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Introduction 
 
Gravitational Wave (GW) detectors monitor the possible presence of a GW by carefully 
measuring, by interferometric means, the distance between the surfaces of suspended and 
seismic attenuated mirrors. An error is introduced by the fact that a perfect detection of a 
GW would require the measurement of a test mass centre of mass, while only the test 
mass surface position is measurable. The incessant fluctuating redistribution of 
thermal energy inside the mirrors produces a fluctuating change of test mass’s shape and 
a change of the position of its reflecting surface, which is undistinguishable from a GW 
induced motion of the test mass’s centre of mass. Mirror thermal noise is expected to be 
the limiting factor of the sensitivity of the next generation of GW detector interferometers 
[4] in the frequency range between ∼50Hz and ∼200Hz. 
Thermal noise takes origin from the dissipation mechanisms that redistribute energy 
inside the mirror structure. 
There are various types of internal mirror thermal noise, each one associated with a 
specific dissipation mechanism. The relative importance of one with respect to the other 
is determined by the mechanical and thermodynamical properties of the test mass 
materials. Of course we are dealing here only with thermal noise of mirrors in complete 
thermo-dynamical equilibrium, disregarding any effect that may come from macroscopic 
thermal differences and heat flows. Brownian thermal noise [7] is due to intrinsic losses 
in the material and is associated with all forms of dissipation that are describable by an 
imaginary part of the Young’s modulus. Thermo-elastic noise [9] is created by the 
stochastic flow of heat within each test mass, producing fluctuations of temperature; due 
to the thermal expansion coefficient, the test-mass material expands in the hot spots and 
contract in the cold spots, creating fluctuating bumps and valleys on the mirror faces. 
It has been pointed out [11] that it is critically important how the losses are distributed 
inside the test masses. Losses far from the beam spot contribute less to the total thermal 
noise, whereas losses near the spot, for example in the dielectric coating directly 
reflecting the beam, contribute more. Coating thermal noise [12] due to internal losses is 
expected to be the dominant contribution to the thermal noise for mirrors with a 
SiO2/Ta2O5 coating on a fused silica substrate, whereas the thermo-elastic noise of the 
substrate is the dominant contribution for sapphire mirrors at room temperature. 
The local surface fluctuations produced by thermal noise are averaged by the intensity 
distribution of the laser beam spot over the mirror surface. Reading the entire mirror 
surface with uniform sensitivity would minimize the thermal noise. 
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 The standard design of interferometers uses light beams with a Gaussian distribution of 
power, which are eigenfunctions of cavities with spherical mirrors, a well-developed and 
understood technology. Many authors [7],[9],[12],[13],[15], analyzed the influence of the 
beam radius  (radius at which the power drops down by a factor 1/ew 2) on the different 
types of thermal noise for Gaussian beams. They found the following scaling rules for the 
noise spectral densities when the mirror is considered as an infinite half-space, 

n
X wS 1∝         where  

• n=2 for coating Brownian and thermo-elastic noise, 
• n=1 for substrate Brownian and 
• n=3 for substrate thermo-elastic noise. 

The larger is the beam radius , the better is the averaging of the fluctuations and thus 
lower will be the noise. However the beam size is constrained by the allowable 
diffraction losses requirements, which cannot exceed a few ppm. Taking into account the 
diffraction loss constraints, a Gaussian beam effectively averages out the thermal 
fluctuations only over a few percent of the mirror surface. 
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 A significant reduction in mirror’s thermal noise can be achieved by using modified 
optics that reshape the beam from a conventional Gaussian profile into a Flat-Top 
(“mesa-beam”) profile. A large-radius, flat-topped beam with steeply dropping edges 
(necessary to satisfy the diffraction loss constraint) will lead to a better sampling of the 
fluctuating surface, lower noise in the determination of the mirror surface position and 
better sensitivity for GW detectors. The calculation of substrate thermoelastic noise 
reduction using Mesa beam has been done in [3] for sapphire test mass. More recently 
Vinet [5] calculated the substrate Brownian thermal noise reduction using Mesa beam for 
Virgo mirror size.  
Calculation of the coating thermal noise, which is expected to be the most significant 
contribution to the thermal noise budget for the test masses of the next generation of GW 
interferometers, has never been published for non Gaussian beams and finite cylindrical 
test masses.  

