grows as \sqrt{T} on average.
 - c. Test SNR vs. sky position.
 - d. Time-domain code could test chi-squared value for parameters that minimize the posterior pdf.
 - **D**. The signal is not vetoed as a known instrument line.
 - **E**. Many candidates will survive this step.
 - 1. Large false alarm rates will be used.
 - 2. Very small (ideally zero) false dismisal rates will be used.
 - **3**. These rates are probably chosen to produce the approximate number of candidates that Step II can handle.
 - 4. The exact value of these rates will be found by Monte Carlo simulations using software and hardware injections.

II. Follow-up studies are done on candidates that survive Step I.

- **A**. A coherent search on a fine-grid parameter space surrounding the candidate's parameters is done on the same data.
- **B**. Fine tune "goodness-of-fit" test(s).
 - 1. Check that minimum χ^2 or maximum likelihood value is consistent with a signal (i.e, that a CW model for the signal is not rejected based in this value).

- 2. Fine tune SNR vs. time tests.
 - a. Check that SNR grows as \sqrt{T} on average (if not done in step I).
 - **b**. Check that SNR varies consistently with the diurnal antenna pattern.
 - **c**. Estimate parameters and perform chi-squared test of SNR vs. time using JKS equations for SNR.
- 3. Fine tune other "goodness-of-fit" test(s)?
- C. Check that a joint coherent analysis using all IFOs is consistent.
- D. Reproduce the results using data from a prior or subsequent run.
- **E**. If any inconsistencies occur, check if a possible pulsar type "glitch" can account for it (i.e, does the data indicate the frequency changed discontinuously at some point, and can a better fit be found by modeling this).
- **F**. Few candidates will survive this step.
 - 1. This step should reduce the false alarm rate to a very small value.
 - 2. The false dismisal rates should be kept as small as possible.
 - 3. The exact value of these rates will be found by Monte Carlo simulations using software and hardware injections.
- III. Candidates that survive Steps I and II should have very small false alarm rates and will be consistent with a real signal. Thus, it is time to find confidence intervals for h_0 or A_1 , A_2 , A_3 , and A_4 .
 - **A**. Predetermined unbiased approach(s) must be used to determine the confidence intervals.
 - **B**. Intervals for several levels of confidence could be found (e.g., 90%, 95%, 99.9%).
 - **C**. The method(s) should give σ 's for the estimated parameters.
 - **D**. Frequentist approach:
 - 1. Parameters are estimated from minimizing chi-squared or maximizing the likelihood.
 - 2. A fake signal with the parameter estimates is injected into the noise many times (at different frequencies). The parameters are reestimated each time.
 - 3. The σ 's of the parameters are found.
 - 4. A boundary is drawn that contains x percent of the estimates. The boundary would be determined by one of the following criteria:
 - **a**. A boundary of constant $\Delta \chi^2$ or constant likelihood ratio is used. (For example see Numerical Recipes and Feldman and Cousins)

- **b**. A boundary that gives the central confidence interval is used. (In 1D this gives equal probability of finding a measurement below or above the acceptance interval).
- **c.** A boundary based on the σ 's is used.
- **E**. Bayesian approach: The method would be similar to the Frequentist approach, except the σ 's and confidence interval would be drawn from the posterior pdf.
- **F**. How to handle the nuisance parameters.
 - 1. Don't. Give the confidence ellipsoid for A_1 , A_2 , A_3 , and A_4 ; display the result by projecting the ellipsoid onto each axis of this 4D parameter space. (For example see Numerical Recipes.)
 - 2. Marginalize.
 - 3. Use worst-case nuisance parameters.
- **G**. Candidates survive this Step based on whether zero amplitude is not in the confidence interval(s) and/or on how many σ 's an estimated amplitude is from zero.
- IV. Candidates that survive Steps I, II, and III will be "gold-plated" potential detections. Thus, it is time to rule out all other possibilities that could produce such a signal.
 - **A**. Review the validation of the software again.
 - 1. Have any new bugs turned up?
 - 2. Are any new validation tests or additional Monte Carlo simulations indicated?
 - **B**. Independent code should verify the result (this may already been done as a part of Step II).
 - 1. If the frequency-domain code found the candidate use the time-domain code to verify this and vice versa.
 - 2. Incoherent methods not already applied to this candidate might be run as further validation.
 - C. Check key results using independent SFTs.
 - **D**. Check the raw frames if the candidate is found in RDS data, and vice versa.
 - **E**. Check elogs for problems with excitations, DAQ corruption of data, etc....
 - **F**. Understand periodicities that can occur in the DAQ system that may have not already been vetoed.

- **G**. Check excitation channels (make sure no accidental injection was done).
- H. Check PEM and other channels for environmental causes.
- I. Check frequencies of computer monitors and other electronics that might not already have been vetoed.
- J. Check if up/down conversion can happen in the electronics and get into GW channel?
- **K**. Check for other harmonics. Is there a signal at f/4, f/2, 2f, 4f or at ratios of the harmonics of the r-modes? Thus, can we determine if the signal is due to spin, precession, or a mode? (This may be very hard to do.)
- L. Check if the parameters make astrophysical sense. (If not then this could be something really new, but do we require greater confidence in that case?)
- M. Is there a known astronomical object associated with the candidate (e.g., pulsar, x-ray source, etc...). (If not this is not a problem; if so can we think of further consistency checks with astrophysical EM data for the source?)
- **N**. If a signifiant problem is found, we may need to adjust the pipeline in Steps I, II, and III and repeat Monte Carlo simulations.
 - 1. Do we know how to do this without introducing bias?
 - 2. How much of this to do we have to decide upon a priori?
- V. If a candidate survives Steps I, II, III, and IV, should we seek corroboration?
 - A. Ask for astronomical data to seek EM counterpart?
 - **B**. Ask for data from other GW detectors?