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Investigation into blade torsion, blade lateral flexibility, and the effect 
they have on blade and wire performance. 

Ian Wilmut, Justin Greenhalgh, Norna Robertson, Mark Barton, Calum Torrie 

1. INTRODUCTION 

Following on from the FEA investigations into blade performance with angled wires 
described in T050259-03 interest has been expressed in the detail of exactly what is happening 
at the blade tip, specifically the exact interactions between the blade tip and the wire. What 
follows is an attempt to characterise this behaviour through the use of FEA and analytical 
methods. Section 2 explains the FE model, section 3 the FEA results, section 4 an analytical 
study of torsion, and section 5 an analytical study of lateral movement. 

Appendix A has an graphical explanation of a counter-intuitive rotation of the blade tip under 
lateral loads (see section 3.2). 

Appendix B has an email about the stability implications of the lateral flexibility, and 
appendix C has an email reconciling appendix B with section 5. 

2. BACKGROUND/METHOD: FEA 

A simple ANSYS model was developed by Justin Greenhalgh for the frequency analysis of the 
blades (T040215). This has now been extended to include the wire and wire clamp. Forces can 
now be excerpted on the wire and the effects on the blades observed. A pair of output plots 
are shown below in Table 1, these have been labelled to explain the FE model. 

Table 1 

 

Side view of loaded blade. Blade clamp 
portion has very  thick elements preventing 
bending1

The green circle shows the break off of the 
wire. Looking at the intersection between the 
indicator wire and the break off gives the 
flexure length. 

Wire 

Blade clamp 

Clamp direction 
“indicator wire” added to 
the model to make it easy 
to extract the deflection at 
the clamp 

Indicator wire, 
angle to vertical 
shows blade twist
 

Intersection between 
two portions of wire 
shows flexure point 

Various manipulations of the geometry have been tried in an attempt to under stand the blade 
behaviour. The more useful are described below. 

                                                      

1 Note; this figure shows a very early model with a poor representation of the wire clamp. 
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3. OBSERVATIONS/RESULTS OF FEA 

It has been known for some time that if a lateral load is applied to the end of a wire, then the 
wire will bend certain distance below the clamp break off face. It has also been known that the 
blade will twist a small amount as it retards the force applied to it by the bending wire. In an 
attempt to quantify this a 100N lateral load was applied to the free end of the wire in the FEA 
model after the blade had been pulled flat and the wire tensioned. This resulted in the blade 
twisting as anticipated.  

Two things were apparent. 

• Firstly, the twisting blade tip will result an alternative d distance (see under 3.1 below).  

• Secondly, the blade tip twists in a sense the reverse of what might have been expected (see 
under 3.2 below) 

These are detailed in the following two sections. As required specific FEA analysis will be 
used as examples. 

3.1 “flexure point” distances 

Up until recently we believed we had a clear understanding of the wire flexure point, which is 
to say that point, a small distance below the wire clamp breakoff face, about which the 
pendulum swings when wire bends a finite distance away from the breakoff face. In 
“Damping dilution factor for a pendulum in an interferometric gravitational waves detector” 
by G Cagnoli et al a single wire pendulum is taken and its flexure point defined algebraically 
as: 

T
EIfl =  

Where: 

fl= flexure length 

E= Young’s modulus 

I= 2nd moment of area of the wire 

T= wire tension in N 

This is the first thing to use the FEA model to verify. A middle blade wire was selected and 
the wire clamp held statically, the free end of the wire was then pulled sideways by 100N and 
the flexure distance measured. This provided a flexure length of 0.002277m, using the same 
inputs for the above equation yields 0.002365m. This is a very encouraging start, and could 
possibly be improved upon using more elements.  

The model can now be extended to look at the blade, the clamp and the wire. This will result 
in some blade twist as well as the wire bending. In addition there will be a lateral movement 
of the blade tip. These three things are illustrated in the diagrams below. 
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No blade 
movemen
e 1 
n 1 of Figure 1 shows a simple statically constrained wire clamp with a wire bending 
 the wire break off. In fact of course the wire has a finite bending radius but this simple 

oximation has been applied successfully to date. The distance d2 is the same flexure 
nce defined by Cagnoli et al. Section 2 of Figure 1 shows a more complex system with the 
ional variable of the blade tip twisting. It should be noted that this configuration yields 
ternative flexure distance d1, this is the wire flexure distance with reference to the local 
al (the untwisted CL of the blade). The third and final section of Figure 1 shows the 
ional complication of the blade tip having moved laterally due to the forces excerpted by 
ire, this has resulted in d3; the d distance on the mass centre line.  

irection of twist of blade tip. 

 looking at a real blade we can collect some data from a FE analysis and plot where the 
and the blade tip are. The plot below is lifted directly from Excel.  It shows the x and y 
ions of points on the wire and on the indicator wire, in their deflected positions. There 
 data points, two on the indicator wire, two on the loaded wire and one at the clamp 
 off. From these it is possible to construct the three flexure points. 