In this paper we present a comparative study of the various sources of thermal noise 
in different mirror and beam configurations, considering both Gaussian and Mesa beam 
profiles, addressing the problem of thermal noise reduction, through mirror aspect-ratio 
and beam size optimization. Some of these results have been already presented in [8] and 
[14]. 
We analyzed fused silica and sapphire mirror substrates with the conventional 
Ta2O5/SiO2 (λ/4) coating. 
We fixed the mirror mass at 40 Kg, constrained by the Advanced LIGO suspension 
system design. 
We fixed the diffraction loss constraint at 1ppm (10-6) for both the Gaussian and the 
Mesa beam, calculating the diffraction losses with the so called clipping approximation; 
in this approximation the losses are computed by the amount of light that falls outside the 
mirror and the beam profile is assumed to retain its shape even though the diffraction 
from the edge of the mirror. 
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The parameters used in this evaluation are the following: 
 

Coating Parameters : (c.g.s. units) Fused Silica: Sapphire: 
Ta2O5 SiO2 

Density      ρ      ( g/cm3) 2.2  4 6.85 2.2 
Young modulus     Y   ( erg/cm3) 7.2 1011 4 1012 1.4 1012 7.2 1011

Poisson ratio     σ  0.17 0.29 0.23 0.17 
Loss angle      φ  5 10-9 3 10-9 10-4 (total) 
Lin. therm. expansion  α      (K-1) 5.5 10-7 5 10-6 3.6 10-6 5.1 10-7

Specific heat per unit mass (const. 
vol.)   C   (erg/(g K) ) 

6.7 106 7.9 106 3.06106 6.7 106

Thermal conductivity            κ      
(erg/(cm s K)) 

1.4 105 4 106 1.4 105 1.4 105

Total thickness     (cm) variable variable   
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We will use the following expression for the normalized power distribution of the 
Gaussian beam over the mirror surface 
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of the Mesa beam at the mirror location. 
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Where  is the modified Bessel function of zero order and0I
k
Lw =0  . 

 
Fig. 1   Gaussian beam radius w   and  Mesa beam integration disc radius D as a function of the mirror’s 
radius in order to satisfy the diffraction loss constraint. 
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Thermal noise calculation 
 
We used the Levin approach to the Fluctuation Dissipation Theorem [11] in order to 
calculate the power spectral density of the test mass displacement. The generalized 
coordinate  is given by the average, weighted by the beam spot power 
distribution , of the normal displacement 

)(tX
)(rf r ),( truz

r
of the test mass surface.  

      )(),()( 2 rftrurdtX
Mirror

z
rrr

∫=

The spectral density of the displacement noise due to thermal fluctuation in the test mass 
is given by 

2
0

2
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F

WTkS dissB
X ω
ω = ,                                    (2) 

 where  is the average (over the period dissW
ω
π2 ) of the dissipated energy in response of 

the applied oscillatory pressure  )cos()(),( 0 trfFtrP ωrr
= . 

In this way the thermal noise evaluation reduces to the calculation of  in accordance 
to the specific mechanism and localization of dissipation, i.e. Brownian or thermo-elastic 
and substrate or coating. The main ingredient for these calculations is the model proposed 
by BFV [7] and corrected by Liu and Thorne [10] of the approximate solution of the 
elasticity equations for a cylindrical test mass subjected to the oscillatory pressure with 
the same spatial profile as the beam power distribution.   The deformation of a cylindrical 
test mass is calculated using the displacement vector given in Eq. (30) of  [10]  with the 

coefficients 
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 calculated according to the specific 

cylindrically symmetric power distribution; a is the radius of the cylindrical mirror, mζ  is 
the th zero of ,  and are the first and zeroth order Bessel functions. The 
fundamental approximation underneath these calculation is the quasi-static approximation 
for the calculation of the displacement fields according to the oscillatory pressure  
which is a good approximation  for oscillatory period larger than the time required for 

sound to travel across the test mass (

m )(1 xJ 1J 0J

P

s
c
H

s
sound μτ 30≈≈ , where H and are the mirror 

thickness and sound velocity in the substrate respectively). 

sc

The geometry we consider for the reflective surface of the mirrors consists of a thin film 
of thickness  on a substrate whose thermo-mechanical properties are different from 
those of the film. 

d

To simplify the analysis, we assumed that the multilayer coating can be approximated as 
a uniform layer with appropriately averaged properties.  
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In the following paragraphs we will give some details on how the different contributions 
to thermal noise are calculated. 
 
