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I. INTRODUCTION

The Kolomogorov-Smirnov (K-S) test provides a simple way to to assess the consistency

of an observed cumulative distribution function (CDF) with a model CDF. However, if the

CDF involves samples that may be correlated, its applicability needs to be examined. This

note shows that the effect of pixel-to-pixel correlations is to modify the expected variance

of the model and the effective number of degrees of freedom, but not the applicability of the

model.

In order to apply the K-S test, it is necessary to know the underlying CDF of the model.

This note derives the probability distribution function (PDF), and hence the CDF, of toy

model consisting of an array of measurements which consist of an underlying uncorrelated

noise process that is convolved with a 2-D kernel (the antenna pattern) that is responsible

for introducing correlations among the measured pixels. Given the PDF and CDF of the

underlying noise model and the correlation properties of the antenna pattern, the PDF and

CDF of the resulting correlated pixels may be specified. Hence, the K-S test may be applied

to the measured array of data.

II. THE MODEL

A. Underlying noise process

Consider a 2-D array or map of pixels specified by coordinates {xi, yj}. Let the underlying

uncorrelated noise process be n(xi, yj), with the following statistical properties that do not

depend on position, {xi, yj},

P (n(xi, yj)) =
1√
2πσ2

n

e
− n2

2σ2
n (1)

Figure 1 shows a 2-D array of Gaussian N[0,1] noise and the corresponding histogram of

the PDF over the pixels in the map.

Figure 2 shows comparison of the CDF between data and a Gaussian N[0,1] model. The

corresponding K-S statistic is 0.92.
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Figure 1: Left – 2-D map of N[0,1] noise process; Right – histogram of the PDF of pixel values.
Blue solid curve corresponds to N[0,1] expected PDF.
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Figure 2: Left – CDF of data (blue dots) and model (Cyan line); Right – residuals between data
and model. K-S statistic for this fit corresponds to KS = 0.92.

B. Correlation process

An instrumental response function, K, will produce pixel-to-pixel correlations due to its

finite response. As an example, consider a Gaussian correlation kernel,

K(xi, xi′ , yj, yj′) =
1

N
e

(xi−xi′ )
2+(yj−yj′ )

2

2σ2
xy , with (2)

N ≡
∑
i,j

e

(xi−xi′ )
2+(yj−yj′ )

2

2σ2
xy (3)

so that (4)∑
i,j

K(xi, xi′ , yj, yj′) = 1 (5)

Figure 3 shows the correlation kernel for σxy = 2.5 pixels .
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Figure 3: Correlation kernel corresponding to σxy = 2.5 pixels

Figure 4 shows a more ”pathological” structured correlation kernel that is no longer

simply a Gaussian.

C. Measured data

The measured data, d(xi, yj), are produced by a convolution process between the instru-

mental response function, K and the underlying noise,

d(xi, yj) =
∑
i′,j′

K(xi − xi′ , yj − yj′) n(xi′ , yj′) (6)

Given the PDF for n, it is desired to determine the PDF for d. This follows directly

by considering the problem in the Fourier transform space of the PDFs, where it is pos-

sible to manipulate the characteristic functions, φi(ω) in a straightforward manner. The

characteristic function for the PDF of the noise n is given by [1],
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Figure 4: A more complicated correlation kernel having multiple lobes

φn(ω) =

∫ +∞

−∞
dnP (n)eiωn (7)

Using the PDF for n given in Eq. 1, we have,

φn(ω) = e−σ2
nω2/2 (8)

Now Eq. 6 shows that d corresponds to a weighted sum of independent RVs. Each RV n

is an N[0,1] RV. Therefore the RV q = Kijnij is an N[0,Kij] RV. Thus,

φKijnij
(ω) = e−σ2

nK2
ijω2/2 (9)

Therefore, the sum in Eq. 6 results in the characteristic function for d given by,
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φd(ω) =
∏
ij

φKijnij
(ω) (10)

= e−(
∑

ij K2
ij)σ

2
nω2/2 (11)

→ P (d) =
1√

2π(
∑

ij K2
ij)σ

2
n

e−d2/(2(
∑

ij K2
ij)σ

2
n) (12)
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Figure 5: Left – 2-D map of the convolved signal d using a Gaussian correlation kernel; Right –
histogram of the PDF of pixel values. Blue solid curve corresponds to N[0,

∑
ij K2

ij)] expected PDF
when the underlying process n is N[0,1].

Figure 5 shows the 2-D map of measured data d and the corresponding PDF of the pixel

values, along with the expected model.

Figure 6 shows the 2-D map of measured data d using the ”pathological” correlation

kernel of Figure 4 and the corresponding PDF of the pixel values, along with the expected

model.

D. Number of effective pixels in the blurred map

Figure 7 shows comparison of the CDF between data and a Gaussian N[0,
∑

ij K2
ij)] model.

As expected, the CDF for d is indeed consistent with a Guassian PDF with variance given

by σ2
d = σ2

n

∑
ij K2

ij. In order to assess the significance of the residuals shown in Fig. 7

using the K-S test, the number of degrees of freedom or number of effective independent

data points in the CDF. For the raw data n, this is simply the number of points in the array,

N = NxNy. However, by convolution with the correlation kernel K, the effective number
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Figure 6: Left – 2-D map of the signal d produced by convolution with the multi-lobed kernel
shown in Figure 4; Right – histogram of the PDF of pixel values. Blue solid curve corresponds to
N[0,

∑
ij K2

ij)] expected PDF when the underlying process n is N[0,1].

of independent points is reduced. By considering the effect of K, it can be shown that the

reduction in data points is given by
∑

ij K2
ij ≤ 1. In the limit Kij → δij,

∑
ij K2

ij ≡ 1 and

Neff = NxNy; in the other limit of Kij = const = 1/(NxNy), the entire plane is averaged to

produce a single average value for all pixels and then
∑

ij K2
ij ≡ 1/(NxNy), so that Neff = 1.

When applying the K-S test the appropriate number of data points to use is then given by

Neff = NxNy

∑
ij K2

ij. Using this value of Neff , the K-S statistic is ∼ 1.
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Figure 7: Left – CDF of data (blue dots) and model (Cyan line); Right – residuals between data
and model. K-S statistic for this fit corresponds to KS ∼ 1.

Last, Figure 8 shows a comparisons of CDFs and the residuals between data and Gaussian

model for d even when the correlation kernel is highly structured and non-Gaussian.
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Figure 8: Left – CDF of data (blue dots) and model (Cyan line). In this case the mulit-lobed
kernel of Figure 4 was applied to the raw data; Right – residuals between data and model. K-S
statistic for this fit corresponds to KS ∼ 1.

III. SUMMARY

The Kolmogorov-Smirnov test may be applied to the spatially resolved sky maps pro-

duced by targeted stochastic GW searches to determine whether the residuals of the sky

map are consistent with an underlying Gaussian noise process or whether there is structure

in the map. The blurring introduced by the finite angular-resolution antenna pattern in-

troduces correlations among neighboring pixels that reduces the effective number of degrees

of freedom or independent data points in the map. However, by considering the details of

the convolution process, it is possible to take this into account quantitiatively. The analysis

may be generalized to underlying CDF models that themselves contain correlations among

pixels. Reference [1] discusses this in detail.
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