Middle blade with sideways load on the free end of the wire of 10N

y = -1251.3x + 0.5895

y = 49.073x + 0.4426
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Clearly a close up of the centre would be useful. This is shown below. 

Middle blade with sideways load on the free end of the wire of 
10N
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d2  d1

d3 

Using the definitions of d1, d2, & d3 above they can be calculated to be: 

d1 d2 d3 

0.00232m 0.002072m -0.004048m 

From just these simple results it is apparent that the blade is not behaving like the sketches in 
Figure 1 suggest. Taking the raw FEA data and sketching out what it means results in a figure 
a bit like Figure 2. Looking at Figure 2 it is evident that d3 is smaller than either of the other 
two. Clearly d3 can be negative in this set up, and it is also correct that d1 is bigger than d2.  

Looking at Figure 2 the blade tip has moved in the same direction as t
force. It is slightly disconcerting that the tip has twisted in the oppo
direction to the wire. This is because the blade geometry is imperfect,
the standard imperfection is that the parallel sided tip kicks up at the 
end causing the wire break off point to be above the centre line of the
majority of the blade, this creates a moment around the blade with the 
blade kick up providing the lever arm. This is what causes the twist 
shown in Figure 2. For a graphical explanation see Appendix A. 

he 
site 

 

 

 

3.3 Breaking the problem down 

At first glance Section 3.3 appears to adequately explain the blade behaviour, however, the 
lateral offset between the mass centre line and the blade centre line is dependant on the 
magnitude of the sideways force. So for very small sideways forces induced by pitch the 
difference between d1 and d3 will be very small. 

Figure 2 
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It is also likely that the pitch of the blade tip is dependant on the magnitude of the sideways 
load, once again this will mean that d1 and d2 are very similar if the mass pitch is very small.  

In an attempt to understand the magnitudes of the various contributing factors we are going 
to break the problem down into three sections. 

a. Does the flexure point vary with sideways force if the wire clamp is fixed? We don’t 
believe it does but it is best to make sure. 

b. How far does the blade tip move and twist with varying side loads? 

c. With the answers to ‘a’ and ‘b’ is it possible to correlate these two behaviours with what is 
seen on the full wire blade model? What changes are then seen with small sideways 
forces? Can a pitch tolerance be put on the assembled masses to prevent a problem? 

3.3.1 Does the flexure point location vary with sideways load? 

In short the answer is no. Running multiple analyses with consistent geometry, only a small 
movement of the flexure point can be seen as the sideways load increases from 5 to 100N (see 
figure 4). It was observed that the flexure point varied in position by 0.2mm in ~2.5mm. It 
should be stated that the element size has a significant effect on the errors in this calculation. 
We do not plan to pursue this further. 

3.3.2  How far does the blade tip move and twist with varying side loads? 

Re-configuring the FE setup the blade twist can be simulated; running a series of side loads 
provides the results shown in Figure 3: 

Blade twist WRT side load 

y = 0.0074x + 0.0215
R2 = 0.9996

y = 1E-05x - 2E-08
R2 = 1
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Figure 3 
 
As would be expected the twist and translation of the blade tip is directly proportional to the 
side load. And as such is zero when zero force is applied. For an advanced LIGO suspension 
this tells us that the blade tip will remain in its original position, and won’t rotate when very 
small forces are applied.  

In principal it should now be possible to simulate a number of blades with wires and 
hopefully see that d2 is constant for each blade, and that the sideways force then contributes 
some blade twist and lateral motion. 
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3.3.3 Combined wire and blade 

If we have now explained all the phenomena contributing to blade behaviour then with a 
combined analysis we would expect that d2 would be constant, and the lateral motion and 
twist of the blade tip would vary with side load. d1 and d3 would thus vary with side load 
also. 

Below is this data graphed for various side loads. 

d1 d2 d3 for various side loads
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Figure 4 
Figure 4 is hard to interpret. It shows d3 is a constant negative number, albeit with some noise 
(this is a non-linear FE so some noisiness in results is expected). This is interesting and seems 
to be born out by a very simple look at the geometry (shown in Section 5). What is not clear is 
what happens at 0 sideways load, and more importantly what happens just to either side of 
zero.  

D2 and d1 are also shown in Figure 4 and are both rather messy data sets. The most useful 
conclusion at this point is that that D1 and D2 are roughly constant and very similar which is 
what would be expected for small tip rotations. It may be that there are subtle changes hidden 
in the noise of this data. Due to their small sizes it is not intended to investigate these small 
changes further. 
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Figure 5 
 

Figure 5 shows the lateral stiffness and torsional stiffness of the middle blades.  The most 
significant, and possibly unexpected, result is that the lateral stiffness of the blade is about 
0.01mm per N. This compares with 0.37mm per N vertically giving only a factor of 30 
difference in their stiffnesses.  This is lower than the factor 80 that was considered as the 
minimum required in order for lateral stiffness to be ignored. 