 
 
 
Substrate Brownian thermal noise: 
 
The conventional thermal noise of the substrate is given by Eq. (2) with the time 
averaged dissipation  given by dissW

UW sdiss φω2= , 

where sφ  is the loss angle of the substrate, ..  denotes the time average over the 

oscillatory period and U  is the elastic energy stored in the test mass, ∫=
masstest

ijij dVU σε2
1   

, ijε   and  ijσ  are the component of the strain and stress tensor respectively calculated 
from the displacement vector and the constitutive relations (elastic moduli tensor) for an 
homogeneous and isotropic material  
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where μλ,  are the Lamé coefficients of the substrate. 
 
 
 
Substrate thermo-elastic noise 
 
In this case the thermo-elastic dissipation is given by 

( )∫ ∇=
masstest

diss dVT
T

W
2

δκ r
                        (4) 

Where κ is the substrate thermal conductivity and Tδ  is the temperature perturbation 
induced by the elastic deformation due to the oscillatory pressure and is given by 

( )εσρ
αδ

21−
−=

C
TYT                                            (5) 

Where α  is the linear thermal expansion coefficient, Y and σ  are the Young modulus 
and Poisson ratio respectively, is the specific heat per unit mass at constant volume and C
ρ  is the density of the substrate. The equation (5) follows from the adiabatic 
approximation of the general thermal conductivity equation. The adiabatic approximation 
is discussed in details in [10] where it is shown that if the time scale for diffusive heat 
flow is much longer than the pressure oscillating period (or in other way that the beam 
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radius  where trw >>
ωρ

κ
C

rt =  is the characteristic length for diffusive heat transfer), 

we can approximate the oscillations of stress, strain and temperature as adiabatic, 
neglecting the heat flow term in the thermal conductivity equation. 
Using equations (3) for the calculation of the expansionε , substituting in (5) we can 
calculate the thermo-elastic dissipated energy in (4) and then the spectral density of the 
displacement noise given in (2). 
 
 
 
Coating Brownian thermal noise 
 
In this case the averaged energy dissipated by the intrinsic losses in the coating is given 
by 
 

><= ccdiss UW φω2                                                              (6) 
Where cφ  is the loss angle of the coating and  is the portion of elastic energy stored in 
the coating (in this calculation we assume an isotropic and homogeneous coating with 
averaged elastic coefficient Young modulus and Poisson ratio). In the thin film 
approximation we assume that the energy stored in the coating is given by 

cU

dUU cc δ≈  

Where d is the thickness of the coating and dSU c
ij

c
ijSc σεδ ∫= 2

1 is the energy density 

stored at the surface, integrated over the surface. 
Following [12], the stresses and strains in the coating can be calculated in terms of the 
stresses and strains at the surface of the substrate because of the boundary condition 
between coating and substrate: the coating must have the same tangential strains as the 
surface of the substrate and the coating experiences the same perpendicular pressure as 
the surface of the substrate. Since the only exerted force is normal to the plane  we 
must have  (

0=z
0=c

rzσ 0)0,( ==zrrzσ  is a boundary condition for the elastic problem of 
the substrate) 
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In this way we can calculate all the fields necessary for the calculation of the elastic 
energy stored in the coating, using the expressions already found for the substrate. 
 
 
Coating Thermo-elastic noise 
 
In the thermo-elastic problem of the coating is important to note that the coating 
thickness, the diffusive heat transfer length and the beam radius satisfy the following 
relation 

wrd t <<<<  
This relation justify the approximation of the multilayer film as a uniform film with 
averaged properties and  when computing the oscillating temperature distribution we can 
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consider the temperature variation as adiabatic in the transversal direction and that only 
the thermal diffusion orthogonal to the surface of the mirror need be considered.  
The fundamental equation we need is the one dimensional thermal conductivity equation 
driven by a thermo-elastic source term. 
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Where βε  is the expansion at the mirror surface ( )0=z  associated with the zeroth-order 
elastic fields calculated for the previous sections and cs,=β  indicates quantities 
evaluated in the substrate and the coating respectively. For a multilayer coating this 
equation determines an averaged temperature field and the coating quantities are 
averaged in the following way (following [15],  are the thickness of the two 
materials) 
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Assuming a time dependence of the form for the oscillatory thermal and elastic 
fields, equations (8) can be cast in this form 

tie ω

βββ ωδω Β−=− iTKi )(                                                         (9) 
with the boundary conditions of zero heat flux at the surfaces of the test mass and 
continuity of temperature and heat flux at the boundary between coating and substrate 
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The general solution of equation (9) is given by 
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The boundary conditions (10) determine the four arbitrary constants. 
The averaged dissipated power for the coating thermo-elastic noise is given by 
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Inserting (12) in (2) we have the spectral density of displacement noise due to coating 
thermo-elastic fluctuations. 
 