4. ANALYTICAL APPROACH - TORSION 

The aim of this study is to compare the torsional stiffness of the blade with the resistance of 
the wire to bending. 

To see which effect 
dominates, compare 
bending stiffness of 
wire with torsional 
stiffness of blade. 

Blade torsionally 
floppy 

Blade very 
stiff 
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4.1 Sources 

I have used the Cagnoli et al paper Phys Lett A 272 (200) 39‐45 plus emailed assistance for the 
stiffness of a wire under tension, and the paper of Norna Robertson (5 Sept 2002, “Some notes 
on pitch frequency…”) for the torsion of the blade. The stiffness of a wire with no tension (for 
comparison) comes from Roark. 
4.2 Equations 

4.2.1 Wire with no tension 

Encastered wire loaded sideways at the end; length L; diameter d; Young’s modulus E; 
displacement delta; force F; stiffness K: 
 

3
3
L
EIFK ==

δ
  where 

64

4dI π
=  

Torque

angle

F  Fδδ  

 
Considering the force to exert a torque about the fixed point (in engineer’s parlance, the 
encastering moment), and expressing the displacement at the end as an angle subtended at 
the fixed point, we can get an equivalent torsional stiffness Ktorsion: 
 

L
EIKL

L

FL
rotation
torqueKtorsion

32 ====
δ

 

 
4.2.2 Wire with tension 

From Cagnoli A.6, ignoring the gravitational part (See email in appendix 1): 
 

2
1

L
T

LL
TK

λλ
=⎟

⎠
⎞

⎜
⎝
⎛=  

 
and as above 
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λ
TKLKtorsion == 2   and noting that 

EI
T

=λ  yields  TEIKtorsion =  

 
4.2.3 Torsion of blade 

The torsional stiffness of the blade is given in Norna’s paper Equation 11 as 
 

∫
=

)(
3

3

zb
dz

GtKtorsion  where the integral is evaluated for a given blade profile. 

4.3 Numerical results 

Using a spreadsheet the results above have been evaluated for a typical wire and blade, the 
middle blade of the controls prototype. I have ignored the angling of the wire. 
 
 
 
WIRE    BLADE    
parameters   Parameters   
 diam 0.00071 m E 1.86E+11   
 I 1.24739E-14 m^4 nu 0.3   
 T 600 N G 7.15E+10   
 L 0.308 m      

 E 2.10E+11 Pa B 0.059
middle blades, 
controls 

    L2 0.415   
No preload   L1 0.0661864   
 stiffness 2.69E-01 N/m b 0.01   
 torsionally 2.55E-02 N.m/rad t 0.0046   
         
With preload   Norna equation 11   
Cagnoli (A.6)   integral 19.531495   
 term1 6.78E-03       
 stiffness 13.21555743 N/m      
 torsionally 1.25368064 N.m/rad K 118.83828 N.m/rad  
 
 
 
For reference the torsional stiffness of the other two blades are: 
Top blades  90.28 Nm/rad 
Bottom blades 115.23 Nm/rad 
 
4.4 Conclusion from the analytical work 

As can be seen, the stiffness of the tensioned wire is larger than that of the un‐tensioned wire, 
but both are much less than the stiffness of the blade in torsion. This suggests that the effect of 
blade twisting will be negligible. 
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5. ANALYTICAL APPROACH – LATERAL FLEXIBILTY 

5.1 Wire flexure with lateral deflection of blade 

This section considers the effect that lateral deflection will have on the effective pivot point of 
a suspension. It follows from some apparently anomalous results from Ian Wilmut’s FEA, 
which in fact are borne out by the analysis below. 
 
5.2 Explanation 

In the figure, part A shows the wire and clamp in undeflected state, with only a vertical 
tension in the wire. B shows what happens when the wire is pulled to the side (as well as 
down). The wire forms a flexure point in accordance with Geppo’s paper, and the clamp and 
the wire move to one side because of the lateral elasticity of the wire. This will generate an 
“effective pivot point” on the original vertical centreline of the clamp but higher than the 
flexure point. C separates the wire tension into lateral and vertical components. In D I have 
labelled the lateral shift x. The effective pivot point is above the flexure point a distance h. I 
have also drawn a triangle of arbitrary size on the wire. 
 
 

flexure 
effective  point 

 
 
 
I hope it is clear that by considering similar triangles,  
 

b
a

x
h
=  

 
But we know that the deflection x is given by the lateral force and the blade’s lateral elasticity 
kl, and the ratio of a to b is same as the ratio of W to F. So 
 

ll k
W

F
W

k
F

F
Wxh =•==  

F

T 
W

hpivot   b xpoint 

a 

C DB A 
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Interestingly, h is independent of the lateral force F. In the case of the middle blade, the lateral 
stiffness is close to 0.1 Newton per micron (slope of, eg, figure 5 above), and the vertical load 
is about 500 N, so the pivot point is higher than the flexure point by about 5000 micron, or 5 
mm. Looking at the data it is believable that this is what we are seeing when D3 is graphed as 
a constant at about ‐4mm (4mm above the breakoff). 
 

6. OVERALL CONCLUSIONS 

This has been an interesting study into blade behaviour. We conclude that 

o Blade torsion will not have a significant effect on the wire flexure point. 

o The blade is rather less stiff laterally than had been thought and  

o this may affect the pendulum dynamics; 

o this will have a significant effect (possibly dominating all others) on the pivot 
location and hence on the “d” distances and pendulum stability. 
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Appendix A 

End views on blade: simple, with no end kick-up (left hand side), more realistic, with end 
kick-up (right hand side) 

 

 

Blade shown assumed to be drawn flat by P. 
And showing assumed rotation of tip due to 
F. 
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Appendix B – stability implications of lateral flexibility 

Ian, Justin and colleagues 
 
Further to my previous note ( and distracted from what i should be doing  
this afternoon!) I was writing up my thoughts on lateral stiffness and  
wanted to share this with you to see if it ties up with your findings,  
which i will read carefully. 
 
Consider the diagram attached. Assume for now that we neglect the stiffness  
of the wire, and we attach a wire a distance d below the CM line. The mass  
has been turned through an angle phi. The restoring torque due to the load  
( let load be m*g) is given by m*g*d*phi for small angles. 
 
Now if the wire is attached to a blade which is not infinitely stiff in  
transverse direction the action of the component of the weight along the  
direction as indicated by the blue arrow will move the point of suspension  
in that direction (as Justin described to me to think about a wire on a  
ring sliding along). If the lateral stiffness is small enough that this  
force moves the point of suspension so that it lies directly under the CM,  
then there is no restoring torque. If it moves further we have gone into  
instability. Now the magnitude of the force (blue arrow) is m*g*phi, and  
the distance to move to reach the beginning of instability is d*phi. Thus  
we have a problem if the transverse stiffness kt of the blade is less than  
that force divided by that distance i.e. if kt is less than mg/d 
 
Now in the vertical the stiffness, kv, is given by mg/D where D is the  
amount the blade deflects when loaded. So we have a problem if kt/kv is  
less than D/d. 
 
What is D? i am guessing that for the UI blade it is around 150 mm ( is  
that right)? So we have a problem if kt/kv is less than 150/1, assuming d  
is 1mm. I think i heard someone say that the ratio is in fact 30 to 1. So  
what we would have to do is make d 5mm instead of 1mm to counteract the  
non-infinite lateral stiffness of the blade. This seems to tie up with the  
number I heard spoken today at the SUS telecon. 
 
Note that I have ignored the wire stiffness. It would help to increase the  
restoring force and thus partially offset this effect. 
 
This has helped me to understand physically what is happening and how we  
can counteract it - however I may be just repeating what Ian and Justin  
have done in a different way. Comments/thoughts welcome. 
 
Cheers 
Norna 
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Appendix C – note reconciling appendix B with section 5 of paper. 

Dear Norna, 
  
Many thanks for this elegant analysis. Ian and I had a talk about it this afternoon and indeed you have 
arrived at the same result we did. 
  
Looking at the diagram on page 10 in our paper, the sus will become unstable if h becomes greater 
than d. (d is not shown on the diagram but I think it should be clear why this inequality applies). That 
would put the pivot point above the cg of the mass. Noting that we found h=W/kt, and noting that the 
initial deflection (your D) is related to our W (the weight, mg) by D=W/kv, the inequality becomes 
  
for stability h<d 
W/kt<d 
(D.kv)/kt<d  
kv/kt<d/D 
or 
kt/kv>D/d as you had. 
  
So either we are both right, or both wrong in precisely the same way. Calum asked Ian if we could do 
the sum for previous suspensions: all we need to know to work out our h is the weight and the 
horizontal stiffness kt. I am pretty sure that kt can found with a simple linear FEA of the blade in its flat 
condition, so if someone can give us the dimensions and the suspended weights we can soon do the 
sum. (Ian will check that for the blade on which he has done the full nonlinear FE, this trick works to 
give the correct lateral stiffness.) If the h we find is much smaller than the d that was used then it's no 
surprise that we never saw anything. 
  
Cheers - Justin. 
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