                               
                                   Results: 
 
All the results are calculated at the frequency of 100 Hz , for a Fabry-Perot cavity length 
of L = 399901 cm and  laser wavelength λ = 1064 e-7 cm. 
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For finite size test mass we performed the following calculations: we changed the mirror 
radius from 12 cm to 21 cm (with 1 cm per step) and in the same time we increased the 
Gaussian beam radius  and the Mesa beam integration disc radius  to satisfy the 1 
ppm constraint for diffraction losses. The thickness of the mirror is reduced 
correspondingly to satisfy the total mass constraint. In this way all the geometric 
parameters in the problem are functions of the mirror radius. For example the Gaussian 
beam radius  can be expressed as

w D

w )10(2)( 62 −−= Logaaw  (this is the expression 
used for the calculation of the noises for semi-infinite mirror which are represented in the 
figures below as function of mirror radius) 
 
Fused Silica substrate 
 
 Figure (2) shows the different contributions to the mirror thermal noise evaluated for 
infinite and cylindrical shaped mirror using Gaussian beam. 
The infinite mirror thermal noises (dashed lines) are actually functions of the beam radius 
which correspond to 1 ppm diffraction loss in the finite mirror case. 
Depending on the mirror radius and the specific noise considered, the finite size 
correction can be as large as several 10 %.  
It is interesting to note that all the thermal noise contributions present a minimum in the 
finite cylindrical model which would represent the best choice for the mirror and beam 
dimensions. The descent part of the noise curves follows the basic idea that increasing the 
beam radius the noise will get lower and the rising part of the curves can be explained 
heuristically by the fact that all the noises contributions are related somehow to the elastic 
deformation of the test mass under a surface pressure and this effect is bigger in gong-
shaped mirrors than in bar-shaped ones.  
 

 
Fig. 2    Displacement noise using Gaussian beam, for different thermal noise contributions as functions of 
the mirror radius. Solid lines correspond to cylindrical test mass whereas dashed lines correspond to semi-

 8



infinite mirror. The points in the dashed lines are calculated using the same beam radii as the finite size 
calculations.  

 
Fig. 3 Comparison between Gaussian (squares) and Mesa beam (rhombi) noise performance, separating the 
four different thermal noise contributions. 
 
Fig. (3) shows the displacement noise of all the analyzed thermal noise contributions, for 
Gaussian and Mesa beam in the case of Fused Silica substrate. The dominant noise, the 
coating Brownian thermal noise, undergoes a reduction of a factor 7.1≈  for a mirror 
radius of 18 cm. The substrate thermal noise is reduced by a factor 55.1≈ , whereas the 
coating thermo-elastic and the substrate thermo-elastic are reduced by factor 

and  respectively. 71.1≈ 92.1≈
Fig. (4) shows the total mirror thermal noise for Gaussian and Mesa beam. It is evident 
that the minimum thermal noise occurs for a mirror radius of about 18 cm for Gaussian 
beam and for about 19 cm for Mesa beam. The corresponding mirror aspect ratios 
( Ha2 ) are 2 for Gaussian beam and 2.4 for Mesa beam. The gain in sensitivity is a 
about a factor 1.7 switching from Gaussian to Mesa beam at the minima of thermal noise. 
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Fig. 4   Total thermal noise ( )XS  for Gaussian and Mesa beam. 

 
 

 
Fig. 5   Estimation of the sensitivity improvement, obtained by simply replacing the baseline Gaussian 
beam profile with a Mesa beam in Advanced LIGO. 
 
   Fig.(5) shows the expected sensitivity of Advanced LIGO interferometer in the 
Gaussian or Mesa beam configuration. The estimated range for NS-NS binary systems 
increases from 177 Mpc for Gaussian beam to 228 Mpc for Mesa beam. This is a 
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remarkable factor if we consider that we didn’t optimize the other interferometer’s 
parameters to take full advantage of the reduced mirror thermal noise floor. 
In this evaluation the Thermo-refractive noise of the coating was ignored. Its effect will 
be dealt in the last section. 
 
             Sapphire substrate:             
 
We have conducted the same kind of analysis for mirrors with Sapphire substrate. 
In this case the dominant noise is the substrate thermo-elastic contribution and the 
advantages of using Mesa bean have been already analyzed in [3] for this particular noise 
source. Here we compute the various thermal noise contribution for finite size test mass 
and show the relative gain for each thermal noise employing a Mesa beam instead of a 
standard Gaussian. 
 
 

Substrate Thermoelastic

Coating  Brownian

Substrate  Brownian

Coating Thermoelastic

 
Fig. 6   Displacement thermal noises for semi-infinite (dashed lines) and finite cylindrical (solid lines) test 
mass. 
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Substrate Thermoelastic

Coating  Brownian

Substrate  Brownian

Coating Thermoelastic

Gaussian beam

Mesa beam

 
Fig. 7  Comparison between Gaussian and Mesa beam for different thermal noise contributions. 
 
For Sapphire substrate the minimum of thermal noise occurs for a mirror radius of about 
16 cm, pretty close to the Advanced LIGO baseline design. The corresponding mirror 
aspect ratio ( Ha2 ) is about 2.6. The total thermal noise reduction for Mesa beam is 
about a factor 1.6 around the minimum (see Fig. (8)) . 

Gaussian beam

Mesa beam

 
Fig. 8    Total thermal noise ( )XS  for Gaussian and Mesa beam. 
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Coating Thermo-refractive noise 
 
The thermo-refractive noise is generated by temperature fluctuations that couple with 
phase fluctuations of the laser (and therefore with measured displacement) thanks to the 

non-null coefficient 
dT
dn

=β  where is the refractive index. n

Following [16],[13], the spectral density of the equivalent displacement noise can be 
written as 

)()( 22 ωβλω TeffX SS =                                                         (13) 
Where is the spectral density of temperature fluctuation in the coating and TS
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The spectral density of the temperature fluctuation can be calculated using the Langevin 
approach for semi infinite mirror for arbitrary beam power profile and inserted in (13) 
 

2
22242

2

0
2

2
22 )(~

1
12

)2(
4

)( ⊥
⊥

∞

∞−

∞
⊥⊥

++
= ∫ ∫ qg

dqqK
qdqqdq

C
KTk

S z
b

effX ωπρ
βλω          (14) 

222222
zyxz qqqqqq ++=+= ⊥  

 

∫
∞

⊥⊥ =
0 0 )()(2)(~ rqJrfdrrqg π   is the Hankel transform of the normalized power 

distribution over the mirror surface. 
In this section we want to give just an estimation of the coating thermo-refractive noise 
reduction using a Flat Top beam instead of a Gaussian beam and for this purpose we will 
approximate the real mesa beam as a perfect cylindrical beam  
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In both cases the Hankel transform can be analytically performed but the integral in (14) 
must be numerically evaluated (unless other approximations are accepted, as done in 
[16]). 
For this comparison we chose a value of 04wb = ( = 2.6 cm) which correspond to the 
“standard” radius of the integration disc for Mesa Beam and compare this ideally flat 
beam with the Advanced LIGO Gaussian baseline design 

0w

6=w cm. The displacement 
noise is reduced by a factor 1.7 in the case of a Flat Top beam. 
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Conclusion 
 
We presented a full thermal noise budget calculation for a GWID test mass using 
Gaussian and Mesa beam. 
We have shown, using a model of test mass with finite dimensions, that all the 
contribution to displacement noise due to thermal fluctuation are reduced considerably by 
using Mesa beam instead of the standard Gaussian one. Coating Brownian and thermo-
elastic and substrate Brownian and thermo-elastic are reduced by different factors 
depending on the mass aspect ratio and beam radius. Moreover we have shown that the 
minima of total thermal noise occur for different mirror aspect ratio, depending on the 
substrate material and beam geometry. At the minima of the noise curves we have a gain 
in sensitivity of a factor 1.7 for Fused Silica substrate and 1.6 for Sapphire substrate. We 
also addressed the problem of coating thermo-refractive noise and we have shown that 
the use of an ideally flat beam profile reduces the displacement noise of a factor 1.7. 
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